
Purdue University
Purdue e-Pubs
International Refrigeration and Air Conditioning
Conference School of Mechanical Engineering

2014

Measurements of Oil Retention in a Microchannel
Condenser for AC Systems
Ardiyansyah S. Yatim
Oklahoma State University, Stillwater, OK, USA / University of Indonesia, Depok, West Java, Indonesia,
ardiyansyah.yatim@okstate.edu

Lorenzo Cremaschi
Oklahoma State University, Stillwater, OK, USA, cremasc@okstate.edu

Daniel E. Fisher
Oklahoma State University, Stillwater, OK, USA, dfisher@okstate.edu

Follow this and additional works at: http://docs.lib.purdue.edu/iracc

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/
Herrick/Events/orderlit.html

Yatim, Ardiyansyah S.; Cremaschi, Lorenzo; and Fisher, Daniel E., "Measurements of Oil Retention in a Microchannel Condenser for
AC Systems" (2014). International Refrigeration and Air Conditioning Conference. Paper 1441.
http://docs.lib.purdue.edu/iracc/1441

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/77942357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Firacc%2F1441&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1441&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1441&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Firacc%2F1441&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1441&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engineering.purdue.edu/Herrick/Events/orderlit.html
https://engineering.purdue.edu/Herrick/Events/orderlit.html


2325, Page 1 

 

15
th

 International Refrigeration and Air Conditioning Conference at Purdue, July 14-17, 2014 

Measurements of Oil Retention in a Microchannel Condenser for AC Systems 
 

Ardiyansyah S. YATIM
1,2,

*,  Lorenzo CREMASCHI, Ph.D.
1
 , Daniel E. FISHER, Ph.D.

1
 

 
1
Oklahoma State University, School of Mechanical and Aerospace Engineering 

Stillwater, Oklahoma, USA 

Ph. (405) 744-0389, Fax. (405) 744-7873, email: ardiyansyah.yatim@okstate.edu 

 
2
Universitas Indonesia, Mechanical Engineering Department, Depok, West Java, Indonesia 

Ph. (62-21) 727-0032, Fax. (62-21) 727-0032 
 

* Corresponding author 

 

ABSTRACT 
 

In a refrigeration cycle, a small portion of the compressor oil circulates with the refrigerant flow through the cycle 

components, while most of the oil stays in the compressor. The presence of the lubricant affects the performance of 

heat exchangers by increasing the pressure losses and adding a thermal resistance to the heat transfer exchange 

process. The oil effects on microchannel heat exchangers are unique due to their relatively small scale geometry and 

manifold configuration. In this paper, oil retention in a microchannel type condenser was measured and its effects on 

heat transfer and pressure drop characteristics are presented. The heat exchanger was a 2 passes, aluminum 

louvered-fin type condenser that consisted of multiports rectangular microchannels with hydraulic diameter of 0.06 

inch (1.7 mm). The refrigerant and oil flow rates were varied and actual operating conditions of an air conditioning 

condenser for R410A systems were replicated in laboratory. The refrigerant R410A and Polyolester oil mixture was 

studied at saturation temperature from 85 to 130 °F (29 to 54 °C) and two refrigerant mass flux that are common for 

a 4 ton nominal capacity AC system for residential applications. Oil mass fraction (OMF) in circulation with the 

refrigerant was varied from 0.5 to 5.6 in wt.%.  

The results indicated that at OMFs of 0.5 wt.% to 1 wt.%, which are common ranges in typical air conditioning 

systems, the oil retention in the microchannel condenser was less than 5% of the microchannel condenser internal 

volume for all saturation temperatures and all mass fluxes studied in this work. The oil retained in the condenser 

increased if the OMF increased and it was measured up to 23% of the total microchannel condenser internal volume 

when the OMF was 5.4 wt. %. The superheated vapor refrigerant section of the condenser held small amount of oil 

due to high refrigerant vapor superficial velocities inside the microchannel tubes. At OMFs of 0.5 wt. % the heat 

transfer capacity of the coil was the same of that of oil free conditions. At high saturation temperature of 130 °F (54 

°C) and high mass flux, the heat transfer capacity of the coil decreased as the OMF increased and some penalization 

of refrigerant-side heat transfer rate was observed at OMFs as low as 1 wt. %. If OMF increased to about 5 wt. % 

then the heat transfer capacity of the heat exchanger was penalized by up to 6% and the pressure drops across the 

condenser augmented up to 19% with respect to the oil free case.  

