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ABSTRACT 
 

The efficiency of the ejector cycle is very sensitive to the ejector efficiency. This paper provides a literature review 

on ejector efficiencies in various ejector systems, such as vapor compression systems, solar driven ejector systems. 

The definitions of overall ejector efficiency and ejector component efficiencies in literature are summarized. The 

assumed constant ejector component efficiencies used in the ejector modeling, and the empirical correlations of the 

ejector efficiencies developed based on the external measured parameters are summarized and compared; the methods 

of determining energy efficiencies are summarized. The effects of ejector geometries, operating conditions and 

working fluid characteristics on ejector efficiencies are discussed. This review will be useful for further research on 

ejector efficiency, optimal design and control of ejectors and ejector systems. 

 

1. INTRODUCTION 
 

Ejector has been widely used in different cycles for refrigeration purposes, such as recovery of expansion work, 

utilization of low-grade energy (solar energy, geothermal energy and waste heat). Ejector expansion device is 

attractive and has great market potential, because it is simple to construct and provide robust operation without moving 

parts while still yielding significant performance improvements. Ejector expansion device has long service life and 

low maintenance cost. Figure 1 shows a schematic of an ejector, which consists of motive nozzle, suction nozzle, 

mixing section and diffuser. Figure 2 shows the ejector working process in a CO2 pressure enthalpy diagram. The high 

pressure motive stream expands in the motive nozzle and entrains the low pressure suction stream into the mixing 

section; then the two streams are mixed in the mixing section, and the mixed stream flows through the diffuser 

increasing its pressure along the way. 

 

 

 

Figure 1: Schematic of ejector working processes 
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Figure 2: Ejector working processes in a CO2 pressure-enthalpy diagram  

 

Some review papers have been published to summarize the research efforts and achievements focused on ejector and 

ejector systems. The review by Sun and Eames (1995) outlined the developments in mathematical modeling and design 

of jet ejectors. However, this review considered only the thermodynamic model based on two basic approaches, the 

mixing of the primary fluid and the entrained fluid either at constant pressure or at constant-area. In order to enhance 

the efficiencies and reduce the cost of ejector cooling systems, efforts made by several researchers have been 

summarized by Zhang and Shen (2002). Chunnanond and Aphornratana (2004) summarized the ejectors and their 

applications in refrigeration, and concluded that the understanding of the ejector theory had not been completely 

cleared. He et al. (2009) examined the progress made in the area of mathematical modeling on the ejector, and 

summarized comprehensively the numerous significant works that has been done on modeling the ejector. Sumeru 

(2012) provided a comprehensive review of two-phase ejector as an expansion device in vapor compression 

refrigeration cycle over the past two decades. Sarkar (2012) provided a review of existing literatures on two-phase 

ejectors and their applications in vapor compression system. In this review paper, geometry, operation and modeling 

of ejector, and effects of various operating and geometric parameters, and refrigerant varieties on the ejector 

performances as well as performance characteristics of both subcritical and transcritical vapor compression systems 

with various cycle configurations are well-summarized. Chen et al. (2013) provided a literature review on the recent 

development in ejectors, applications of ejector refrigeration systems and system performance enhancement. A 

number of studies are reported and categorized in several topics including refrigerant selections, mathematical 

modeling and numerical simulation of ejector system, geometric optimizations, operating conditions optimizations 

and combinations with other refrigeration systems. The efficiency of the ejector cycle is very sensitive to the ejector 

efficiency (Domanski, 1995). However, there is very limited research on ejector efficiency. Up to now, no review 

paper focused on ejector efficiencies has been found in the literature. This paper aims to providing a literature review 

on recent research works that has been done on ejector efficiencies, including overall ejector efficiency, ejector 

component efficiencies and their determination methods, in order to optimize ejectors and ejector systems. 

 

2. OVERALL EJECTOR EFFICIENCY 
 

2.1 Definitions and Empirical Equations  
 

For the description of an ejector, Köhler et al. (2007) first introduced an ejector efficiency. The main advantage of 

this efficiency definition is the fact that only external parameters of the ejector are used, which can be easily measured. 

The ejector efficiency is the product of these two isentropic efficiencies, which is calculated by Equation (1). 

