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ABSTRACT 
 

It is known that decreasing the channel size in heat exchangers increases its heat and mass transfer performance. 

Using such heat exchangers offers the opportunity to reduce the size and cost of industrial heat pumps, what should 

lead to better market acceptance. In the past, many experiments have been done for air/water mixtures (adiabatic) 

and refrigerants like CO2, R134a and water (diabatic). A variety of models predicting heat transfer coefficients for 

these refrigerants are available in literature, but for certain systems they are not in agreement with each other. 

Currently data for ammonia/water mixtures, a fluid used in absorption and compression-resorption heat pumps is 

missing. 

 

A novel mini channel shell and tube heat exchanger with 116 tubes with an inner diameter of 0.5 mm, an outer 

diameter of 1.0 mm and a length of 0.655 m has been developed to increase the heat transfer performance in 

industrial compression-resorption heat pumps working with ammonia-water as refrigerant. In the current research 

the tube side heat transfer performance is investigated using the ammonia-water mixture, while water is used in the 

shell side of the heat exchanger. The influence of mass flow rate, heat load and vapor quality on the heat transfer 

performance and pressure drop are investigated. 

 

The heat load was varied between 200 and 1800 W, with the refrigerant mass flux varied between 20 and 75 kg m
-2

 

s
-1

 with the average vapor quality ranging between 0.2 and 0.6 kg kg
-1

 and operating pressures between 5 and 13 bar. 

Overall heat transfer coefficients, based on the outer diameter of the tubes, between 70 and 700 W m
-2

 s
-1

 have been 

obtained. The approach temperature at the absorber inlet, after calibrating the PT-100 elements, ranged between 0.3 

and 4 K and the average temperature driving force is determined to be between 8 and 25 K. The measured pressure 

drop ranges between 0.02 and 0.2 bar. Trends show an increasing pressure drop and heat transfer coefficient with 

increasing mass flux and vapor quality. The heat transfer coefficient on the shell side appears to be the limiting 

factor at higher measured mass fluxes. The heat load was limited by the maximum flow of the water pumps on the 

shell side as well as the maximum available heating power of 3.5 kW. 

 

1. INTRODUCTION 
 

In order to reduce the amount of material used in a heat exchanger, and therefore possibly allowing for cost 

reduction of heat transfer equipment, brazed plate and mini-channel heat exchangers are investigated for pure fluids 

and mixtures. They are also of interest for sorption equipment (Cerezo et al., 2009, 2010, Taboas et al., 2010, 2012, 

van de Bor, 2014) 

 

In this study the heat transfer performance of a novel mini-channel heat exchanger is investigated when an 

ammonia-water mixture flows through the tubes of a shell and tube heat exchanger at low flow rates. The results are 

compared with a slug flow model and empirical correlations for absorption in an annulus obtained from an earlier 

study (van de Bor, 2014).  

mailto:d.m.vandebor@tudelft.nl
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2. EXPERIMENTAL SET-UP 

 
A heat exchanger has been designed to be applied as the absorber of a compression resorption heat pump. It consists 

of 116 tubes with an internal diameter of 0.5 mm mounted within a shell with internal diameter of 21 mm. The heat 

exchanger has a vertical orientation and has a length of 0.655 m. The internal heat exchanging area is 0.119 m
2
 

while the external heat exchanging area is 0.239 m
2
. Fractal distributors have been used to proportionally subdivide 

the main flow through the 116 tubes and guarantee pure countercurrent flow of tube and shell sides. Details of the 

fractal distributors and shell design can be viewed in Nefs et al. (2014).  

 

Figure 1 shows the experimental set-up that has been used to determine the performance of the heat exchanger. It 

consists of two independent loops each used to create the required operating conditions in the tube side (left) and in 

the shell side (right) of the heat exchanger which is positioned centrally. Each loop includes a plate heat exchanger 

to create sub cooled conditions at the inlet of the circulating magnetically driven gear pumps. A coriolis flow meter 

allows for both measuring the flow and the density of the flow from which the ammonia-water concentration can be 

derived. A thermostatic bath brings the flow to the desired temperature level. To compensate for temperature losses 

before the inlet of the test section a thermostatically controlled tracing coil is used in the feed line. Since the 

experiments are intended to reproduce process operating conditions, the flows operate at temperature levels in the 

range 100 to 180°C. 