1 INTRODUCTION 

In an air conditioning system, a small portion of the oil circulates with the refrigerant flow through the cycle 

components, while most of the oil stays in the compressor. The compressor in a refrigeration system needs oil to 

prevent surface-to-surface contact, to remove heat, to provide sealing, to keep out contaminants, to prevent 

corrosion, and to dispose of debris created by wear (Vaughn, 1971). Most compressor mechanical failures are due to 

improper oil management that leads to a lack of proper lubrication inside the compressors in the field. This means 

taking into account the fact that oil might be missing from the compressor because it can be held up inside the heat 

exchangers during actual system operating conditions.  

 

Oil retention is a complex function of fluid properties as well as geometry and configuration aspects. The circulating 

oil, which is missing from the compressor, can form a fairly homogeneous mixture with the liquid refrigerant or it 

can exist as a separate oil film inside the tubes and headers of the heat exchangers; the amount of oil is affected by 

the system conditions. Each heat exchanger in a refrigeration cycle has different oil retention characteristics, and 

large amounts of oil retention cause a decrease in heat transfer and an increase of pressure drop (Cremaschi et al., 
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2005). As a result, proper oil management is necessary in order to improve the compressor reliability, increase the 

overall efficiency of the system, and minimize the system cost by avoiding to install oil separators at the compressor 

outlets and oil pumps and other auxiliary components for oil management. 

 

Abundant literature can be found on oil and refrigerant flow inside simple geometries. Sundaresan and Radermacher 

(1996) studied oil return characteristics in residential heat pump systems using R22, R407C, and R410A with 

mineral oil (MO) and synthetic polyolester (POE) oils. From their experiments, they recommended the use of POE 

oils with new refrigerant blends such as R407C and R410A. Biancardi et al. (1996) conducted experimental and 

analytical efforts to determine the lubricant circulation characteristics of R134a/POE and R134a/MO pairs in a 

residential heat pump system and compared the behavior with a R22/MO mixture. The minimum flow rate for “the 

worst-case” scenario, in which the critical velocities occurred in the vertical vapor suction line, were determined by 

visual observations. They reported that minimum flow velocities ranging from 1.8 to 1.9 m/s (354 to 374 fpm) were 

required in the vertical upward suction lines when the system operated in the cooling mode. Oil return characteristic 

in vertical upward flows was also investigated in Mehendale and Radermacher (2000).  

 

In order to determine the oil retention volume, one option might be to measure the thickness of the oil film created 

during annular flow on the interior wall of a tube. Shedd and Newell (1998) proposed a non-intrusive, automated, 

optical film thickness measurement technique to be used with a wide range of fluids and flow configurations. 

Extensive experimental flow visualization in horizontal and vertical pipes was required and the oil film thicknesses 

were correlated with the oil mass flow rates, vapor velocity and pipe diameter. The technique requires optical access 

to the refrigerant flow and might not be practical for microchannel heat exchangers. Not only the tubes in 

microchannel heat exchangers are likely to be too small to provide accurate measurements of the oil film thickness 

by optical methods, but also creating an optical access to the tubes of a microchannel heat exchanger might interfere 

with the real operation of the heat exchanger during refrigerant condensation. Furthermore, the flow regime during 

refrigerant condensation in the actual air conditioning applications of the microchannel heat exchanger is mostly 

annular but the oil film thickness might not uniform along the heat exchanger refrigerant path.  

 

While studies of oil return and oil transport in suction liners are quite numerous in the literature (Lee et al., 

2001;Radermacher et al., 2006), measurements of oil retention in condensers for air conditioning and refrigeration 

systems are rather sporadic in the open domain of the state-of-the-art work (Youbi-Idrissi and Bonjour, 2008). 