    η𝑒𝑗𝑒𝑐𝑡𝑜𝑟 = 𝜑
(ℎ𝑠,𝑖𝑠𝑒𝑛

′ −ℎ𝑠)

(ℎ𝑚−ℎ𝑚,𝑖𝑠𝑒𝑛
′ )

      (1) 

 

-300 -200 -100 0
30

100

130

h [kJ/kg]

P
 [

b
a
r]

 15.5°C 

 -11.8°C  -25°C 

 0.2 

 0.4  0.6  0.8 

 -0
.9

 

 -0
.8

 

 -0
.7

 

 -0
.6

 k
J/

kg
-K

 

CarbonDioxide

m

s
d

mixt
b



 

 2580, Page 3 
 

15th International Refrigeration and Air Conditioning Conference at Purdue, July 14-17, 2014 

In Equation (1), ℎ𝑠,𝑖𝑠𝑒𝑛
′  is the specific enthalpy for an assumed isentropic change of state from the suction nozzle inlet 

condition to the ejector outlet pressure. Therefore, ℎ𝑠,𝑖𝑠𝑒𝑛
′  depends on the suction specific entropy ss and the ejector 

outlet pressure pe. The enthalpy ℎ𝑚,𝑖𝑠𝑒𝑛
′  is the specific enthalpy for an assumed isentropic change of state from the 

motive nozzle inlet condition to the ejector outlet pressure, thus it is defined similar to ℎ𝑠,𝑖𝑠𝑒𝑛
′ . Entrainment ratio is 

defined as 

 

𝜑 =
𝑚̇𝑠

𝑚̇𝑚
=

𝑚̇𝑒

𝑚̇𝑔
       (2) 

 

Elbel and Hrnjak (2008) defined an ejector efficiency based on standard pressure, temperature, and mass flow rate 

measurements. It compares the amount of expansion work rate recovered by the ejector with the maximum possible 

expansion work rate recovery potential. 

 

η𝑒𝑗𝑒𝑐𝑡𝑜𝑟 =
𝑊𝑟𝑒𝑐̇

𝑊𝑟𝑒𝑐,𝑚𝑎𝑥̇
      (3) 

 

Elbel and Hrnjak (2008) used a different derivation approach from Köhler et al. (2007), but they get the same 

expression for the ejector efficiency. Ejector efficiency increases when mass entrainment ratio and/or pressure lifting 

ratio increase. 

 

Dvorak and Vit (2005) defined the ejector efficiency as Equation (4). Butrymowicz et al. (2014) calculated the 

efficiency of the ejector using relation proposed by Dvorak and Vit (2005) in their study.  

 

 
𝑒𝑗𝑒𝑐𝑡𝑜𝑟

=
𝑚𝑒̇

𝑚𝑔̇

1−(
𝑃𝑒
𝑃𝑐
)

𝑘−1
𝑘

(
𝑃𝑔

𝑃𝑐
)

𝑘−1
𝑘

−1

 (4) 

 

McGovern et al. (2012) developed ejector performance metrics to evaluate the thermodynamic ideality of a process 

by comparing useful work done in a real process to that in a defined reference process. McGovern et al. (2012) 

presented four efficiencies based on the comparison of real and reversible processes (Reversible entrainment ratio 

efficiency, Reversible discharge pressure efficiency, Turbine-compressor efficiency, Compression efficiency), and an 

exergetic efficiency. Exergetic analysis is a means of evaluating ejector performance from a Second Law point of 

view. The premise of exergetic efficiency is to compare the useful exergetic output of a system or component to the 

exergetic input (McGovern et al., 2012). An analytical expression for the exergetic efficiency may be obtained when 

the inlet fluids are ideal gases of identical and constant specific heats. If the further restriction of having inlet fluids at 

the same temperature is imposed, the discharge enthalpy becomes independent of the entrainment ratio. The discharge 

temperature equals the inlet temperature, and thus outlet and inlet specific enthalpies are also equal. Consequently, 

the exergetic ejector efficiency takes the following form. 

 

 η𝑋 = 𝜑
ln(𝑃𝑑 𝑃𝑠⁄ )

ln(𝑃𝑚 𝑃𝑑⁄ )
 (5) 

 

Lucas et al. (2013) used the equation (1) combined with a correlation of the ejector efficiency by Fiorenzano (2011), 

derived the ejector efficiency as Equation (6). 

