
Purdue University
Purdue e-Pubs
International Refrigeration and Air Conditioning
Conference School of Mechanical Engineering

2014

Thermodynamic Analysis of Adsorption
Refrigeration Cycles Using Parent and Surface
Treated Maxsorb III/Ethanol Pairs
Kutub Uddin
Kyushu University, Japan, k-uddin@phase.cm.kyushu-u.ac.jp

Ibrahim I. El-Sharkawy
ielsharkawy@phase.cm.kyushu-u.ac.jp

Takahiko Miyazaki
Kyushu University, Japan, miyazaki.takahiko.735@m.kyushu-u.ac.jp

Bidyut Baran Saha
Kyushu University, Japan, saha.baran.bidyut.213@m.kyushu-u.ac.jp

Shigeru Koyama
Kyushu University, Japan, koyama@phase.cm.kyushu-u.ac.jp

Follow this and additional works at: http://docs.lib.purdue.edu/iracc

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/
Herrick/Events/orderlit.html

Uddin, Kutub; El-Sharkawy, Ibrahim I.; Miyazaki, Takahiko; Saha, Bidyut Baran; and Koyama, Shigeru, "Thermodynamic Analysis of
Adsorption Refrigeration Cycles Using Parent and Surface Treated Maxsorb III/Ethanol Pairs" (2014). International Refrigeration and
Air Conditioning Conference. Paper 1493.
http://docs.lib.purdue.edu/iracc/1493

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/77942355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Firacc%2F1493&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1493&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1493&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Firacc%2F1493&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1493&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engineering.purdue.edu/Herrick/Events/orderlit.html
https://engineering.purdue.edu/Herrick/Events/orderlit.html


 

2456, Page 1 
 

15
th

 International Refrigeration and Air Conditioning Conference at Purdue, July 14-17, 2014 

 
Thermodynamic Analysis of Adsorption Refrigeration Cycles Using Parent and Surface 

Treated Maxsorb III/Ethanol Pairs 

 
Kutub UDDIN

1,6*
, Ibrahim I. EL-SHARKAWY

2,6
, Takahiko MIYAZAKI

3,6
,  

Bidyut Baran SAHA
4,6

, Shigeru KOYAMA
5,6

 

 
1
Interdisciplinary graduate school of engineering sciences, Kyushu University,  

6-1 Kasuga-Koen, Kasuga-shi, Fukuoka 816-8580, Japan 

E-mail: k-uddin@phase.cm.kyushu-u.ac.jp 

 
2
Faculty of Engineering Sciences, Kyushu University,  

6-1 Kasuga-Koen, Kasuga-shi, Fukuoka 816-8580, Japan  

Mechanical Power Engineering Department, Faculty of Engineering  

Mansoura University, El-Mansoura 35516, Egypt 

E-mail: ielsharkawy@phase.cm.kyushu-u.ac.jp 

 
3
Faculty of Engineering Sciences, Kyushu University,  

6-1 Kasuga-Koen, Kasuga-shi, Fukuoka 816-8580, Japan  

E-mail: miyazaki.takahiko.735@m.kyushu-u.ac.jp 

 
4
Interdisciplinary graduate school of engineering sciences, Kyushu University,  

6-1 Kasuga-Koen, Kasuga-shi, Fukuoka 816-8580, Japan 

E-mail: saha.baran.bidyut.213@m.kyushu-u.ac.jp 

 
5
Faculty of Engineering Sciences, Kyushu University,  

6-1 Kasuga-Koen, Kasuga-shi, Fukuoka 816-8580, Japan 

E-mail: koyama@phase.cm.kyushu-u.ac.jp 

 
6
International Institute for Carbon-Neutral Energy Research (WPI-I2CNER),  

Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan 

 

*Corresponding Author, E-mail: k-uddin@phase.cm.kyushu-u.ac.jp 
 

 

 

ABSTRACT 
 

Adsorption equilibrium uptake of environment friendly refrigerant ethanol onto highly porous activated carbon 

based adsorbents has been experimentally investigated by using a magnetic suspension balance adsorption 

measurement unit (MSB-VG-S2). Adsorbents used in the present study are parent Maxsorb III, H2 and KOH-H2 

surface treated Maxsorb III. Experiments have been conducted over adsorption temperatures range from 30 to 70ºC 

and evaporation temperatures between -6 and 65 ºC. The Dubinin-Radushkevich and Dubinin-Astakhov adsorption 

isotherm models have been used to correlate adsorption isotherm data and to plot the pressure-temperature-

concentration (P-T-W) diagrams of the assorted pairs. Isosteric heat of adsorption is estimated using the Clausius–

