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ANALYTIC FOURIER-FEYNMAN TRANSFORMS
AND CONVOLUTION

TIMOTHY HUFFMAN, CHULL PARK, AND DAVID SKOUG

ABSTRACT. In this paper we develop an L, Fourier-Feynman theory for a class

of functionals on Wiener space of the form F(x) = f( fOT aydx, ..., foT andx).
We then define a convolution product for functionals on Wiener space and show

that the Fourier-Feynman transform of the convolution product is a product of

Fourier-Feynman transforms.

1. INTRODUCTION AND PRELIMINARIES

The concept of an L; analytic Fourier-Feynman transform was introduced
by Brue in [1]. In [3] Cameron and Storvick introduced an L, analytic Fourier-
Feynman transform. In [6] Johnson and Skoug developed an L, analytic
Fourier-Feynman transform theory for 1 < p < 2 which extended the results
in [1, 3] and gave various relationships between the L; and the L, theories.

In this paper we first develop an L, Fourier-Feynman theory for a class of
functionals not considered in [1, 3, 6]. We next define a convolution product for
functionals on Wiener space and then show that the Fourier-Feynman transform
of the convolution product is a product of Fourier-Feynman transforms.

In [3, 6] all of the functionals F on Wiener space and all the real-valued
functions F on R” were assumed to be Borel measurable. But, as was pointed
out in [7, p. 170], the concept of scale-invariant measurability in Wiener space
and Lebesque measurability in R” is precisely correct for the analytic Fourier-
Feynman theory: :

Let Co[0, T'] denote Wiener space; that is, the space of real-valued contin-
uous functions x on [0, 7] such that x(0) = 0. Let .# denote the class of
all Wiener measurable subsets of Cy[0, T], and let m denote Wiener measure.
(Co[0, T], #, m) is a complete measure space and we denote the Wiener
integral of a functional F by

/ F(x)m (dx).
Gol0, 7]

A subset E of Cy[0, T7] is said to be scale-invariant measurable [4, 7] pro-
vided pE € .# for each p > 0, and a scale-invariant measurable set N is said
to be scale-invariant null provided m(pN) = 0 for each p > 0. A property
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662 TIMOTHY HUFFMAN, CHULL PARK, AND DAVID SKOUG

that holds except on a scale-invariant null set is said to hold scale-invariant al-
most everywhere (s-a.e.). If two functionals F and G are equal s-a.e., we write
F~G.

Let C, C;,and C} denote respectively the complex numbers, the complex
numbers with positive real part, and the nonzero complex numbers with non-
negative real part. Let F be a C-valued scale-invariant measurable functional
on Cp[0, T'] such that

J(3) = / F(~2x)m (dx)
COIO’T]

exists as a finite number for all A > 0. If there exists a function J*(4) analytic
in C, such that J*(A) = J(A) for all A > 0, then J*(A) is defined to be the
analytic Wiener integral of F over Cp[0, T] with parameter A and for A € C,.
we write

/ " Fym (dx) = J*A).
Gol0,T]

Let g # 0 be a real number, and let F be a functional such that
anw,
/ F(x)m (dx)
Col0, T

exists for all A € C,. If the following limit exists, we call it the analytic
Feynman integral of F with parameter ¢ and we write

anf, anw,
f F(x)m(dx) = lim / F(x)m (dx)
Col0, 7] A=—ig Jgylo, T

where A — —ig through C, .
Notation. (i) For A€ C, and y € Gy[0, T7] let

anw;
(L.1) (TEN0) = [ Flx+y)m(d)
CO[ ’T]
(ii) Given a number p with 1 <p < +o00, p and p’ will always be related
by 1/p+1/p'=1. ‘
(iii) Let 1.< p < 2, and let {H,} and H be scale-invariant measurable
functionals such that for each p > 0,

(1.2) lim . |Hn(py) — H(py)P'm (dy) = 0.

n—o0 CO[O:
Then we write

(1.3) Li. g}.(wspl)(H,,) ~H

and we call H the scale invariant limit in the mean of order p’. A simi-
lar definition is understood when n is replaced by the continuously varying
parameter A.We are finally ready to state the definition of the L, analytic
Fourier-Feynman transform [6] and our definition of the convolution product.
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Definition. Let g # 0 be a real number. For 1 < p < 2 we define the L,
analytic Fourier-Feynman transform Tq(" )(F ) of F by the formula (1€ C,)

(1.4) (TP EN) = Li.m (Wl ) TFND)

whenever this limit exists. We define the L, analytic Fourier-Feynman trans-
form T}”(F ) of F by the formula

(1.5) T(F)) = lim (T(F))(y)

for s-a.e. y. We note that for 1 < p < 2, T,,(")(F) is defined only s-a.e.
We also note that if Tq(" )(Fl) exists and if F| =~ F,, then T}p )(Fz) exists and
TE(F) ~ TP (F).