 

η𝑒𝑗𝑒𝑐𝑡𝑜𝑟 = 0.43630 [(
𝑃𝑠 ln

𝑃𝑑
𝑃𝑠

𝑃𝑚−𝑃𝑑
)

0.87843

(
𝑃𝑠

𝑃𝑚
)
0.10313

(
𝑂ℎ𝑚

𝑂ℎ𝑠
)
1.33917

(
𝑑𝑚𝑖𝑥𝜌𝑠

𝑑𝑡𝜌𝑚
)
−0.71533

] − 0.01770 (6)  

                                                     1                       2                  3 

 

The correlation coefficients are determined using the experimental data from a CO2 ejector with a fixed geometry.  

For the presented correlation, the work of Fiorenzano (2011) is used as a starting point. Fiorenzano (2011) uses 

dimensions numbers to describe the ejector efficiency. The first term in the correlation published by Fiorenzano (2011) 

is the ratio of the volumetric work need to isothermally compress an ideal gas from the suction pressure to the ejector 

exit pressure to the volumetric dissipated energy in an isenthalpic expansion process from the motive pressure to the 

ejector outlet pressure. The dissipated energy is the energy used by the ejector. Consequently, the first term is an 
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efficiency description of an ideal gas ejector. The second term correlation is the pressure ratio between the motive 

inlet and the suction inlet of the ejector. The pressure fraction thereby represents the energy within the motive mass 

flow rate. With increasing pressure fraction, the kinetic energy within the motive mass flow rate increases. The last 

term in the correlation published by Fiorenzano (2011) is the ratio of Ohnesorge number of the motive and the suction 

nozzle. The Ohnesorge number is used to describe free jet flows. As shown by Tischendorf et al. (2010), the opening 

angle of the motive mass flow exiting the motive nozzle increases with increasing Ohnesorge number. Thus, it is 

expected to have an impact on the ejector efficiency. 

 

2.2 Variation of Overall Ejector Efficiencies  
 

Elbel and Hrnjak (2008) investigated the performance of ejector in transcritical R744 system operation experimentally, 

and found that the ejector performed with a higher efficiency when the high-side pressure was relatively low. It was 

also found experimentally that despite lower ejector efficiencies, the COP increased as the high-side pressure increased 

as a result of using the integrated needle to reduce the motive nozzle throat area in the ejector. Ejector efficiency was 

affected by motive nozzle throat area and diffuser angle. The highest ejector efficiencies were achieved when the 

smallest diffuser angle of 5° was used to recover the static pressure of the high-speed two-phase flow entering the 

diffuser. Ejector efficiencies between 3.5% and 14.5% were achieved for different diffuser angles (5°, 10°, 15°) and 

outdoor air temperatures (35 °C, 45 °C) at Tid = 27 °C, RHid =30%, and IHX = 90%. 

 

Lucas and Koehler (2012) investigated experimentally the relationship between ejector efficiency and the high-side 

pressure. The results show that the ejector efficiency has a maximum. The high-side pressure at which the ejector 

efficiency is maximal is decreasing with decreasing evaporation pressure. Furthermore, it can be seen that the ejector 

efficiency is decreasing with decreasing evaporation pressures as well as increasing gas cooler outlet temperatures. 

The ejector efficiency dependency on the gas cooler outlet temperature is small at an evaporation pressure of 3.4 MPa, 

where the maximum ejector efficiency is decreasing by less than 1% between a gas cooler outlet temperature of 30 °C 

and 40 °C. However, this dependency is stronger at the evaporation pressure of 2.6 MPa where a 20% decrease of the 

maximum ejector efficiency is shown. 