Clapeyron equation. In the present study, the performance of adsorption refrigeration cycles using activated 

carbons/ethanol pairs has also been investigated employing a time-independent mathematical model. Results are 

compared with other adsorbent/refrigerant pairs found in the open literatures. Theoretical analysis show that the H2-

treated Maxsorb III/ethanol adsorption refrigeration cycle can achieve coefficient of performance (COP) of 0.51 and 

specific cooling effect of about 374 kJ/kg at the evaporator temperature of -5 ºC in combination with heat source and 

heat sink temperatures of 100 and 30 ºC, respectively. 
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1. INTRODUCTION 
 

Thermally driven adsorption refrigeration and heat pump systems got considerable attention nowadays due to its 

manufacturing simplicity and environment friendly adsorbent/refrigerant pairs. The research on this area intensified 

after the imposition of international restrictions on the production and use of CFCs (chlorofluoro-carbons) and 

HCFCs (hydrochlorofluoro-carbons), which are the commonly used refrigerants for cooling applications. These 

gases are identified as the major contributors to deplete the ozone layer around the globe (Miller, 1929; Aittomaki 

and Hakonen, 1986; Critoph, 1989; Meunier, 1993; Cacciola and Restuccia, 1994). The adsorption cooling and heat 

pump systems could utilize low temperature waste heat or renewable energy sources. The working pairs of 

adsorption cooling and heat pump are mainly dominated by silica gel/water (Yanagi et al., 1992), zeolite/water 

(Rothmeyer et al., 1983), activated carbon/ammonia (Critoph, 1989), activated carbon/methanol (Wang et al., 2003) 

and activated carbon fiber (ACF)/ammonia (Vasiliev et al., 2001) pairs.  

Many researchers evaluated the performance of adsorption cooling and heat pump systems based on working pairs, 

system design and methodology. A transient simulation model for adsorption cooling system using silica gel/water 

pair powered by renewable energy was investigated (Sakoda and Suzuki, 1984). Saha et al. (1995) developed a 

cycle simulation program to investigate the influence of operating conditions on cooling output and COP of a sing-

stage silica gel/water adsorption chiller and found hot water temperature 50ºC is only viable when cooling water 

temperature of less than 25ºC. Boelman et al. (1995) was continued to study parametrically the influence of thermal 

capacitance and heat exchanger UA-values on cooling capacity for the silica gel/water system. Saha et al. (2003) 

also evaluated the performance of low temperature waste heat driven multi-bed silica gel/water adsorption chiller 

and showed the system can work even if the heat source temperature is 60 ºC. Saha et al. (2007) presented the 

transient modelling for a two-bed, activated carbon fiber (ACF)/ethanol adsorption chiller using heat sources of 

temperature between 60 and 95 ºC along with a coolant at 30ºC. Miyazaki et al. (2010) evaluated the performance of 

innovative dual evaporator type three-bed adsorption chiller for cooling application and found significant 

improvement of system performance over two-bed single stage chiller. Uddin et al. (2013) analytically investigated 

the performance of an ideal adsorption-compression hybrid system and discussed the energy saving potential for the 

proposed system comparing the conventional system under same operating condition. 

The key information to design the thermally driven system is the adsorption characteristics of adsorbent/refrigerant 

pair which is measured experimentally. Chua et al. (2002) measured the adsorption characteristic of silica gel/water 

system at temperature range from 25 to 65 ºC and pressure 0.5 to 7 kPa using volumetric technique. Esteves et al. 

(2008) measured adsorption isotherm of natural gas and biogas components on activated carbon using both open- 

and closed-loop gravimetry over the pressure and temperature ranges of 0-9 MPa and 0-52 ºC, respectively. El-

Sharkawy et al. (2006) measured the adsorption characteristics of activated carbon fibers/ethanol pair at evaporation 

temperature 10 and 15ºC with varying adsorption temperatures from 11 to 60 ºC. Saha et al. (2009) measured the 

adsorption characteristics and heat of adsorption of activated carbon/R-134a pair at temperature range of 5-70 ºC 

and pressure up to 1.2MPa using volumetric method. El-Sharkawy et al. (2008) also investigated the adsorption 

equilibrium of activated carbon/ethanol pair for solar powered adsorption cooling applications using 

thermogravimetric analyzer. However, it is proven that gravimetric method employing magnetic suspension balance 

provides high accuracy of adsorption equilibrium and kinetic data. 