 

 
Figure 1: Schematic of the experimental set-up. The left side shows the ammonia-water absorption loop which 

corresponds to the tube side of the multi-tube mini-channel heat exchanger. The right side shows the cooling water 

loop which corresponds to the shell side of the heat exchanger.  
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In the here reported experiments absorption is taking place inside the tubes. The average ammonia concentration in 

the tube side loop is 35% (mass). In most of the here reported experiments water is heated up by the absorption 

process. In some experiments the water has been substituted by an ammonia-water flow with a slightly higher 

concentration. In these cases the ammonia-water desorption process taking place in the shell side represents the 

desorption of the process fluid.  

 

Table 1: Geometrical data of the 116 tubes mini-channel heat exchanger 

 

Position 
Values Units 

Length heat exchanger 0.655 m 

Number of tubes 116  

Inner diameter of tubes 0.5 mm 

External diameter of tubes 1.0 mm 

Inner diameter shell 21 mm 

External diameter shell 25 mm 

Hydraulic diameter shell side 1.8 mm 

 

Table 1 summarizes the geometrical data of the heat exchanger. Figure 2 shows a cross section of the heat 

exchanger. The central area of the heat exchanger is filled with a massive rod which is used to fix the tube sheets. 

The tube arrangement is also visualized. 

 

 
 

Figure 2: Cross section of the 116 tubes mini-channel heat exchanger. The internal diameter is 0.5 mm; the shell 

side hydraulic diameter is 1.8 mm. 

 

During the experiments the average circulating concentration of ammonia in the solution was maintained constant at 

35% mass.  The inlet temperature has been maintained constant at both absorption and cooling water sides. The 

experimental conditions are summarized in Table 2. During the experiments the water was pressurized so that 

boiling could not occur in the shell side of the heat exchanger. The mass flow has been varied both on shell and tube 

sides. The absolute pressure was measured on both sides making use of Sitrans P DS III pressure sensors with an 

accuracy of 0.13 bar. The pressure drop was measured on both sides making use of Sitrans P DS III differential 

pressure sensors with an accuracy of 5.3 mbar.  The in and outlet temperatures were measured with PT-100 sensors. 

 

Table 2: Operating conditions 

 

Experimental sets 
Tube side Shell side 

Set 1: temperature [°C] 140 100 

Set 2: temperature [°C] 160 100 

 

3. EXPERIMENTAL RESULTS 
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3.1 Energy balance 
The test section is insulated to prevent heat losses to the environment. Nevertheless it can be expected that the 

energy balance on the shell side gives a smaller heat load than the energy balance based on the tube side. The 

deviation between the heat loads calculated in both sides is an indication of the accuracy of the experiments. Figure 

3 shows for 38 experiments how the two heat loads compare. As the figure shows some of the experiments have 

been discarded. These were the experiments for which the shell side balance indicated a higher heat load, what is not 

possible.  

 

 
 

Figure 3: Comparison between the heat load based on tube side and shell sides. Experiments 4, 8, 11 and 12 showed 

difficulties with the data reduction and therefore are left out of the figure. 
 

 

 
Figure 4: Tube side heat load as a function of shell side mass flux. The absorber (tube) side mass flow is also given. 

Since the operating conditions (inlet vapor fraction) varied during the experiments, a trend can not be recognized for 

the tube side. 
 
Notice that, for the conditions of the experiments, the heat load varies from ca. 0.2 kW (1.7 kW/m

2
) to 1.8 kW (15.1 

kW/m
2
). Higher heat loads were not feasible in the current set-up. Figure 4 shows the heat load as a function of the 

shell side mass flux with the mass flow in the tube side as a parameter. Due to small variations in temperature and 

pressure during the different tests it is possible that, against expectations, lower flow rates produces higher heat 

loads. 
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3.2 Pressure drop 
Figure 5 shows the experimental pressure drop. It is clear that the pressure drop is quite low on both sides of the heat 

exchanger but that specifically in the shell side the pressure drop is extremely low. 

