
Purdue University
Purdue e-Pubs
International Refrigeration and Air Conditioning
Conference School of Mechanical Engineering

2014

New Copper-based Heat Exchangers for
Alternative Refrigerants
Yoram Shabtay
Heat Transfer Technologies LLC, United States of America, yoram@heattransfertechnologies.com

John Black
Metal Scope LLC, United States of America, jrhblack@gmail.com

Frank Kraft
Ohio University, United States of America, kraftf@ohio.edu

Follow this and additional works at: http://docs.lib.purdue.edu/iracc

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/
Herrick/Events/orderlit.html

Shabtay, Yoram; Black, John; and Kraft, Frank, "New Copper-based Heat Exchangers for Alternative Refrigerants" (2014). International
Refrigeration and Air Conditioning Conference. Paper 1532.
http://docs.lib.purdue.edu/iracc/1532

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Firacc%2F1532&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1532&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1532&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Firacc%2F1532&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1532&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engineering.purdue.edu/Herrick/Events/orderlit.html
https://engineering.purdue.edu/Herrick/Events/orderlit.html


 
 2570, Page 1 

 

15th International Refrigeration and Air Conditioning Conference at Purdue, July 14-17, 2014 

 
    

New Copper-based heat exchangers for alternative refrigerants 
 

Yoram SHABTAY1*, John BLACK2, Frank F. KRAFT3 
 

1Heat Transfer Technologies LLC,  
Chicago, Illinois, U.S.A. 

 (Ph. 630-258-3143, yoram@heattransfertechnologies.com) 
 

2Metal Scope LLC, 
Chicago, Illinois, U.S.A. 

 (Ph. 646-683-5615, john.black@copperalliance.org) 
 

3Ohio University, Mechanical Engineering Dept. 
Athens, Ohio, U.S.A. 

 (Ph.740-597-1478, kraftf@ohio.edu) 
 

* Corresponding Author 
 
 
 

ABSTRACT 
 
The ongoing global effort to replace current refrigerants with zero Ozone Depletion Potential (ODP) and virtually 
zero Global Warming Potential (GWP) refrigerants has important implications for heat exchangers, air conditioning 
system design, and the materials choices in these designs.  Natural refrigerants with higher flammability, CO2, 
HFOs, and HFC – HFO blends each place different requirements on the heat exchanger design, whether it be for 
higher equipment efficiency, to reduce refrigerant charge, to operate to much higher operating pressures or 
temperatures, to prevent corrosion or to avoid leakage. This paper presents critical information on how heat 
exchangers based on round inner-grooved small-diameter copper tube and newly-developed flat copper 
microchannel tube can be applied in air conditioning equipment using new alternative refrigerants.  These 
technologies have synergies with key refrigerant performance characteristics enabling multiple application 
opportunities, and they address operating energy efficiency degradation from mold growth on total Life Cycle 
Climate Performance (LCCP). 
 
 

1. INTRODUCTION 
 
The ongoing global effort to replace current widely used refrigerants such as R22 and R410A with zero Ozone 
Depletion Potential (ODP) and virtually zero Global Warming Potential (GWP) alternative refrigerants has 
important implications for heat exchangers, air conditioning system design, and the materials choices in these 
designs.  Leading refrigerant candidates include the natural refrigerants like propane (R290) with higher 
flammability, CO2 (R744), new hydrofluoroolefins (HFO’s) and blends of HFOs with R32, a component of R410A, 
a hydrofluorocarbon (HFC). Each place different requirements on the heat exchanger design, whether it be for 
higher equipment efficiency, for reduced refrigerant charge, to operate to much higher operating pressures or 
temperatures, to prevent corrosion or to avoid leakage. 
 
Several copper-based technologies can enable the transition to these new alternative refrigerants in both room air 
conditioning systems and commercial refrigeration systems, providing synergies with key performance 
characteristics of the refrigerants, and providing technologies that address the impact of energy efficiency 
degradation from mold growth: 
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• Small diameter inner grooved thinner wall tubes with outer diameters of 7mm, 6.25mm, 5mm and 4mm for 
reduced charge, and wall thicknesses of 0.26 to 0.21mm  

• Higher strength copper alloy tube for high pressure refrigerants like CO2 (R744) 
• Copper microchannel tube 

 
2. COPPER TECHNOLOGIES FOR NEW REFRIGERANTS 

 
Traditional copper tube/ aluminum fin coil manufacturing technology when modified for smaller diameter copper 
tubes of 7mm to 4mm, can achieve significant improvements in heat transfer. When coupled with internal 
enhancements to the copper tubes such as higher strength, thinner walls and internal micro-grooves, newer 
optimized heat exchanger designs can be smaller, more efficient, and lower cost compared with aluminum 
microchannel. 
 