Water as refrigerant is commonly used effectively in the air-conditioning applications. However, for refrigeration 

applications that require relatively lower temperatures, methanol has been used before but reservations exist on its 

toxicity. On the other hand, the utilization of ethanol in adsorption cooling systems has couple of advantages, such 

as, ethanol is environmental friendly, non-toxic and it has a relatively high vapor pressure even at low temperature 

levels and its low freezing temperature (Cui et al., 2005). 

In the present study, adsorption equilibrium of highly porous Maxsorb III/ethanol, H2 treated Maxsorb III/ethanol 

and KOH-H2 treated Maxsorb III/ethanol pairs are measured experimentally using magnetic suspension adsorption 

measurement unit at evaporation temperature ranges from -6 to 65 ºC and adsorption temperature 30 to 70 ºC for a 

possible use in adsorption refrigeration system application. The isotherms data are correlated using the D-R and D-A 

equations from which P-T-W diagrams are plotted. The performance of a time-independent adsorption refrigeration 

cycle has been investigated and compared with other adsorbent refrigerant pairs that available on the open literatures. 
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2. EXPERIMENT 

 
2.1 Materials 
Activated carbon powder, namely Maxsorb III, with surface area is 3045 m

2
/g and micropore volume is 1.7 cm

3
/g, is 

treated with H2 and KOH with maintaining pore structure of the treated sample as similar as possible. H2 treated 

Maxsorb III is prepared by placing Maxsorb III in a reduction environmental condition (Ar/H2=8/2 (v/v)) at 600ºC 

for 24 h. After that, potassium hydroxide (KOH) treatment was applied to H2 treated Maxsorb III at different weight 

ratios to prepare the KOH-H2 treated Maxsorb III and the mixture is heat treated at 600-750ºC for 1h under nitrogen 

flow. Finally the mixture is washed with HCl to adjust pH about 7. The aim of surface treatment is to clarify the 

influence of the surface functionalities on adsorption behavior of ethanol molecules in carbon micropores. Details of 

treatment can be found elsewhere (Kil et al., 2013). The elemental composition of the sample is summarized in 

Table1. The refrigerant has been used in the present study is ethanol with purity 99.5%. Thermophysical properties 

of ethanol were evaluated using Refprop version 9 (Lemmon et al., 2010). 

Table 1: Thermophysical properties of activated carbon based adsorbents. 

Adsorbents 

Elemental compositions Porosity 

C 

[%] 

H 

[%] 

N 

[%] 

O 

[%] 

Ash 

[%] 

Surface 

area 

[m
2
/g] 

Micropore 

volume 

[cm
3
/g] 

Pore 

width 

[nm] 

Maxsorb III 95.13 0.14 0.25 4.35 0.13 3045 1.70 1.11 

H2 treated Maxsorb III 97.91 0.22 0.12 1.75 - 3029 1.73 1.15 

KOH-H2 treated Maxsorb III 89.15 0.27 0.08 10.46 - 2992 1.65 1.11 

2.2 Experimental procedure 

A magnetic suspension adsorption measurement unit is used to measure the adsorption characteristics of ethanol 

onto surface treated activated carbons. Using the multi-step technique the experiment was conducted within 

evaporation temperature between -14 and 65 °C and adsorption temperature 20 and 70 °C. In each step adsorption 

temperature was kept constant and evaporation temperature increased step by step until reaching relative pressure of 

about 0.9. The sorbent was first heated at 120 °C for 4 hours under vacuum condition of 3×10
-4

 Pa to remove any 

adsorbed gas inside the sample. As the weight measurement method is influenced by the buoyancy force so the 

effect of buoyancy is considered during measurements inserting inert gas. The schematic diagram of the 

experimental apparatus is shown in Figure1.  