Research focused on measuring the oil retention in fin-and-tube evaporators and condensers of air conditioning and 

refrigeration systems was reported by Cremaschi et al. (2005) and Radermacher et al. (2006). The refrigerants 

adopted in their works were R22, R410A, and R134a in combination with three different types of oils: mineral oil, 

polyolester (POE), and polyalkylene glycole synthetic lubricants. Oil retention was proportional and very sensitive 

to the oil mass fraction (OMF) of the refrigerant-oil mixture in heat exchanger. Oil retention was also observed to be 

proportional to the ratio of liquid film over refrigerant vapor viscosity. At constant refrigerant mass flux and OMF, 

an increase in oil film viscosity resulted on increased oil retention volume. The authors reported that for R410A-

POE case an increased OMF from 1 to 5 in weight percentage (wt. %) caused the mass of oil held up in the 

condenser from 1 to 8% of the total mass of oil initially charged into the compressor. The corresponding scenario for 

R134a-POE mixture resulted on 15% oil retention at the condenser. The presence of the oil in the condenser caused 

the increase of pressure drop by 1.13 times compared to the oil-free condition. Reviews of published researches in 

oil effect during condensation were presented in Gidwani et al. (1998) and Shen and Groll (2005). Schlager et al. 

(1990) conducted experiments using R22 in combination with 150 to 300 SUS mineral oil in order to determine the 

effects of oil in smooth and micro-fin tubes during evaporation and condensation of refrigerant-oil mixtures. The 

parameters that affect the oil retention during condensation were OMF, viscosity, condenser inlet and exit conditions 

and saturation pressure. They reported that unlike evaporator, the decrease of heat transfer coefficient due to oil 

presence in the condenser was not strongly dependent on the mass flux. 

 

The lubricant effects on microchannel heat exchangers are unique due to their relatively small scale geometry and 

manifold configuration. At the component level, experimental studies of oil effect on condensation heat transfer and 

pressure drop characteristics of R410-POE oil in a single microchannel tube were performed by Huang et al. 

(2010a) and Huang et al. (2010b). The authors found that the effect of the oil is most important at oil concentration 

of 3-5 wt. %. The presence of oil was found to always degrade the heat transfer coefficient. However, it is 

interesting to note that the frictional pressure drops with oil presence were less than that of pure refrigerant. The 

author argued that the decrease of pressure drop is influenced by the flow shift toward laminar with the presence of 

the oil. Works on the oil effects on refrigerant distribution in microchannel heat exchanger were recently reported in 
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Li and Hrnjak (2013) and (Jin and Hrnjak, 2013;2014). The authors proposed a model for the refrigerant 

distribution, which was affected by the oil in circulation. The distributions were reported to be worse as the oil mass 

fraction increased up to 3%. However more uniform distribution was observed at higher oil mass fraction. The 

model, which used a thermodynamic approach originally proposed by Thome (1995), was able to predict the oil 

retention in microchannel condenser within 15% of error with respect to the measurements. 

 

The summary of the state-of-the-art work above illustrate that, to the authors best knowledge, there are not any study 

that investigates the effect of oil retention on microchannel type condensers for air conditioning systems for 

stationary applications. This paper focuses on addressing this gap. The oil retention in a microchannel heat 

exchanger and its effect on heat transfer and pressure drop characteristics during condensation of refrigerant R410A 

and POE lubricant were measured and the findings are discussed in this paper.  

2 EXPERIMENTAL METHODOLOGY, SETUP AND TEST CONDITIONS 

2.1 Experimental methodology  

The experiments were conducted by using boiler-pump type refrigerant closed loop in which the refrigerant was 

circulated by a gear pump. Oil was injected in the refrigerant loop by using a variable speed gear pump and the oil 

was purposely injected at two locations, namely the inlet and the outlet of the microchannel condenser (referred to as 

test section in this paper). The principle of the oil retention measurement procedure is illustrated in Figure 1. The 

amount of oil injected and extracted in and from the refrigerant loop were directly measured. The amount of 

refrigerant dissolved in the oil was taken into account both at the injection and extraction points based on the POE 

oil solubility that was estimated at measured pressure and temperature from Cavestri and Schafer correlations 

(2000). For several tests, measurements of solubility were also taken in the present work according to the 