A major innovation of small diameter copper tube technology enhances heat transfer by rifling or grooving the 
inside surface of the tube. This increases the surface-to-volume ratio, mixes the refrigerant, moves the refrigerant 
into contact with the interior surface of the tube, and homogenizes refrigerant temperature across the tube, resulting 
in more efficient conductive and convective heat transfer. The high efficiency of the inner grooved tube stimulates 
and promotes the development of energy-saving, high efficiency and miniaturization for air conditioning systems. 
Typically, such surface enhancement can significantly increase overall heat transfer performance, with different 
inner groove geometries available for optimization under various refrigerants and conditions.  
 
The family of this range of small diameter inner grooved copper tubes, from 7mm down to 4mm O.D., shown in 
Figure 1, permit significantly smaller refrigerant charge, compared to heat exchangers made with standard 9.53mm 
diameter copper tube, and equivalent to those using aluminum microchannel extrusions, and they maintain energy 
efficiency similar to units using traditional refrigerants with larger diameter tube heat exchangers. They have been 
found to provide a proven and safe solution for air conditioners using refrigerant R290 (propane) which requires 
very limited charge size under new regulations for use in air conditioners (Ding, 2012).   
 
A newer herringbone inner grooved version of this tube, also in Figure 1, enhances heat transfer over conventional 
inner-grooved heat exchanger tube without increasing pressure drop. With good fin design, an entire condenser row 
can be dropped. This performance enhancement has meant lower raw material cost in refrigeration applications, and 
in residential air conditioning, systems were smaller in size with reduced refrigerant charge and lower raw material 
cost. A study of heat-transfer performance of different inner-grooved copper tubes for CO2 heat pumps found the 
highest heat transfer and the lowest effect of PAG lubricating oil with herringbone patterned inner-grooved copper 
tube (Kaji, 2012). 
 
 

     
 

Figure 1. Inner grooved small diameter copper tube and example of 
enhanced inner tube surface herringbone pattern 

 
The small diameter tubes have the high strength needed to sustain CO2 operating conditions. They have a higher 
level of solution flexibility versus microchannel, through special circuiting to eliminate mal-distribution of 
refrigerant and over-sizing for standard products (Filippini, 2011). 
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A next generation product nearing commercialization, the copper microchannel extruded tube, produced with a wall 
thickness of 0.2-0.3mm and channel width of 1.0-1.3mm exhibited a burst pressure of 36 MPa in a post-braze 
condition (Qi, 2013). Tubes with 0.4mm internal walls and 1mm channels exhibited burst pressures over 62 MPa 
(Kraft, 2014). This makes these tubes especially attractive for use at high pressures (and temperatures) associated 
with CO2 systems. At 180°C and 17 MPa compressor exit conditions, aluminum microchannel extrusions require 
thicker walls to meet burst pressure requirements. This can result in reduced thermal conductivity and an increase in 
heat exchanger size. Heat exchangers constructed with copper microchannel extruded tubes will retain more strength 
in the post-braze condition and burst pressure resistance at 180°C, have high thermal conductivity, and thus 
maintain a smaller heat exchanger size. In addition, microchannel tube produced with a copper alloy such as brass 
provides the additional benefits of higher material strength that can lead to even thinner walls and reduced heat 
exchanger size.  

 
2.1 Performance  
 
 
The performance effects of using small diameter inner-grooved copper tubes are shown in Figure 2, where enhanced 
inner-groove shape tube increased heat transfer rate by 50 percent over standard inner-grooved tube, and at least 100 
percent over smooth tube. The observed increased pressure drop with smaller diameter tubes can be addressed by 
changes in circuitry design (Wu, 2012), to be discussed below. 
 

 
 

Figure 2. Performance of various inner grooved copper tubes on heat transfer coefficient and pressure drop with 
R410A refrigerant 

 
 
 
Energy efficiency and reduced overall system size can be achieved at a lower material cost with small diameter 
copper tube technology via reduced usage of tube and fin materials and refrigerants, contributing to overall 
reduction of system cost (Holland, 2013). The impact of changing from traditional 9.53mm (3/8”) tube to 5mm 
inner-grooved tube can be significant:  

• 40 – 50 percent reduction in tube weight 
• 40 – 50 percent reduction in fin weight 
• 50+ percent reduction in internal volume and thus refrigerant charge 
• 50 percent reduction in required wall thickness to meet pressure requirements 
• 20+ percent heat transfer coefficient that improves heat exchanger efficiency 
• 40 percent reduction in heat exchanger cost 

 
The application of smaller diameter tubes will affect heat exchanger performance on both the air side and refrigerant 
side. On the air side, the fin size is related to the balance of heat transfer resistance between fin and tube, so fin size 
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for smaller diameter tubes is usually smaller. The fin pitch (the distance between fins), which depends on tube 
diameter, is also decreased. These may decrease the heat transfer capacity and increase air side pressure drop. But 
there is also a compounding benefit of smaller diameter tubes as shown by the following equation of heat flow, 
indicating greater effective primary fin metal area and higher inside and outside heat transfer coefficient, illustrated 
in Figure 3 (Holland, 2013). 