1 P1 P2 P3

P4

P5

VENT
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TMP
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P62 7
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1. Magnetic suspension balance unit, 2.Sample cell, 3. Circulation oil jacket, 4,8. Isothermal oil bath, 

5. Sheathed heater, 6,9. Rotary and Diaphragm pump, respectively, 7. Refrigerant pool, 10. Nitrogen, 

11. Helium, TMP- Terbo-molecular pump, T- Thermocouple. P- Pressure gauge. 

Figure 1: Schematic diagram of the experimental set up. 
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An isothermal air bath is used to avoid the condensation inside the connecting tube. A detailed description of the 

experimental procedure can be found elsewhere (Uddin et al. 2014). 

 

3. RESULTS AND DISCUSSION 

 
3.1 Adsorption Isotherm 

The Dubinin - Radushkevich (D-R) and Dubinin - Astakhov (D-A) equations are widely used to fit the equilibrium 

uptake data of vapors onto carbon based adsorbents. Equation (1) and Equation (2) represents the D-R and D-A 

equations, respectively. 






















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0 exp
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WW        (1) 
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
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       (2) 

Where A is the adsorption potential that can be estimated as in Equation (3); 
















eva

ad
adg

P

P
TRA ln        (3) 

Here W stands for the equilibrium uptake (kg/kg) for the adsorbent/refrigerant pair, W0 defines the maximum 

adsorption capacity (kg/kg). E is the adsorption characteristic parameter (kJ/kg), Tad is the adsorption temperature 

(K), Pad defines the saturation pressure (kPa) of refrigerant at adsorption temperature and Peva is the equilibrium 

pressure (kPa). The exponential parameter n gives the best fitting of ln(W) versus A
n
 plot. The numerical values of 

fitting parameters using the above correlations are furnished in Table 2. 
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Figure 2: Adsorption isotherms of (a) Maxsorb III/ethanol, (b) H2 treated Maxsorb III/ethanol and (c) KOH-H2 

treated Maxsorb III/ethanol pair as predicted by equilibrium isotherm equation. 
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It is found that the maximum adsorption uptake for H2 treated Maxsorb III is higher than the other two studied 

adsorbents (Table 2), which follows the order of surface area and micro pore volume of the sample (Table 1). 

Employing the isotherm model with the numerical values from Table 2, the adsorption isotherms of Maxsorb 

III/ethanol, H2 treated Maxsorb III and KOH-H2 treated Maxsorb III/ethanol pairs are predicted and presented in 

Figures 2(a)-2(c), respectively. Ideal adsorption refrigeration cycles working at evaporation temperature -5ºC, 

adsorption temperature 30ºC and desorption temperature 100ºC  have been superimposed on these figures. 

 

Table 2: Isotherm fitting parameters of assorted adsorbent/refrigerant pairs 

Adsorbents W0 [kg/kg] n [-] E [kJ/kg] 

Maxsorb III 1.20 1.8 139 

H2 treated Maxsorb III 1.23 2.0 138 

KOH-H2 treated Maxsorb III 1.00 1.9 152 

 

The isosteric heat of adsorption is estimated using Clausius–Clapeyron equation. The average values of isosteric 

heat of adsorption are found to be 1032, 1034, 1035 kJ/kg for Maxsorb III/ethanol, H2 treated Maxsorb III/ethanol 

and KOH-H2 treated Maxsorb III/ethanol pairs, respectively. 

3.2  Thermodynamic cycle 

Figure 3 shows the schematic diagrams of a basic adsorption system. The system is mainly consists of an evaporator, 

a condenser and an adsorber/desorber heat exchangers (sorption element). The condenser and the evaporator are 

connected through a throttling valve or a bending capillary tube for maintaining the pressure difference. Here the 

basic cycle is assumed to be an ideal and as consequence, the pressure drops as well as the heat loss are neglected. 

The P-T-W diagram shows the relationship between the equilibrium pressure, adsorbent temperature and adsorption 

capacity at equilibrium state conditions which makes it possible to estimate the performance of adsorption cycle. 