ANSI/ASHRAE Standard 41.4-1996 (ASHRAE, 1996) in order to confirm the solubility estimated by the 

correlations. Referring to Figure 1(a), at the time of to, oil was injected at the inlet of the test section. The oil flowed 

through the test section and reached the oil separators where it was extracted from the system. The extracted oil was 

observed at the oil line sight glass at time of t1 and by a sudden increase of the oil flow rate at the extraction point of 

the system. The injection and extraction flow rates becomes steady approximately at time t2. It should be noted that 

refrigerant was also present in the oil flow that was extracted from the system and the solubility of the refrigerant in 

the oil was account for in order to obtain the amount of POE oil extracted from the refrigerant loop. It should be also 

emphasized that the extractor efficiency of separation ranges between 0.7 and 0.99 and it was considered in order to 

obtain the total amount of oil that entered the oil extractor. From time t2 to time t3, the average difference between 

the oil mas injected and the oil mass extracted from the refrigerant loop resulted in the oil mass that was held up in 

the microchannel condenser plus all connecting pipelines between the condenser and the oil separators. This mass is 

referred to as Ma in Figure 1(a).  

  

  
(a) (b) 

Figure 1: Oil retention measurement at inlet (a) and at outlet (b) of the test section 
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Similar procedure was then conducted at the outlet of the condenser as shown in Figure 1(b). From the new time t’2 

and t’3, the average difference between the oil mas injected and the oil mass extracted from the refrigerant loop 

resulted in the oil mass that was held up in all connecting pipelines between condenser outlet and the oil separators. 

This mass is referred to as Mb in Figure 1(b). Since the flow rate, pressure and temperature of the refrigerant loop 

were the same during the two tests, the difference between the two amounts of oil masses resulted in the oil mass 

that was retained in the test section, Moil,retention, that is: 

Moil,retention = Ma – Mb (1) 
 

2.2 Experimental setup 

A schematic of the test set up for the oil retention measurements is shown in Figure 2.  
 

 
 

Figure 2: Experimental test setup and instrumentation for measuring oil retention in microchannel condenser, heat 

transfer rate and pressure drop with and without oil (boiler-pump refrigerant loop is shown at the top, oil extraction 

system is shown at the bottom left and oil injection system is shown at the bottom right)  

 

The microchannel heat exchanger was installed in a laboratory small-scale boiler pump refrigerant loop that 

controlled the refrigerant saturation temperature and the refrigerant flow rate. From the refrigerant pump, the 

refrigerant flowed through a Coriolis mass flow meter and then was directed to a tube-in-tube evaporator coil to 

achieve vapor superheated conditions at the inlet of the oil extraction system. The evaporator coils were heated by 

water and had a dedicated control. From the evaporator coils the refrigerant circulated through the oil extraction 

system. The oil extraction system consisted of two customized refrigerant oil separators that were placed in series, a 
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mass flow meter and oil tanks. The first oil separator was of large capacity and it separated the main oil stream from 

the refrigerant flow. A second oil separator was installed downstream to remove all residual oil, when present. The 

oil that was extracted from oil separators was then stored in the oil tanks equipped with level sight glass indicator. 

Through the refrigerant line from of the oil separators, the refrigerant was directed to a plate heat exchanger that 

worked as superheater to control the degree of superheated vapor at the inlet of the microchannel condenser. The 

condenser was installed inside a thermally controlled enclosure and the inlet air temperature and velocity were 

regulated by a large-scale climate control psychrometric chamber (Cremaschi and Lee, 2008). Pressure transducers 

and inline thermocouples were installed to monitor the refrigerant conditions and a dedicated differential pressure 

transducer was used to measure the refrigerant side pressure drop. From the test section, the refrigerant (and oil 

when present) was circulated back to the pump through a large sub-cooler. In addition, an hydraulic accumulator 

was installed in the refrigerant line to limit pressure fluctuations during oil injection and extraction processes. 

The experimental setup included an oil injection system, indicated at the right bottom side of Figure 2. The oil inside 

the oil reservoir  was heated by an electric band heater to adjust the temperature of the oil close to the temperature of 

the refrigerant entering the test section. The reservoir was connected to the vapor section of the refrigerant loop and 

refrigerant vapor under high pressure was used to pressurize the oil. The temperature and pressure data of the oil 

reservoir were measured to determine the solubility of refrigerant in the oil reservoir. The solubility values were also 

experimentally verified with samples taken from the oil reservoir according to the ASHRAE standard (ASHRAE, 