Definition. Let F; and F, be functionals on Cy[0, T]. For A € C; we define
their convolution product (if it exists) by

(1.6) /C:l;:nF‘ (y;zx)l,2 ( > )m(dx) A€Cy,

_ anf,
(Fix F2);(y) = /Cm nF' (y;;)pz( 7 )m(dx)
; A=-ig,q€R,q#0.

Remark. Our definition of convolution is different than the definition given by
Yeh in [9]. For one thing, our convolution product is commutative; that is
to say (F; *x F); = (F; x Fy),;. Next we briefly describe a class of functionals
for which we establish the existence of T}p )(F ). Let n be a positive integer,
and let o, a3, ..., a, be an orthonormal set of functions in L,[0, T]. For
1<p<oolet .s/,,(") be the space of all functionals F on Cy[0, T] of the form

T T
(1.7) F(x)=f(/0 aldx,...,/o a,,dx)

s-a.e. where f: R" — R is in L,(R") and the integrals foT aj(t)dx(t) are
Paley-Wiener-Zygmund stochastic integrals. Let M,,(°°) be the space of all func-
tionals of the form (1.7) with f € Cy(R"), the space of bounded continuous
functions on R” that vanish at infinity. It is quite easy to see that if F is
in M,,("), then F is scale-invariant measurable. If p > 1 the Feynman inte-
gral above should be interpreted as the scale-invariant limit in the mean of the
analytic Wiener integral.

2. THE TRANSFORM OF FUNCTIONALS IN &,F)

In this section we show that the L, analytic Fourier-Feynman transform

T}")(F ) exists for all F in %% and belongs to M,,(p/) . We start with some
preliminary lemmas.
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Lemma 2.1. Let 1 < p < 0o, and let F € 4, be given by (1.7). Then for all
A€eC,,

T T
(2.1) (Tlx(l’))(y)=g(/1;/0 andy,--.,/o andy)
where
g(A;wr, ..., wy)
2.2 . n/2 . J) n .
(2.2) =g w) = (%) /Rnf(u)exp{—zjgl(uj—w,-)z} di.

Proof. For A > 0, using a well-known Wiener integration theorem we obtain

(Ty(F))(») = / F(\2x + yymdx)

G[0,T)

T T
=/ f(l"m/ aldx+/ ardy,...,A"1/?
Gol0, 7] 0 0
T T
x/ a,,dx+/ a,,dy)m(dx)
0 0

2\ "2 T T
= (2_) / f 'v,+/ dy,...,v,,+/ andy
n R7 0 0

AN payexnd <25 (uy— [T ayay 4z
2n R 2‘1 | 0

where g is given by (2.2). Now by analytic continuation in A, (2.1) holds
throughout C,. 0O

Lemma 2.2. Let F € %" be given by (1.7), and let g(A; W) be given by (2.2).
Then

(i) g(4;+) € Co(R") forall 1€Cy;
(i) g(A; W) converges pointwise to g(—iq; W) as A — —iq through C,;
and
(iii) as elements of Co(R"), g(A; W) converges weakly to g(—iq; W) as
A — —iq through values in C, .

Proof. We first note that for all (4, @) € C; x R", |g(4; @)| < |&["?||f]l: .
Then (i) follows from a standard argument and the dominated convergence
theorem establishes (ii). To establish (iii) let x € M(R"), the dual of Cy(R").
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By the dominated convergence theorem,

tim [ g0 @) du()

A——iq Jr

- jim [ (2”)"/2 L f(ﬂ)exp{-—}:(u; w»’} dild (D)

Jj=1

- /;; ("‘1) / f(u)exp{ z(uj wj)z} dii d u(w)

j=1
- [R g(~ig; @) du(d). O

Our first theorem, which is a direct consequence of Lemma 2.2, shows that
the analytic L, Fourier-Feynman transform exists for all F in 2" .