Figures 4(a)-4(c) show the P-T-W diagrams of Maxsorb III/ethanol, H2 treated Maxsorb III/ethanol and KOH-H2 

treated Maxsorb III/ethanol pairs, respectively. The ideal cycle for the same adsorbent-refrigerant pair is super 

imposed therein. Each cycle consists of two isosteric and two isobaric processes.  
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Figure 3: Schematic diagram of ideal adsorption cooling system. 
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In adsorption process (a→b), the pressure is kept constant at Peva. The refrigerant vapor evaporates in the evaporator 

picking up its latent heat from the chilled water then, adsorbed by the adsorbent packed in the adsorber via the valve 

V1 (see Figure 3). The refrigerant concentration in the adsorber increases from Wmin to Wmax. In pre-heating (b→c) 

process, the sorption element is isolated and heated at constant concentration using a high temperature heat source 

and hence the pressure increases from Peva to Pcon. In desorption process (c→d), the refrigerant regenerates and goes 

to the condenser via the valve V3 at pressure Pcon. The refrigerant concentration on the sorption element decreases 

from Wmax to Wmin. In the pre-cooling process (d→a), the adsorbent bed is cooled at constant concentration which 

makes the pressure decrease from Pcon to Peva. 

It can also be seen from Figures 4(a)-4(c) that the concentration difference for H2 treated Maxsorb III/ethanol pair is 

about 10% higher than Maxsorb III/ethanol pair and 19% higher than that of KOH-H2 treated Maxsorb III/ethanol 

pair at the same operating condition, demonstrating the superiority in ice making applications (see Table 3). In 

addition to uptake difference, the adsorption kinetics of assorted working pair is another essential parameter that 

needed to be considered during making a dynamic simulation of adsorption system. The adsorption kinetics data for 

the assorted adsorbent/refrigerant pairs can be found elsewhere (El-Sharkawy et al., 2014). 

The model described here is a thermodynamically equilibrium model. This means, all the thermal contributions are 

calculated based on heat and mass balance provided by the (P-T-W) diagrams. 

Cooling effect can be estimated as given in Equation (4), 


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
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ad

eva
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T
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Where Ms is the mass of the sample adsorbent, Wmax and Wmin is the maximum and minimum sorption uptake, 

respectively. Δheva is the vaporization enthalpy and Cp,ref is specific heat of refrigerant. 

Desorption heat can be calculated as given in Equation (5), 
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Figure 4: P-T-W diagram of (a) Maxsorb III/ethanol, (b) H2 treated Maxsorb III/ethanol and (c) KOH-H2 treated 

Maxsorb III/ethanol pairs. 
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Total sensible heat is the sum of sensible heat during pre-heating and desorption shown in Equation (8) 

desshprshsh QQQ ,,         (8) 

Sensible heat during pre-heating can be estimated as in Equation (9), 
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Sensible heat during desorption can be estimated as in Equation (10), 

  



d

c

d

c

d

c

T

T
bedpbed

T

T

T

T
refpsspsdessh dTCMdTC

WW
MdTCMQ ,,

minmax
,,

2
  (10) 

For simplicity, the thermal capacity of the adsorption bed is considered two times that of thermal capacity of the 

adsorbent. The specific cooling effect (SCE) and the coefficient of performance (COP) of the time independent ideal 

adsorption cycle is calculated using the following Equations (11) and (12), respectively: 
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Figure 5(a) Shows the variation of SCE with desorption temperature for five different adsorbents/ethanol pairs at 

evaporation temperature -5ºC and adsorption temperature 30ºC. The value of SCE increases linearly with the 

increase of desorption temperature. This is due to the concentration difference with increase of regeneration 

temperature at constant adsorption and evaporation temperature. It can be seen from the Figure 5(a) that the SCE 

values for H2 treated Maxsorb III is higher than the other studied working pairs. For the sake of comparison, the 

performance of adsorption cooling cycles employing four assorted pairs are furnished in Table 3. It is found that, at 

regeneration temperature 100ºC along with adsorption and evaporation temperatures of 30 and -5ºC, respectively, 

the H2 treated Maxsorb III/ethanol pair achieves an SCE as high as 374 [kJ/kg] whilst Maxsorb III/ethanol, KOH-H2 

treated Maxsorb III/ethanol and ACF A-20/ethanol pairs provide 90%, 81% and 64% of the SCE value of H2 treated 

Maxsorb III/ethanol pair, respectively. This is because the H2 treated Maxsorb III/ethanol pair possess highest 

concentration difference (Wmax-Wmin) at the same operating conditions (see Table 3). 
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Figure 5: Effect of desorption temperature on (a) specific cooling effect (SCE) and (b) Coefficient of performance 

(COP). 
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Figure 5(b) shows the variation of coefficient of performance with desorption temperature at evaporation 

temperature -5 ºC. It can be noticed that the COP increases sharply only when the desorption temperature is below 

100 ºC. After that there is no significant change in COP even though SCE increases. This is happened due to the 

requirement of heat input becomes significantly large when the temperature difference between heat source and heat 

sink becomes higher than 100 ºC. As for the ice making application where the evaporation temperature is kept 

constant at -5 ºC, the cycle should be driven by relatively higher regeneration temperature to produce sensible 

cooling production.  