 

Nakagawa et al. (2011a) experimentally investigated the influence of an internal heat exchanger and an ejector on 

system COP, as well as the influence of an internal heat exchanger on ejector efficiency. Their research results show 

that the maximum ejector efficiency for the cycle without internal heat exchanger is about 14%, while that the ejector 

efficiency is increasing with increasing internal heat exchanger size. The comparison of the data with and without 

internal heat exchanger show that the COP improvement increases with increasing internal heat exchanger size 

compared to the baseline cycle with the same internal heat exchanger. Nakagawa et al. (2010) presented an 

experimental investigation of ejector geometry, which shows that the ejector efficiency has maximum with respect to 

high pressure and ejector efficiencies were reached up to 23%. The maximum of ejector efficiency depends on the 

ejector geometry, the evaporation temperature and the gas cooler outlet temperature. Nakagawa et al. (2011b) 

investigated the effect of the mixing tube on the ejector efficiency. They determined the ejector efficiency and the 

COP of the baseline and the ejector cycle with and without an internal heat exchanger. Their results show that there 

is an optimal mixing length at the maximal ejector efficiency. The maximal measured ejector efficiency of the cycle 

without internal heat exchanger is 11% while ejector efficiencies of up to 17% with internal heat exchanger are shown.  

 

Banasiak and Hafner (2010) presented an extensive study of the influence of the ejector geometry on the ejector 

efficiency. The mixing tube diameter, the mixing tube length and the diffuser angle were varied. The ejector efficiency 

reveals a maximum with respect to high pressure. The results regarding mixing tube length and mixing tube diameter 

are similar to the data provided by Nakagawa et al. (2010, 2011b). The data show an optimum mixing tube length and 

mixing tube diameter. The variation of the diffuser angle shows maximal ejector efficiencies at a diffuser angle of 5°. 

The data agrees with the results of Elbel and Hrnjak (2008). Maximal ejector efficiencies of 34% are shown.  

 

Butrymowicz et al. (2014) investigated ejection air-conditioning system driven by low temperature heat source, with 

isobutene as a working fluid. Their research results show that the ejector efficiency is affected by operating condition 

and refrigerant characteristics k. Similarly like in the case of the variation of the mass entrainment ratio with change 

of the motive vapor temperature, the efficiency of the ejector significantly increases from min = 0.08 to the max = 

0.165 in range of 50 < tg < 55 °C and then decreases to the minimum value min. The motive vapor temperature does 

not influence on the ejector efficiency at the on-design operating conditions. Butrymowicz et al. (2014) found that 
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there is no particular influence of the nozzle position in analyzed range of the operation parameters on the ejector 

efficiency.  

 

McGovern et al. (2012) analyzed the efficiencies of an air-air and a steam-steam ejector and found that the properties 

of working fluid affect the ejector efficiencies significantly; within the compression ratio from 1 to 1.5, the exergetic 

efficiency of steam-steam ejector varies from 5% to 40%, while the exergetic efficiency of air-air ejector varies from 

0.8% to 2%. For general air-air and steam-steam ejectors, the exergetic efficiency X is very close in numerical value 

to the reversible entrainment ratio efficiency RER. The exergetic efficiency X for an ideal gas ejector with inlet fluids 

at the same temperature is identical to the reversible entrainment ratio efficiency RER. 

 

 

3. EJECTOR COMPONENT EFFICIENCIES 
 

3.1 Definitions 

 
Ejector consists of motive nozzle, suction nozzle, mixing section and diffuser.  

3.1.1 Motive nozzle efficiency:  

 

The isentropic efficiency of the motive nozzle is defined as (Liu and Groll, 2013, Yu and Li, 2007): 

,

m t
m

m t is

h h

h h






       (7) 

3.1.2 Suction nozzle efficiency:  

 

The isentropic efficiency of the suction nozzle is defined as (Liu and Groll, 2013, Yu and Li, 2007): 

,

s b
s

s b is

h h

h h






       (8) 

3.1.3 Mixing efficiency:  

 

The mixing section efficiency 
mix  is assumed to account for the friction losses in the mixing chamber in Huang 

(1999) and Liu and Groll (2013). 

 

   2 2 2

t t mix t t t b mix t mix b mix t b mix mix mix mix mixp A AV p A A A A V p A A V              (9) 

The mixing efficiency is given as Equation 10 (Manjili and Yavari 2012, Yu et al. 2007): 

η𝑚𝑖𝑥 =
𝑢
𝑚𝑖𝑥′
2

𝑢𝑚𝑖𝑥
2         (10) 

Where 𝑢′ is the corrected form of 𝑢, in order to account for mixing section losses. 

 
3.1.4 Diffuser  

 

The diffuser efficiency is defined as Equation 11 in Ksayer (2007) and Li and Groll (2005). 