Theorem 2.1. Let F € %4, " be given by (1.7). Then Tq(')(F ) exists for all real
qg#0 and

T T
23 (IEN)~g (—iq; / ardy, ..., / andy) € 4

0 ' 0

where g is given by (2.2).

Remark. When 1 < p < 2 and Reld = 0, the integral in (2.2) should be
interpreted in the mean just as in the theory of the L, Fourier transform [8].

Theorem 2.2. Let 1<p<2,andlet F € .M,,(”) be given by (1.7). Then the L,
analytic Fourier-Feynman transform of F, Tq(")(F ) exists for all real q # 0,
belongs to .M,,(" ) and is given by the formula

T T
(2.4) (T¥>(F>>(y)~g(~iq; /0 ardy, ..., /0 andy)

where g is given by (2.2).

Proof. We first note that for each A € C3, g(4; W) is in L, (R") [5, Lemma
1.1, p. 98]. Furthermore by [5, Lemma 1.2, p. 100]

(2.5) Jm llg(4s +) — g(~ig; )l = 0.

Now to show that T}” )(F) exists and is given by (2.4) it suffices to show that
foreach p >0
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T T
lim g(fl;pf axdy,...,p/ andy)
A—=—ig Jgyl0,T] 0 0
T T '
—g(—iq;pfo axdy,...,p/o andy) m(dy) = 0.
But
T T
/ g(l;p/ aldy,...,p/ andy)
G0, T 0 0
T T 4
—g(—iq;pfo aady,-.-,pfo andy) m (dy)

, 1 &
= p~ " s i) — o(—jig- 14 — 2 ~
P /R lg(A; @) — g(-iq; i) exn{ 3,7 j§=l:u,}du
<p7"Ig4; ) — g(—ig; -)Ilf,?:

which goes to zero as A — —ig by (2.5). Thus T}p )(F) exists, belongs to J:/,,("') ,
and is given by (2.4). O

The following example generates an interesting set of functionals belonging
to .9’,,“’).

Example. Let 1 < p < +00 be given, and let a;, ay, ... be an orthonormal
set of functions from L,[0, T]. Let F € L,(Cy[0, T1), and for each n define

fa by

T T T T
f;,(/ aldx,...,/ a,,a’x) EE[F(X)I/ aldx',...,/ a,,dx].
0 0 0 0

Then, by the definition of conditional expectation, f,(&;, ..., &,) is a Borel
measurable function, and || f3]|, < ||F||, , where
p}

T T
fn(/ aldx,...,/ a’,,dx)
0 0

IlF|I; = ENIF (x)].

fallp = E [

and

" Thus f, € %%, and so the analytic Fourier-Feynman transform Tq“’ ) (fn) exists
for all real ¢ #0.

(\;Ve finish this section by obtaining an inverse transform theorem for F in
LA
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Theorem 2.3. Let 1 <p <2, andlet F € &% . Let q # 0 be given. Then (i)

for each p >0,
lim - |TZT3(F)(py) — F(py)Pm(dy) =0,

A——ig Jgo,
and (ii) GT,F — F s-a.e. as A — —iq through C, .
Proof. Proceeding as in the proof of Lemma 2.1, we obtain for all A€ C,,

i = (£)" [ st e {—% ,-:1 (w,. ~['a dy)z} di
= (%)n/Z/R’l (ﬁ)n/Z/Rnf(ﬁ)exp{—%zn:l(uj—wj)Z}
<
xexP{_E 3 (wj-/()Tajdy)z} diidd

24

T T
=k<x,,1;/ aldy,...,/ a,,dy>
0 0

where g(A; w)) is given by (2.2) and
k()“a 2; Uy enns 'Un) Ek('l, z;{f)

/Rz" f(#) exp {—% > (uj - w;j)* - % ) (w; - 'Uj)z} dii di.
Jj=1 Jj=1

But [2, p. 525]

A
2n

A yl
/exp {—i(uj -w;j)? - 7w - v,-)z} dw;
R

m \1/2 A2
= (m) e"p{‘4|RLA(“f_”f)2}'

Hence

n n 2 n
[0 ()" - i B -
Jj=1

= (f*¢e)(V1, ..., Un)

k(A, 1; 7) = ’2417;

where
1< Vv2Rel
¢(v1,---,vn)s<2n)‘"/2exp{_iz”3}, =
j=1
and | |
_l 1w
| bevr, o) = = (U, ),
Now