 

Table 3: Adsorption uptake and cycle performance of the assorted adsorbents using ethanol for ice making 

applications; adsorption and evaporation temperatures are 30 and -5ºC, respectively. 

Desorption 

temperature [ºC] 
 Maxsorb III 

H2 treated 

Maxsorb III 

KOH-H2 treated 

Maxsorb III 
ACF A-20 

90 

Wmax [kg/kg] 0.543 0.561 0.516 0.363 

Wmin [kg/kg] 0.254 0.235 0.261 0.152 

SCE [kJ/kg] 251.2 283.7 222.0 183.7 

COP [-] 0.447 0.468 0.427 0.448 

100 

Wmax [kg/kg] 0.543 0.561 0.516 0.363 

Wmin [kg/kg] 0.157 0.132 0.168 0.085 

SCE [kJ/kg] 335.5 373.5 303.2 241.7 

COP [-] 0.486 0.505 0.471 0.484 

110 

Wmax [kg/kg] 0.543 0.561 0.516 0.363 

Wmin [kg/kg] 0.092 0.068 0.102 0.044 

SCE [kJ/kg] 391.9 428.9 360.4 277.5 

COP [-] 0.501 0.516 0.489 0.495 

 

4. CONCLUSIONS 
 

Adsorption equilibriums of H2 treated Maxsorb III, Maxsorb III and KOH-H2 treated Maxsorb III with ethanol have 

been measured experimentally using a magnetic suspension adsorption measurement unit. Experimental results 

show that, the maximum adsorption capacity of H2 treated Maxsorb III/ethanol pair is about 1.23 kg/kg whilst the 

Maxsorb III and KOH-H2 treated Maxsorb III/ethanol show maximum adsorption capacities of 1.2 and 1.0 kg/kg, 

respectively. The Dubinin-Radushkevich and Dubinin-Astakhov equations are used to correlate the equilibrium 

uptake data and to plot P-T-W diagrams of assorted pairs. Thermodynamic analysis shows that the H2 treated 

Maxsorb III/ethanol adsorption cycle can achieve a COP as high as 0.51 with an evaporation temperature -5ºC, 

regeneration temperature 100 °C along with a coolant at 30 °C whereas the KOH-H2 treated Maxsorb III/ethanol 

pair can achieve COP 0.47. For the sake of comparison the change of SCE and COP with desorption temperatures 

for the five pairs have been studied. It is also found that SCE of ideal cycle using H2 treated Maxsorb III/ethanol pair 

is superior to that of other studied adsorbents/ethanol pair. 

 

NOMENCLATURE 
 

A adsorption potential [kJ/kg] Qdes desorption Heat [J/kg] 

COP coefficient of performance Qst isosteric heat [J/kg] 

Cp,ref specific heat of refrigerant [J/kg K] Qsh sensible heat [J/kg] 

Cp,s specific heat of adsorbent [J/kg K] Qsh,pr sensible hat during pre-heating [J/kg] 

Cp,bed specific heat of bed [J/kg K] Qsh,des sensible heat during desorption [J/kg] 

E adsorption characteristic parameter [kJ/kg] Rg gas constant [kJ/kg K] 

Δheva evaporation heat [J/kg] SCE specific cooling effect [J/kg] 

Mbed mass of bed [kg] Tad adsorption temperature [K] 

Ms mass of adsorbent [kg] Tdes desorption temperature [K] 

Pad saturation pressure of refrigerant at adsorption 

temperature [kPa] 

W equilibrium uptake [kg/kg] 

Peva equilibrium pressure of refrigerant [kPa] W0 maximum adsorption capacity [kg/kg] 

Pcon condensation pressure [kPa] Wmax maximum uptake [kg/kg] 

Pdes desorption pressure [kPa] Wmin minimum uptake [kg/kg] 
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