 η𝑑 =
ℎ𝑑,𝑜𝑢𝑡,𝑖𝑠−ℎ𝑚𝑠,𝑜𝑢𝑡

ℎ𝑑,𝑜𝑢𝑡−ℎ𝑚𝑠,𝑜𝑢𝑡
 (11) 

 

Elbel and Hrnjak (2008) defined diffuser efficiency as follows.  



 

 2580, Page 6 
 

15th International Refrigeration and Air Conditioning Conference at Purdue, July 14-17, 2014 

 

    η𝑑 =
(ℎ𝑑,𝑜𝑢𝑡,𝑖𝑠−ℎ𝑚𝑠,𝑜𝑢𝑡)

1

2
𝑢𝑚𝑠,𝑜𝑢𝑡
2       (12)          

 

Liu and Groll (2013) used the pressure recovery coefficient in their simulation study. The pressure recovery 

coefficient, Ct, is defined as: 

 

 

21

2

d mix

mix mix

p p
Ct

V


  (13) 

 

Owen et al. (1992) proposed a correlation to calculate the pressure recovery coefficient (Liu and Groll, 2013): 

 

  
2 22

, ,

1
0.85 1

mixmix mix
mix

d g mix f mix

xA x
Ct

A


 

    
     
       

 (14) 

 

3.2 Assumption Values 
 

In most of the literature studies, values of 0.7 to 1.0 were assumed for the individual ejector component efficiencies 

as listed in Table 1.  

 

Table 1: Summary of literature - assumed ejector component efficiencies in modeling studies 

 

Authors System Type Fluid m s mix d 

Keenan et al. (1950) ejector Air 1.0 1.0   

Alexis and Rogdakis 

(2003) 

steam ejector refrigerator 

system 
Water 0.7   0.8 

Sun (1996) 
powered by low-grade 

thermal energy 

LiBr-H2O/H2O-

NH3 
0.85 0.85  0.85 

Vereda et al. (2012) 
ejector-absorption 

refrigeration cycle 

Ammonia/lithium 

nitrate 
0.85 0.85 0.9 0.8 

Domanski (1995) compression cycle - 0.85 - 0.9 0.85-0.9  0.7 

Yapici and Ersoy 

(2005) 

low grade waste heat in the 

vapor generator 
R123 0.85 0.85  0.85 

Yu and Li (2007) 
conventional ejector 

refrigeration system 
R141b 0.9  0.85 0.85 

Yu et al. (2007) 
regenerative ejector 

refrigeration cycle 
R142b 0.85  0.95 0.85 

Elbel and Hrnjak 

(2004) 
vapor compression cycle CO2 0.9 0.9  0.9 

Li and Groll (2005) vapor compression cycle CO2 0.9 0.9  0.8 

Ksayer and Clodic 

(2006) 
vapor compression cycle CO2 0.85 0.85  0.75 

Ksayer (2007) 
vapor/liquid compression 

cycle 
R141b 0.95 1.0 0.9-0.98 1 

Deng et al. (2007) vapor compression cycle CO2 0.7 0.7  0.8 

Sarkar (2008) vapor compression cycle CO2 0.8 0.8  0.75 

Elbel and Hrnjak 

(2008) 
vapor compression cycle CO2 0.8 0.8  0.8 

Sun and Ma (2011) vapor compression cycle CO2 0.9 0.9  0.8 

Manjili and Yavari 

(2012) 
vapor compression cycle CO2 0.7 0.7 0.95 0.8 
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3.3 Determination Methods 
 

Varga et al. (2009) firstly determined ejector efficiencies for the primary nozzle, suction, mixing and diffuser 

according to their definitions, using an axi-symmetric computational fluid dynamics (CFD) model. They used water 

as working fluid and selected the operating conditions in a range that would be suitable for an air-conditioner powered 

by solar thermal energy. Their research results show that nozzle efficiency can be considered as constant, the 

efficiencies related to the suction, mixing and diffuser sections of the ejector depend on operating conditions. 