 

         
 

Figure 3. Fin hole patterns for 9.53mm tube (left) and 5mm tube (right) showing more primary (red area around 
tubes) heat transfer effective area using 5mm tube so fins can be downsized for more compact heat exchanger 

 
On the refrigerant side, smaller tube increases the refrigerant pressure drop. More compressor energy is required to 
circulate the refrigerant through a given length of tube when the pressure drop is higher. However this increase in 
pressure drop can be offset by designing heat exchangers with shorter tube lengths and/or increasing the number of 
parallel tube circuits. It is known that with round tubes, a greater variety of circuitry options are available, than with 
microchannel, such as counter flow configurations and optimization of mass flux along refrigerant flow direction 
through tube merging or splitting (Hipchen, 2012). Smaller diameter tube limits the boundary layer near the surface 
resulting in an advantageous increase of the internal heat transfer coefficient using 5mm inner-grooved tube, as 
shown in Figure 4, where a 15 – 20 percent increase has been demonstrated versus an inner-grooved 9.53mm copper 
tube using an HFC refrigerant (Yang, 2010). 
 

 
Figure 4. Local heat exchange coefficients for 9.52mm and 5mm inner-grooved  

copper tubes for different mass flows   
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Total heat transfer coefficient is improved using small diameter inner-grooved tubes from the additive benefits of 
both internal surface enhancement and diameter reduction, contributing to a significant total gain in heat transfer 
performance as shown in the results in Figures 2 and 4.  
 
In order to have a high performance air conditioner with small diameter tubes, it is necessary to develop principles 
of designing fin-and-tube heat exchangers, including designing the fin configuration and tube circuits. These 
interdependencies required a computationally intensive optimization program. Therefore within the small diameter 
copper tube technology platform, specific heat exchanger design and system optimization software has now been 
developed to enable manufacturers to design high performance heat exchangers for air conditioners and refrigeration 
systems based on small diameter copper tube.  
 
A result of such optimization work is shown in Figure 5 where R290 refrigerant was used. A mini-split room air 
conditioner using R290 with cooling capacity of 2,600 watts designed using 5mm diameter inner-grooved copper 
tube demonstrated improved performance over a conventional system with 9.53mm and 7mm tubes. Systems like 
this up to 3,000 watts cooling capacity represent 30 percent of the room air-conditioning market. The heat 
exchangers with 5mm tube had 50 percent lower refrigerant charge in the indoor unit and 45 percent lower charge in 
the outdoor unit. Total charge was reduced by 36 percent versus the original system (Zheng, 2014) 
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Figure 5. R290 split system comparison of cooling capacity between a conventional unit and optimized unit using 
5mm copper tube  

 
Enabled by the smaller refrigerant charge, the explosion risk of using inflammable natural refrigerants like propane 
can be decreased. Higher pressures typically are required to condense alternative refrigerants like R32 or CO2, 
compared to traditional refrigerants that are being phased out (i.e. R22). Permissible working pressure is directly 
proportional to wall thickness and inversely proportional to diameter. So for tubes with the same wall thickness, 
smaller diameter tubes can withstand higher pressures than larger diameter tubes, and particularly for CO2 in 
refrigeration, tubes and components must exhibit high resistance to pressure.  
 