/¢(vl,...,v,,)dvl---dv,,=l and ¢(vy,...,U,) >0,
Rn
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so using [8, Theorem 1.18, p. 10] it follows that

lim kA, A; V1,5 .oy Un) = f(V1, ..., Vp)PdT
A——iq Jrn
(2.6) = lim [ (58001, e o) = S0, e, )P AT

= lim ||f * ¢, — fIl; = 0

since ¢ — 0* as 4 — —ig through C,. But now (i) of the theorem follows
easily since for each fixed p >0,

[ IBTiE) ) - Flpy)Pm(@y)
Col[0, T

o Do 1 & _
=p /wlk(/l,/’l,v)—f(v)l”exp{—z—p—zgvf}d”

<P * e = f115.
Finally, (ii) of the theorem follows since by [8, Theorem 1.25, p. 13] it follows
that the function k(A, 1; vy, ..., Uy = (f*@)(v1, ..., v,) converges pointwise
to the function f(vy,...,v,) as A — —iq through C,. O

Note that in the case p = 2, p’ = 2, and so for F in &, Tq(z)(F) is in
&, by Theorem 2.2. Hence we have the following theorem.

Theorem 2.4. Let F € %(2) be given by (1.7). Then for all real q #0,

T_o(Ty(F)) = F.

3. CONVOLUTIONS AND TRANSFORMS OF CONVOLUTIONS
Our first lemma gives an expression for (F; x F;); for A€ C, .

Lemma 3.1. Let 1 <p < oo, and lei F; e UISPSOOM,,(”) Jor j=1,2 be given
by (1.7). Then forall A€ C,,

T T
(3.1) (Fl*Fz)l(y>=h(z;[0 cwly,...,[0 a,,dy)

where
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(3.2)

h(A; wy, ..., wy) = h(A; @) = (%)"/Z/Rn P (w;?ﬁ>ﬁ<m\/_§ﬁ)

Proof. For A > 0, using a well-known Wiener integration formula we obtain

(Fi * F)a(y) = /C .. (’%}2—@) F (y—‘-%fi) m (dx)

l n/2 1/2 T
=(ﬁ> /x»fl 2~ Aaldy+u1 Y e

T
2-1/2 [/(; andy + un

T T
xf2(2‘1/2 [/ aldy—ul},..., 2-1/2 [/ andy—u,.])
0 0
l n e d
x exp{—ij;u}} dii

T T
= <l;/ aldy,...,/ a,,dy)
0 0

where & is given by (3.2), so (3.1) holds for A > 0. Now by analytic continu-
ation in A, we see that (3.1) holds forall A in C,.. 0O

Our next theorem establishes an interesting relationship involving convolu-
tions and analytic Wiener integrals.

Theorem 3.1. Let 1 <p < oo, andlet Fj € U;cp<o 2P for j=1,2 be given
by (1.7). Then for all 4 € C,,

(3.3) (Ty(Fr *+ F2))(2) = (TA(FI))(2_1/22)(7}_(}72))(2—l/zz)_

Proof. It will suffice to establish (3.3) for A > 0 since T,(F; *x F);, Ty(F),
and T;(F) all have analytic extensions throughout C. . Solet A > 0 be given.
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Then by (3.1) and (3.2),

(Ty(FL * Fa))(z) = / (Fi » Fy), (A Px + 2)m (dx)

0[ ’T]

T
=/ h ).;/ od[A~ x4+ 2], ...,
Col0, T 0
T
/ a,,d[rl/2+z])m(dx)
0
)‘ n/2 T T
=(-—) /h(/l;vl+/ ale,...,’lln+/ a,,dz)
2n R” 0 0
FRL
X —52'012 dﬁ
j=1
= (i)n/ fil27 2 v+ u +/T dz
= 7 o 1 1 1 A (63 9 sen s
T
2-1/2 [’U,,+u,,+/ a,,dz])
0
T
x fr (2_1/2 [’01 - U +/ aldz] s eees
0
T
0

X exp {—% >l + 'Uj]} dii dv.
=1

Next we make the transformation
w; =272 (v; +u))

and
ry=2""2(v; - uy)

for j=1,2,...,n. The Jacobian of this transformation is one and
n n
Z[wj2 +ri]= Z[u} +v?].