 

Ksayer (2007) found that the mixing efficiency varies between 0.9 and 0.98 and depends on the diameter ratio of the 

nozzle throat and the constant area diameter. A correlation of ηmix is elaborated:  

 

 η𝑚𝑖𝑥 = −0.0113(𝐷𝑚𝑖𝑥 𝐷𝑡⁄ )2 + 1.0501 (15) 

 

Liu and Groll (2013) determined ejector component efficiencies in refrigeration cycles based on an ejector model and 

the measured performance data. A two-phase flow ejector model, consisting of sub-models for motive nozzle flow, 

suction nozzle flow, mixing section flow and diffuser flow, was developed. Experimental data in conjunction with the 

ejector simulation model were used to determine the isentropic efficiencies of the motive and suction nozzles, and the 

efficiency of mixing section. The application of this method is illustrated with a case study of a controllable ejector in 

transcritical CO2 air conditioning systems at outdoor air temperatures of 27.8 C, 35 C and 37.8 C. Study results 

show that ejector geometries and operating conditions affect ejector component efficiencies significantly: 1) the 

motive nozzle efficiency is very sensitive to ejector throat diameter and it ranges from 0.50 to 0.93; 2) the suction 

nozzle efficiency somewhat is affected by motive nozzle throat diameter, motive nozzle exit position and outdoor air 

temperature, and it ranges from 0.37 to 0.90; 3) the efficiency of mixing section is affected by the motive nozzle exit 

position, and it ranges from 0.50 to 1.00. Small motive nozzle throat diameter leads to low motive nozzle efficiency 

and high suction nozzle efficiency. The motive nozzle placed at a distance of 1.5 times Dmix from the mixing section 

inlet resulted in a little bit higher mixing section efficiency than at a distance of 6 times Dmix. The ranges of the 

determined ejector component efficiencies in this study are larger than those of the assumed constant ejector 

component efficiencies in literatures.  

 

Based on the determined efficiencies of ejector components at various ejector geometric parameters and various 

operating conditions, three empirical correlations of ejector efficiencies were developed. Equations (16)-(18) show 

the correlations for the motive nozzle isentropic efficiency m, the suction nozzle isentropic efficiency s and the 

mixing section efficiency mix, respectively, as the functions of ejector geometry, pressure ratio, and ejection ratio (Liu 

and Groll, 2013).   

 
2 3 2 3
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m
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s
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P

 
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 (17) 

 

2 36869.077 19308.18 ' 18089.31 ' 5649.417 'mix Z Z Z      (
0.1

0.35' (1 )t

mix

D
Z

D


 
  
 

)   (18) 

 

These correlations should be used within the following boundaries: 

8.0 MPa < Pm <14.0 MPa, 2.5 MPa < Ps <5.0 MPa, 
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40 °C < Tm < 60 °C, 15 °C < Ts < 26 °C, 

0.1 g/s <𝑚̇m < 0.25 g/s, 0.05 g/s <𝑚̇s < 0.07 g/s, 1.8 mm < Dt <2.7 mm, Dmix = 4 mm. 

 

 

4. CONCLUSIONS 
 

This paper describes a number of research studies on overall ejector efficiency and ejector component efficiencies. 

The different definitions of overall ejector efficiencies were reviewed and discussed. The investigations about the 

effects of ejector geometries, operating conditions and working fluid characteristics on overall ejector efficiencies in 

literature are reviewed. The assumed constant ejector component efficiencies are summarized. The methods of 

determining ejector component efficiencies were reviewed, such as CFD simulation method, a method combining 

experimental data and simulation modeling. It is hoped that this contribution will be useful for the future research on 

the optimal design and control of ejectors and ejector systems. 

 

Though a large amount of works have been conducted on ejector efficiencies, further efforts are still needed: 

1) To improve the methods of determining actual ejector component efficiencies. 

2) To make a comprehensive study about the effects of operating conditions, ejector geometries and working 

fluid characteristics on ejector component efficiencies. 

 

NOMENCLATURE 

 
COP coefficient of performance (–)  

h specific enthalpy (kJ/kg) 

𝑚̇ mass flow rate (kg/s) 

Oh ohnesorge number (–) 

P pressure MPa, bar 

s specific entropy (kJ/kg/K) 

 efficiency (–) 

 effectiveness (–) 

 ejection ratio (–) 

k adiabatic exponent (–) 

    

 

Subscript 

b  suction nozzle exit 

c  condenser 

d diffuser             

e  evaporator; secondary fluid 

g  generator; primary fluid 

m motive nozzle 

mix mixing section  

id  indoor 

IHX                              internal heat exchanger 

isen isentropic 

RER  reversible entrainment ratio  

s suction nozzle   

t motive nozzle throat       

X  exergetic 

 

 

REFERENCES 
 



 

 2580, Page 9 
 

15th International Refrigeration and Air Conditioning Conference at Purdue, July 14-17, 2014 

Alexis, G.K., Rogdakis, E.D., A verification study of steam-ejector refrigeration model, Appl. Therm. Eng. 23 (2003) 

29-36.  