1996). From the reservoir, oil was injected into the test section using a variable speed gear pump coupled with a 

variable-frequency drive. Additional fine tuning of the oil flow was provided by a bypass metering valve. A Coriolis 

mass flow meter was used to measure the oil mass flow rate. When lubricant was injected to the test section, it 

formed a mixture with refrigerant and circulated through the test section, the sub-cooler, the refrigerant pump, and to 

the evaporator coils. Then the oil entered the oil separators where it was divided from the refrigerant stream and 

extracted from the refrigerant loop. The heat transfer capacity of the microchannel condenser was measured from the 

air side and the air flow rate was measured and calculated according to the ANSI/ASHRAE 41.2 Standard 

(ASHRAE, 1987). Baseline tests were conducted by measuring the heat transfer rates and pressure drops of the 

microchannel condenser for the nominal refrigerant flow rates, saturation pressures, and degree of superheated vapor 

at the inlet of the condenser. Additional tests were run for flow rates and saturation pressures slightly above and 

slightly below the nominal values so that the heat transfer capacity and pressure drop of the condenser with 

refrigerant only (i.e., no oil) were characterized at nominal conditions and in the neighbor of the nominal conditions. 

During the tests with oil, the performance of the condenser in oil free conditions were obtained by double 

interpolation of the baseline data based on flow rate and saturation pressure. This double interpolation procedure 

served to normalize the heat transfer and pressure drop data with and without lubricant to the same saturation 

pressures and flow rates, which is key in order to isolate and quantify the effects of oil retention on the heat transfer 

and pressure drop characteristics of the microchannel condenser. 

A heat balance between refrigerant and air side was conducted when the refrigerant outlet was subcooled and the air 

side measurements (primary method) agreed with the refrigerant side measurements (secondary method) within 

±5%. The uncertainty of the measurements was calculated based on an error propagation analysis described by 

Taylor and Kuyatt (1994) and the uncertainty results are summarized in Table 1.  

Table 1: Experimental uncertainties 

Parameter Symbol uncertainty  Parameter Symbol uncertainty 

Pressure � 
±0.65 psi 

(4.5 kPa) 
 Oil mass fraction ��� 0.1 % 

Pressure difference ∆� 
±0.03 psi 

(0.21 kPa) 
 Oil retention volume ��� 2.7 % 

Temperature � 
±0.1 °F 

(0.05 °C) 
 Pressure drop factor ��� 2.0 % 

Mass flow rate 	
  ±0.10 %  Heat transfer factor ��� 4.3 % 

Air volume flow rate ��� ±0.4 %     

 

2.3  Test Conditions 

The test conditions are summarized in Table 2. The microchannel condenser was a 48 inch width by 36 inch height 

(1.2 by 0.9 m) aluminum louvered-fin type heat exchanger. The microchannel condenser consisted of 2 passes, 

referred as condenser and subcooler passes with 69 and 32 microchannel tubes, respectively. Each microchannel 



2325, Page 6 

 

15
th

 International Refrigeration and Air Conditioning Conference at Purdue, July 14-17, 2014 

tube had multiple rectangular ports with an hydraulic diameter of 0.06 inch (1.7 mm). The refrigerant-oil mixture 

tested was R410A and ISO VG 32 Mixed Acid Polyolester (POE) oil at saturation temperatures ranging from 85 to 

130 °F (29 to 54 °C) and refrigerant flow rates of 400 and 600 lb/hr (0.05 and 0.08 kg/s), referred as low and high 

flow rates, respectively. The corresponding mass fluxes for condenser and subcooler sections of the microchannel 

heat exchangers are indicated in Table 2. The oil mass fraction (OMF) in the refrigerant-oil mixture flow rate was 

varied from 0 to 5.6 in wt.%. The degree of inlet superheated vapor were controlled to 65 °F (36 °C) for all tests. At 

the condenser pass, the refrigerant liquid phase Reynolds number (Re) ranged from 1,200 to 2,500 and the 

refrigerant vapor phase Re ranged from 7,900 – 13,900. For the subcooler pass, the liquid refrigerant phase Re 

ranged from 2,500 – 5,500 and the refrigerant vapor phase Re ranged 16,600 – 32,600. Thus the liquid phase flow 

was mostly laminar and the vapor refrigerant flow was always turbulent.  