Smooth and inner-grooved seamless tubes and fittings are available in high-strength copper-iron alloy known as 
CuFe2P or C19400, with outer diameters of 6.35mm and above. Reduced wall thickness is possible, which reduces 
material usage. Processing can usually be performed with already existing machines and tools as the alloys are very 
brazeable and solderable. These alloy tubes can sustain pressures 100 percent higher than standard copper tubes for 
air conditioning and refrigeration, up to 12 MPa (1,740 psi), with corresponding high strength fittings. Since the 
volume of CO2 required to achieve the same cooling effect is at least 50 percent lower than for HFCs, components 
and tubing can be smaller than conventional installations. In practice the high pressure of CO2 has proved to be an 
advantage because it results in the need for very small diameter tubes, which are very strong under pressure. CuFe2P 
alloy tubes at small diameters are advantaged for application in high pressure CO2 cascade, transcritical, and 
secondary loop refrigeration systems due to their high strength without increasing wall thickness.  
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R32 is another interesting alternative refrigerant which has properties of similar pressure and pressure ratio to 
R410A, being a component of R410A, making it a close drop-in replacement without major system redesign except 
for compressor modification to accommodate the higher discharge temperature. It has a higher volumetric cooling 
capacity (+13 percent) and higher efficiency (+2 -3 percent) than R410A, despite a 28 percent lower mass flow, due 
to a higher latent heat (43 – 50 percent) (Pham, 2012).  The higher cooling capacity and efficiency of R32 facilitates 
at least a 15 percent lower system charge. With its excellent heat transfer, lower vapor density and lower system 
mass flow rate, about a 50 percent lower pressure drop is expected, suggesting that the properties of R32 (and R32-
HFO blends) can be optimized in small diameter copper tube compact systems. This can facilitate the direction 
toward lower-charge, compact heat exchangers for addressing the GWP phase down and reducing A2L flammability 
risk.  
 
At an equivalent performance level, a theoretical comparison between using R32 and R410A found a reduction of 
30 percent in the diameters of heat exchanger tube and connecting pipe using R32, synergistic with small diameter 
(5mm to 7mm) copper tube systems. The ultimate volume ratio of an air-conditioning unit using R32 could be 
downsized to 85 – 95 percent of the size of a unit with either R410A or R22	  (Dieryckx, 2012). 
 
2.2 Copper microchannel tube 
 
Copper microchannel tube produced by hot extrusion, shown in Figure 6, is a unique, precision thin-wall 
multichannel copper profile (Kraft, 2013). High efficiency heat exchangers, as shown, have been produced where 
the extruded tubes were furnace brazed to serpentine louvered copper fins (Shabtay, 2011). The copper 
microchannel tube has the following advantages over the aluminum microchannel: 

• Greater heat exchange (thermal conductivity) 
• Higher strength for high pressure applications 
• Better long-term durability and general resistance to corrosion 
• Lower cost of maintenance when metal-work is required 
• More compact heat exchangers may be possible, due to higher strength and conductivity 
• Ability to be in contact with water (in heat pump water heater application) 
• Ease of joining (brazing and soldering) and field repair, including transition joints. (Aluminum heat 

exchangers often require special and/or costly transition connectors to the system) 
 

    
                                                         

Figure 6. Copper microchannel tubes and heat exchanger 
 

Although not yet commercially available, the copper microchannel tubes show promise and are very competitive 
with aluminum microchannel on a technical basis for certain applications. The ultimate decision to use this product 
will rely on creative heat exchanger design that can minimize manufacturing and materials costs while taking 
advantage of the properties that the copper microchannel tube configuration has to offer, as noted above.  
 
Copper microchannel heat exchangers are suited for these applications: 

• High pressure heat exchangers using CO2 refrigerant             
• Compact high performance heat exchangers for military applications  
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• Gas to water heat exchanger for circulating water refrigerant split systems 
• Brazed heat exchangers for demanding environments 
• All-copper antimicrobial heat exchangers 
• Water heating heat pumps 

Operating conditions for components on the high-pressure side of CO2 refrigeration systems are 17.6 MPa and 
180°C. Test and design requirements for the failure pressure at that temperature may be 2 to 3 times greater. For a 
tube that has a channel-width of 1 mm, and a wall-thickness of 0.30 mm, the following results are predicted, in the 
post-braze condition (Cuprobraze for copper and Nokolok brazing for aluminum). These values were determined by 
the methodology presented in (Qi, 2013) and (Kraft, 2007): 
 
UNS C12200 copper:   47.6 MPa 
AA 3102 aluminum:    18.6 MPa 
AA 3003 aluminum:    26.9 MPa 
 
The maximum pressure (pmax) was determined with the following equation (1), where w0 is the initial channel width 
and t0 is the initial internal wall thickness. 
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The true stress,σ , is a function of true strain, ε , and failure takes place at the instability strain, *ε .  The instability 
strain is determined by solving equation (2),  
                                                                         σεσ 3=dd  for ε                                                                           (2) 
 
For C12200 copper in the post-braze condition, the true stress equation (3) was determined by (Qi, 2013) as follows: 
 
                                                               ( )MPaεσ 2.5exp306340 −−=                                                                    (3) 
 