Butrymowicz D., Smierciew K., Karwacki J., Gagan J.， Experimental investigations of low-temperature driven 

ejection refrigeration cycle operating with isobutane， International Journal of Refrigeration, 39, pp 196-209, 

2014  

Chen X.J., Omer S., Worall M., Riffat S.， Recent developments in ejector refrigeration technologies， Renewable 

and Sustainable Energy Reviews, 19, pp 629-651, 2013 

Chunnanond K, Aphornratana S. Ejectors: applications in refrigeration technology. Renewable Sustainable Energy 

Reviews 2004; 8(2):129–55. 

Deng, J., Jiang, P., Lu, T., Lu, W., Particular characteristics of transcritical CO2 refrigeration cycle with an ejector, 

Appl. Therm. Eng. 27 (2007) 381-388. 

Domanski, P.A., Minimizing throttling losses in the refrigeration cycle, Proceedings of 19th International Congress 

of Refrigeration, pp 766-773, Hague, Netherlands, 1995.08.20-25 

Dvorak, V., Vit, T., 2005. Experimental and numerical study of constant area mixing. In: 16th Int. Symp. on Transport 

Phenomena, Prague. 

Elbel, S.W., Hrnjak, P.S., Effects of internal heat exchanger on performance of transcritical CO2 systems with ejector, 

in: Proceedings of 10th International Refrigeration and Air Conditioning Conference at Purdue, Purdue 

University, USA, 2004. Paper No. R166 

Elbel, S. W., Hrnjak, P. S., Experimental validation of a prototype ejector designed to reduce throttling losses 

encountered in transcritical R744 system operation, International Journal of Refrigeration, 31(3), pp 411-422, 

2008 

Fiorenzano, R., 2011. Untersuchung von Ejektor-Ka¨ lteanlagen beim Einsatz in tropischen Gebieten, Ph.D. thesis, 

Technische Universita¨ t Braunschweig, Germany. 

He S., Li Y., Wang R.Z., Progress of mathematical modeling on ejectors, Renewable and Sustainable Energy Reviews, 

13(8), pp 1760-1780, 2009  

Huang, B.J., Chang, J.M., C.P. Wang, V.A. Petrenko, A 1-D analysis of ejector performance, Int. J. Refrigeration 22 

(1999) 354-364. 

Keenan, H., Neumann, E.P., Lustwerk, F., 1950. An investigation of ejector design by analysis and experiment. J. 

Appl. Mech. ASME 72, 299 – 309. 

Ksayer E.B., Study and design of systems with improved energy efficiency operating with CO2 as refrigerant, PhD 

thesis, Mines ParisTech University, Paris, France, 2007 

Ksayer, E.B., Clodic, D., Enhancement of CO2 refrigeration cycle using an ejector: 1D analysis, in: Proceeding of 

International Refrigeration and Air Conditioning Conference at Purdue, Purdue University, USA, 2006. Paper 

No. R058. 

Köhler, J., Richter, C., Tegethoff, W., Tischendorf, C., 2007. Experimental and theoretical study of a CO2 ejector 

refrigeration cycle. In: Presentation at the VDA Alternative Refrigerant Winter Meeting, Saalfelden, Austria. 

Available from: http://www.vda-wintermeeting.de/. 

Li, D., Groll, E.A., Transcritical CO2 refrigeration cycle with ejector-expansion device, Int. J. Refrigeration 28 (2005) 

766-773. 