Table 2: Test conditions for the microchannel condenser 

Test Label 
Tsat 

°F (°C) 

m
   
lb/hr (kg/s) 

Gcondenser 

lbm/ft
2
⋅s (kg/m

2
⋅s) 

Gsubcooler 

lbm/ft
2
⋅s (kg/m

2
⋅s) 

OMF 

(wt.%) 

A 85 (29) 

low 16 (80) 36 (173) 

From 0 

up to 5.6 

B 105 (41) 

C 130 (54) 

D 85 (29) 

high 24 (120) 53 (260) E 105 (41) 

F 130 (54) 

3 EXPERIMENTAL RESULTS 

3.1 Data Reduction 

The amount of oil carried over with the refrigerant in the microchannel heat exchanger is referred to as the oil mass 

fraction (OMF) and in steady state conditions, was calculated as follow: 

��� =
�
 ��� 

(�
 �����
 ���)
× 100  (1) 

The amount of oil retention was calculated from the measured oil retention mass, Moil,retention, as follow: 

�� =
����,���� ���  

!���@#$ ℃  
  (2) 

Where ρ was the density of the oil at reference temperature of 68 °F (20°C). The oil retention inside the 

microchannel heat exchanger was measured according to the procedure described in the experimental setup and 

calculated by equations (1) and (2). The normalized oil retention volume, ORVN, was calculated as the ratio of the 

oil volume retained in the heat exchanger to the internal volume of the microchannel condenser, including the 

headers, MCHXvolume, as follows: 

���& =
'( 

�)*+,��-.�
  (3) 

The amount of oil retained in the test section can result in flow restriction for the refrigerant flow, hence affecting 

the pressure drop. The lubricant also increased the viscosity of the liquid phase. The combined effects on pressure 

drop were estimated by measuring the pressure drop in the test section at specific mass flow rates and OMFs. The 

mixture’s pressure drop at the measured OMF, ∆pwith oil, was compared to the corresponding pressure drop for 

refrigerant-only flow through the test section at the same mass flow rate and at the same saturation pressure. The 

double interpolation of the pressure drop baseline data yielded to the pressure drop without oil of ∆pwith no oil. A 

pressure drop factor (PDF) was used to quantify the effect of lubricant on the refrigerant side pressure drop of the 

condenser and it was defined as follows: 

��� =
∆01��2 ��� 

∆01��2  � ��� 
  (4) 
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Similarly, a microchannel condenser heat transfer capacity factor, HTF, was used to quantify the effect of lubricant 

on the refrigerant side heat transfer rate of the condenser. HTF was calculated based on the heat transfer capacity 

measured during tests with oil, 3

4567 859 , and the corresponding capacity in case of refrigerant only flow (i.e. no oil) 

at the same mass flow rate and at the same saturation pressure. The double interpolation of the heat transfer rate 

baseline data yielded to the heat transfer capacity without oil of 3

4567 :8 859 . The HTF resulted as follows: 

��� =
;


1��2 ��� 

;

1��2  � ��� 

  (5) 

The experimental results of oil retention, pressure drop factor and heat transfer factor of refrigerant R410A and POE 

oil mixture in microchannel condenser are presented and discussed in the next sections. The findings are 

summarized in figures 3 to 5 as a function of oil mass fraction (OMF) for each test condition, represented by open 

and full symbols and legend A to F according to Table 2. 

3.2 Oil Retention 

The oil retention volume for each saturation temperature and mass flux are presented in Figure 3. The results 

indicated that the oil retained in the condenser was strongly depended on the OMF. The oil retention volume 

increased if the OMF increased and it was up to 23% of the total microchannel condenser internal volume when the 

OMF was 5.4 wt. %. At OMFs of 0.5 wt.% to 1 wt.%, which are common ranges in typical air conditioning systems, 

the oil retention in the microchannel condenser was less than 5% of the condenser internal volume for all saturation 

temperatures and all mass fluxes. The effects of mass flux are indicated in Figure 3 by full symbols for low mass 

fluxes (cases A, B, and C) and the corresponding open symbol for high mass fluxes (cases D, E and F). Figure 3 

shows that the effects of mass flux were negligible at OMF lower than 2 wt. %. As OMF increased above 2.5 wt. %, 

the effects of mass flux showed different trends at the three saturation temperatures. The impact of mass flux on oil 

retention volume is significant at medium saturation temperature of 105 °F (41 °C) as represented by cases B and E 

in the figure. The oil retention volume increased by almost 3 times as mass flux increased from low to high. For low 

saturation temperature of 85 °F (29 °C) (see series A and D) and high saturation temperature of 130 °F (54 °C) (see 

series C and F) the mass flux did not have a measurable effect on oil retention and the data of each pair of series 

belonging to the same saturation temperature were within the experimental uncertainty. At low mass flux, the oil 

retention volume was found to be maximum at low saturation temperature of 85 °F (29 °C). As the saturation 

temperature increased to 105 °F (41 °C), the oil retention decreased. Then the oil retention volume increased back at 

high saturation temperature of 130 °F (54 °C). For the high mass flux cases, the oil retention volumes for low and 

medium saturation temperatures were similar as indicated by the open symbols for series D and E in Figure 3. 