2.3 Effects of copper finned heat exchangers on LCCP 
 
Life cycle climate performance (LCCP) has been shown to be driven mainly by the indirect emissions effect from 
lifetime operating efficiency (Pham, 2012). LCCP will therefore be significantly affected by key contributing factors 
leading to degradation of efficiency over the operating life, which includes mold growth. Intrinsic microbial biofilms 
on air handling exchanger coils are associated with lowered heat transfer efficiencies and increased corrosion 
(Characklis,1990) as well as potential odor issues (Rose, 2000). Pure copper and copper alloys have intrinsic 
antimicrobial properties that kill microorganisms on contact and prevent the growth of bacteria and mold. Copper 
surfaces in the heat exchanger environment were found to have fungicidal properties and prevented the germination 
and release of spores (Schmidt, 2012). Uncoated copper surfaces have shown they limit the growth of pathogenic 
bacteria by 99.9 percent and fungi by 99.74% of that observed on the control, aluminum-based heat exchangers. 
Most fungal species show a total die off within 24 hours of exposure to copper, but conversely, fungi have been 
found to survive for a month or more on surfaces made from stainless steel or aluminum (Weaver, 2010).  
 
This effectiveness of copper has been proven in rigorous studies that led to EPA registration of 479 copper alloys as 
public health antimicrobial touch-surface products (EPA, 2008). In a long-term performance test of all copper heat 
exchangers versus copper tube/aluminum fin heat exchangers shown in Figure 7, both units were treated with mold 
(Ding, 2007).  
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Figure 7.	  Mold treated aluminum and all copper heat exchangers after 28 days incubation, showing no growth on 
the all copper unit 

 
 
 
After 28 days of incubation, the all copper units exhibited no mold growth, whereas the mold-treated aluminum 
units exhibited considerable mold growth of up to 60 percent of the frontal area. Figure 8 shows test results of 
normalized heat flow to mold growth area on aluminum fins and all-copper heat exchangers with mold areas 0%, 
10%, 30% and 60%, showing heat transfer performance declined a maximum of 19% with aluminum fins while the 
all-copper units showed no performance deterioration from mold.  Due to lower efficiency, the unit with aluminum 
fins will consume more energy, resulting in higher lifetime equivalent CO2 emissions and LCCP. Since indirect 
emissions account for the largest impact on LCCP, approximately 90% of total emissions for R410A and up to 99% 
for a very low GWP refrigerant like R1234yf (Zhang, 2012), mitigating as much as a 19 percent loss of efficiency 
would have a similarly proportionate impact on LCCP. 
 

 
Figure 8. Normalized heat flow to mold growth area  

 
 

3. CONCLUSIONS 
 

• New copper-based technologies for heat exchangers are available to enable a smooth transition to 
alternative refrigerants in residential and commercial air-conditioning systems and commercial-
refrigeration systems, which provide synergies with key performance characteristics of the refrigerants.  

• Total heat-transfer performance is improved using small-diameter inner-grooved tubes with additive 
benefits from both internal surface enhancement and diameter reduction. 
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• Alternative refrigerants R290 (propane) and R744 (CO2), and to a lesser extent R32 and R32-HFO blends, 
require low charge, compact heat exchanger designs for which small-diameter copper-tube heat exchangers 
provide synergies, lower cost, and further performance optimization.  

• High-strength copper-alloy tube (CuFe2P) in small diameters or in copper microchannel integrated with 
advanced compact heat-exchanger design meet the needs of higher pressure, more compact R744 (CO2) 
refrigeration systems. 

• Next generation product, the copper microchannel extruded tube, with thin wall thickness and high burst 
pressure resistance, is especially attractive for use at high pressures (and temperatures) associated with CO2 

systems. 
• All-copper heat exchanger technology with its antimicrobial properties can mitigate the impact of energy-

efficiency degradation due to mold growth over a unit’s operating life, which has the largest positive 
leverage on Life Cycle Climate Performance. 

 
 

NOMENCLATURE 
A  heat transfer surface area   (m2) 
GWP     Global Warming Potential 
HFC      Hydrofluorocarbon 
HFO      Hydrofluoroolefin 
LCCP    Life Cycle Climate Performance         (kg CO2-Equivalent) 
ODP      Ozone Depletion Potential 
pmax            maximum pressure                                         (MPa)   
Q           heat transfer                 (W) 
Q/Qo  true stress    normalized heat flow 
σ   true stress    (MPa) 
ε          true strain                                                        (% elongation) 
*ε         instability strain                                              (% elongation)                                 

SEER   Seasonal Energy Efficiency Ratio                  (Btu/Wh) 
U         overall heat transfer coefficient,                     (W/ m2K) 
ΔT       inlet and outlet temperature difference           (K) 
w0     initial channel width                                        (mm) 
t0        initial internal wall thickness                          (mm) 
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