Liu F., Groll E.A., Study of ejector efficiencies in refrigeration cycles, Applied Thermal Engineering, 52(2), pp 360-

370, 2013 

Lucas C., Koehler J.， Experimental investigation of the COP improvement of a refrigeration cycle by use of an 

ejector, International Journal of Refrigeration, 35(6), pp 1595-1603, 2012 

Lucas C., Koeheler J., Schroeder A., Tischendorf C., Experimentally validated CO2 ejector operation characteristic 

used in a numerical investigation of ejector cycle, International journal of refrigeration, 36(3), pp 881-891, 2013 

Manjili F. E., Yavari M.A., Performance of a new two-stage multi-intercooling transcritical CO2 ejector refrigeration 

cycle, Applied Thermal Engineering, 40, pp 202-209, 2012 

McGovern R.K., Narayan G. P., Lienhard V John H.， Analysis of reversible ejectors and definition of an ejector 

efficiency， International Journal of Thermal Sciences, 54, pp 153-166, 2012 

Nakagawa, M., Marasigan, A., Matsukawa, T., 2011a. Experimental analysis on the effect of internal heat exchanger 

in transcritical CO2 refrigeration cycle with two-phase ejector. Int. J. Refrigeration 34 (7), 1577-1586. 

Nakagawa, M., Marasigan, A., Matsukawa, T., 2010. Experimental analysis of two-phase ejector system with 

varying mixing cross-sectional area using natural refrigerant CO2. Int. J. Air-Cond. Ref. 18, 297 - 307. 



 

 2580, Page 10 
 

15th International Refrigeration and Air Conditioning Conference at Purdue, July 14-17, 2014 

Nakagawa, M., Marasigan, A., Matsukawa, T., Kurashina, A., 2011b. Experimental investigation on the effect of 

mixing length on the performance of two-phase ejector for CO2 refrigeration cycle with and without heat 

exchanger. Int. J. Refrigeration 34 (7), 1604-1613. 

Owen, I., A. Abdul-Ghani, A.M. Amini, Diffusing a homogenized two-phase flow, Int. J. Multiphase Flow 18 (1992) 

531-540. 

Sarkar, J., Optimization of ejector-expansion transcritical CO2 heat pump cycle, Energy 33 (2008) 1399-1406. 

Sarkar J.，Ejector enhanced vapor compression refrigeration and heat pump systems—A review, Renewable and 

Sustainable Energy Reviews, 16(9), pp 6647-6659, 2012 

Sumeru K., Nasution H., Ani F. N.，A review on two-phase ejector as an expansion device in vapor compression 

refrigeration cycle，Renewable and Sustainable Energy Reviews, 16(7), pp 4927-4937, 2012 

Sun, D.W., Variable geometry ejectors and their applications in ejector refrigeration systems, Energy 21 (1996) 919-

929. 

Sun, D.W, Eames IW. Recent developments in the design theories and applications of ejectors—a review. Journal of 

Institute Energy 1995; 68: 65–79. 

Sun, F., Ma, Y., Thermodynamic analysis of transcritical CO2 refrigeration cycle with an ejector, Appl. Therm. Eng. 

31 (2011) 1184-1189. 

Varga S., Oliveira A. C., Diaconu B., Numerical assessment of steam ejector efficiencies using CFD, International 

Journal of Refrigeration, 32(6), pp 1203-1211, 2009 

Vereda C., Ventas R., Lecuona A., Venegas M., Study of an ejector-absorption refrigeration cycle with an adaptable 

ejector nozzle for different working conditions, Applied Energy, 97, pp 305-312, 2012 

Yapici, R., Ersoy, H.K., Performance characteristics of the ejector refrigeration system based on the constant area 

ejector flow model, Energy Convers. Manage. 46 (2005) 3117-3135. 

Yu, J., Li, Y., A theoretical study of a novel regenerative ejector refrigeration cycle, Int. J. Refrigeration 30 (2007) 

464-470. 

Yu, J., Ren, Y., Chen, H., Li, Y., Apply mechanical subcooling to ejector refrigeration for improving the coefficient 

of performance, 48 (2007) 1193-1199. 

Zhang, B., Shen, S., Development of solar ejector refrigeration system. 1st International Conference on Sustainable 

Energy Technologies. 2002. 

 

 

 

 

ACKNOWLEDGEMENT 

 
The authors would like to thank the Shanghai Institutions of Higher Learning for supporting the research in this paper 

through The Program for Professor of Special Appointment (Eastern Scholar). 

 

 


	Purdue University
	Purdue e-Pubs
	2014

	Review on Ejector Efficiencies in Various Ejector Systems
	Fang Liu