However, lower oil retention occurred when the saturation temperature increased to 130 °F (54 °C). This non-linear 

behavior observed on the oil retention volumes may be attributed to different flow regimes established in the 

microchannel condenser tubes when oil was present. The properties of the liquid mixture and the exit quality of the 

refrigerant and oil mixture varied. Thus, the oil retained in the condenser seemed to be proportional to the amount of 

liquid refrigerant present inside the heat exchanger during the condensation process. 

3.3 Pressure Drop Factor 

The pressure drops factor (PDF) of refrigerant R410A and POE oil mixture in microchannel condenser are shown in 

Figure 4. By definition, the PDF is equal to 1 at OMF equal to 0, that is, when no oil is present in the condenser. 

Figure 4 indicates that the PDF increased as the OMF increased. Up to 19 % increase of pressure drop were 

measured at high Tsat of 130 °F (54 °C). The increasing pressure drop with oil presence can be attributed to the 

higher refrigerant-oil liquid mixture viscosity compared to that of liquid refrigerant, which caused an increase on 

shear stress and of the frictional pressure drop. The effects of oil presence was also important for annular flow 

encountered in the microchannel tubes as the increase of mixture viscosity has been reported to increase the shear 

stress pronouncedly for annular flow regime compared to that of other flow regimes (Shao and Granryd, 1995). 

Another reason for the pressure drop increase can be attributed to flow restriction effects to the superheated vapor 

refrigerant at the inlet section of the microchannel condenser. 

As indicated in Figure 4, the pressure drop increased if the refrigerant mass flux increased although with different 

magnitude based on the saturation temperature of the refrigerant. If OMF was above 2 wt. % the pressure drop 

augmented significantly with the increase of refrigerant mass flux at high saturation temperature, as shown by the 

series C and F in Figure 4. At saturation temperature of 130 °F (54 °C), the PDF at low mass flux (see series C) was 

approximately 1.1 at OMF of 3 wt. % and it increased to about 1.2 for the corresponding high mass flux case (see 

series F). This behavior did not occur at saturation temperatures of 85 and 105 °F (29 and 41 °C) for which the PDFs 

at OMF of 3 wt. % for low and high mass fluxes were within the experimental uncertainty.  
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Thus, it is interesting to note that at high saturation temperature, the effect of refrigerant mass flux became dominant 

even though the viscosity of R410A-POE oil mixture was lower. This could be due to conditions of immiscibility of 

the refrigerant and oil mixture at higher saturation temperature for the superheated section of the condenser. In 

addition, the section of the condenser with superheated vapor increased at high saturation temperature of 130 °F (54 

°C) because R410A was nearer to its critical point temperature of 163 °F (72.8 °C). Thus, the condenser reject less 

heat in the two phase region and more heat in the superheated region when compared to condensation at saturation 

temperatures of 85 and 105 °F (29 and 41 °C). Because the desuperheating section in the condenser increased when 

the saturation temperature approached 130 °F (54 °C), the flow restrictions effects of the lubricant were more severe 

due to higher refrigerant vapor superficial velocities in the condenser. This could explain why the PDF increased 

significantly at higher saturation temperature of 130 °F (54 °C) when the mass flux increased from low to high. 
 

3.4 Heat Transfer Capacity Factor 

The heat transfer capacity factor of R410A and POE oil 

mixture during condensation in microchannel heat 

exchanger is summarized in Figure 5. At OMFs of 0.5 wt. 