Hence for A4 > 0, using (2.1) and (2.2), we see that
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(Ta(Fy * F2)5)(2)

A T T
- (5-)/ f w1+2‘1/2/ ardz, ..., ws +2—1/2/ andz
T R2n 0 0
, i
X exp —Eij
Jj=1
T T
x f (r1+2‘1/2/ ardz,...,rm +2_1/2/ a,,dz)
0 0
l n
X exp —EZr} d dr
j=1
= (2_7t') /l;"fi (w1+2_1/2L aldz, ...,wn +2_l/2\/0‘ andz)
l n
X exp —EZw} dw
j=1
) n/2 T T
x (—) / hH (r1 +2'1/2/ odz, ..., I +2'1/2/ a,,dz)
2n R? 0 0
LN
X exp —Eer dr
j=1
A n/2 J) n 12 T 2
= (= w)exp —= wj—2" / idz dw
(£)" [ rw@ew 2;(, ", )
A nf2 J) n T 2
x(-z;) /fz(i")exp -2 (rj—z-lﬂf a,-dz) a7
Rn j=l 0

= (T(F) (272 2)(Ta(F))(27'/?2).

Theorem 3.2. The following hold for all A € C; .

() If F, e &4\ and F, € 4", then (Fyx F,); € &V
(i) If F, € 42 and F, € 4,2, then (Fyx Fy); € 4.
(iii) If F, € %4V and F, € 4, then (Fyx F); € 4.
(iv) If F, € 4" and F, € 4" nt,®, then (F\ *x ), € 4 ns®.
) If F, e 4" and F, € 4, then (F, x Fy); € &4, .

Proof. (i) Assume F; and F, belong to & and are given by (1.7). It will

suffice to show that h(4; ) given by (3.2) is in L;(R") for every 4 € C; . But
this follows from the calculations
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n/2
/ Ih(; @)l di < | - / VA2 + @) 2@ — @)| did dil
R /4 R2n

A n/2
2 f |f1(z'1‘)|2"/2/ \6(V30 — §)|dib dF
R» Rn

2n

1 n/2
= |3z MLl

(ii) In this case for f;, f, in Ly(R") we first note that A(4; -) isin L. (R")
since for all w0 € R",

Ih(h; )| < i

/ AQ V20 + @)|| A2~V - @) di
1/2

{ /L |f1(2“’2(w+ﬁ))|2du}
1/2

«{ [ 15 - aypaa)

l n/2
_ ‘E V2l Al Al

A

2r

A
<2

/(4

All2l1.f2]12-

A standard argument now shows that 4 belongs to Cy(R").
(iii) Let F; € %" and F, € %4 be given by (1.7). It will suffice to show
that A(4; ) given by (3.2) is in L,(R”). But this follows from the calculations

NI Al
/Rnlh(l,w)l dwg/m 2
x [ VAQ@VD + D)2V - D) dﬁ] di
Rn
Al .
= 5| [1Aon [ 1560 [ 1A0ZG -7
x f(V2W - §)|db d5 dF
AR [ 1(/20 - P a7
R"

| 1@ + iy - aplda

@"2IAIRNLIE:

Sl> 8>

Hence ||hll2 < 14/2v2I" || Ailli]l fall2 -
Finally we note that (iv) follows directly from (i) and (iii) while (v) is im-
mediate. O

In our next theorem we show that the Fourier-Feynman transform of the
convolution product is the product of transforms.
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Theorem 3.3. (i) Let F,, F; € %(l) . Then for all real q £ 0,
(34)  (T{(F x FBy),)(2) = (T3 (F) 27 22TV (F)) (2712 2).
(ii) Let F; € 2V and Fy e %4 . Then for all real ¢ #0,
(3.5)  (TP(F * FBy)y)(z) = (T (F) Q™2 2)(TP(F) (271 12).
(iii) Let F, € 2V and F, € M,,“) NP . Then Jorallreal q #£0,
(3.6)  (T{V(F * F)o)(2) = (T{(F)) 27 22)(TV(F) (2712 2)
and ,
(37)  (TPEFE *F))(2) = (T (F) Q™2 2)(TP (F)) (271 2z2).
Proof. Theorem 3.2 together with Theorem 2.2 assures us that all of the trans-

forms on both sides of (3.4) through (3.7) exist. Equations (3.4) through (3.7)
now follow from equation (3.3). O

Remark. Throughout this paper, for simplicity we assumed that {a;, ..., an}
was an orthonormal set of functions in L,[0, T]. However, all of our results
hold provided that {a;,..., a,} is a linearly independent set of functions
from L,[0, T].
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