% the heat transfer capacity of the coil was the same of that 

of oil free conditions and the measured HTFs with oil were 

within the experimental uncertainty. At high saturation 

temperature and high mass flux, indicated with the series F, 

the HTF decreased as the OMF increased and some 

penalization of heat transfer was observed at OMF as low 

as 1 wt. %. For medium saturation temperature of 105 °F 

(41 °C), indicated with the series B and E in Figure 5, the 

heat transfer factor capacities seemed to decrease if OMF 

was above 2 wt.% and the HTFs were independent from 

the mass flux conditions. For medium saturation 

temperature and at OMF of 3 wt. % the HTF was about 

0.97. It is interesting also to note that at low saturation 

temperature, the presence of oil seemed to increase the heat 

transfer capacity of the coil, although not in monotonic 

fashion. This means that the heat transfer capacity at 

saturation temperature of 85 (29°C) increased if the OMF 

  
Figure 3: Oil retention volume (ORVN) as a function of 

oil mass fraction (OMF), saturation 

temperature, and mass flux 

Figure 4: Pressure drop factor (PDF) as a function of 

oil mass fraction (OMF), saturation 

temperature, and mass flux 

Figure 5: Heat transfer capacity factor (HTF) of the 

microchannel condenser as a function of oil mass 

fraction (OMF), saturation temperature, and mass flux 
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increased up to about 3 wt. %, and then the heat transfer capacity started to decline when the OMF increased further.  

The effects of mass flux in heat transfer capacity indicated different tendencies which were dependent on saturation 

temperature.  At low saturation temperature, the HTF was slightly higher for high mass flux compared to that of low 

mass flux as depicted in Figure 5 for series A and D. On the other hand, at high saturation temperature (see series C 

and F), the HTFs had opposite trends: the heat transfer capacity of the coil was basically unaffected by the oil for 

high saturation temperature of 130 °F (54 °C) and low mass flux (see series C) while it decreased if the mass flux 

was high (see series F). At saturation temperature of 105 °F (41 °C), the HTFs were not affected by the mass flux. 

The HTFs decreased if the saturation temperature increased and OMF and mass flux were constants. The 

degradation of heat transfer capacity can be attributed to the augmentation of the liquid mixture viscosity of 

refrigerant-oil mixture compared to that of refrigerant. The higher viscosity, along with the higher surface tension of 

the liquid refrigerant-oil mixture might reduce the molecular and thermal transport within the condensate liquid 

mixture at the wall of the microchannel tube; hence decreasing the condensation heat transfer coefficient. It should 

be also emphasized that the trends seen in Figure 5 for the saturation temperatures are the combined results of 

variation in heat transfer in the superheated, two-phase, and sub-cooled sections of the condenser and with the test 

methodology of the present work, each individual contribution cannot be isolated and quantified. 

4 CONCLUSIONS  

This paper investigates the effect of oil retention on the heat transfer capacity and pressure drop of a microchannel 

condenser. Refrigerant R410A and POE lubricant were studied at saturation temperatures of 85, 105, and 130 °F 

(29, 41 and 54 °C). The results indicated that the oil retained in the condenser was strongly depended on the OMF. 

At OMFs of 0.5 wt.% to 1 wt.%, which are common ranges in typical air conditioning systems, the oil retention in 

the microchannel condenser was less than 5% of the microchannel condenser internal volume for all saturation 

temperatures and all mass fluxes studied in this work. The oil retention volume increases if the OMF increases and it 

was measured up to 23% of the total microchannel condenser internal volume when the OMF was 5.4 wt. %. The 

superheated vapor refrigerant section of the condenser held small amount of oil due to high refrigerant vapor 

superficial velocities that carried the lubricant inside the microchannel tubes.  

At OMFs of 0.5 wt. % the heat transfer capacity of the coil was the same of that of oil free conditions. At high 

saturation temperature of 130 °F (54 °C) and high mass flux, the heat transfer capacity of the coil decreased as the 

OMF increased and some penalization of refrigerant-side heat transfer rate was observed at OMFs as low as 1 wt. %. 

If OMF increased to about 5 wt. % then the heat transfer capacity of the heat exchanger was penalized by up to 6% 

and the pressure drops across the condenser augmented up to 19% with respect to the oil free case. The increases of 

pressure drop were consistent with larger amount of oil retained in the microchannel condenser if the OMF 

increased. At low saturation temperatures of 85 °F (29 °C) and high mass flux, the heat transfer capacity of the coil 

increased if the OMF increased up to 3 wt. % and then it started to decline.  
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