 

 
Figure 5: Experimental pressure in both tube side (mass flows have only been varied up to 6 kg/h due to limitations 

of the experimental set-up) in which absorption of ammonia in ammonia water solution is taking place and shell side 

in which water is flowing (mass flows are up to 20 kg/h). 

 

3.3 Overall heat transfer coefficient 
The overall heat transfer coefficient is derived from the experimental data making use of Equation (1).  
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Figure 6 shows the values of ,expTT  obtained for the different experiments. Finally the heat exchanging area is 

obtained from Equation (4). The resulting overall heat transfer coefficient is given in Figure 7. 
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Figure 7: Temperature driving force for the different experiments shown as a function of the shell side mass flux. 

 

 

 
 

Figure 8: Overall heat transfer coefficient during the absorption experiments with ammonia-water in the tube side 

of the heat exchanger and water in the shell side. The lines represent the equation proposed by van de Bor (2014) for 

the average heat flux across the heat exchanger surface.  

 

 

Although both shell and tube side mass fluxes are quite small, the overall heat transfer coefficient can reach up to 

0.7 kW m
-2

 K
-1

 as presented in Figure 8. Again, small variations in temperature and pressure during the different 

tests it is possible that, against expectations, lower flow rates produces higher heat loads. This in turn has its effect 

on the heat transfer coefficient presented in Figure 8. 
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4. DISCUSSION 

 

4.1 Expected temperature profiles 
Considering the heat transfer performance of single tube experiments (van de Bor, 2014) it can be expected that 

significantly higher performance should be attained. A model of the processes in the heat exchanger assuming an 

annular flow in the tubes indicates however that the temperature differences along the heat exchanger length are not 

constant for the operating conditions of the heat exchanger. This is illustrated in Figure 9 where the temperature 

profiles in the heat exchanger are indicated.  

 

 

 
 

Figure 9: Numerically predicted temperature profiles along the heat exchanger length. The water flow appears to 

heat up very quickly so that the temperature driving force becomes very small for 50% of the heat exchanger area. 

The model assumes annular flow so that heat transfer takes place from liquid film to water. 

 

In the present simulation the water flow enters with 84°C and leaves with 159.9°C. With a shell side flow of 10.1 

kg/m
2
s, the mass flow is 2.78 g/s so that 898 W are exchanged. In the tube side ammonia is being absorbed. The 

flow is 4 kg/h so that, at 15 bar operating pressure, the temperature would drop from 160°C to 124°C when liquid 

and vapor would be in equilibrium. The model expects the liquid film to cool down to 110°C while the vapor phase 

remains at 147°C. At the outlet there is still 12.5% vapor left, explaining why the assumption of equilibrium leads to 

higher temperatures. In reality the temperature driving force is close to 0 for about 50% of the area of the heat 

exchanger. The assumption of equilibrium in the absorption side leads to an average temperature driving force of 

24.6 K. The model indicates an average temperature driving force between liquid film and water flow of 9.1 K. This 

indicates that the overall heat transfer coefficient is 2.7 times larger than indicated in Figure 7. 

 

4.2 Expected temperature profiles 
In van de Bor (2014) an empirical correlation was proposed for the absorption side heat transfer coefficient in mini-

channel annuli.  Adjusting this equation for absorption inside tubes by changing the surface area to the inner tube 

area results in equation 5. The shell-side heat transfer coefficient has been obtained from Nefs et al. (2014). 
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 (5) 

 

Although the empirical correlations proposed by van de Bor (2014) were derived to obtain the absorption side heat 

transfer coefficient in an annulus at higher velocities, the function derived at low absorption side inlet temperatures 

(and consequently low heat loads) is capable of predicting the heat transfer coefficient of most of the experiments 

within the margin of error of the experiments. This is illustrated in Figure 7 in which the correlation derived by van 

de Bor (2014) has been applied for the tube side experiments. 

From van de Bor (2014) it appears that significantly higher absorption heat transfer coefficients  can also be attained 

for heat flux above 50 kW m
-2

 K
-1

 while in these experiments the heat flux remains below 15 kW m
-2

 K
-1 

 

4.3 Pressure drop 
The results for the pressure drop have been compared with the gas-liquid pressure drop equation proposed by Zhang 

et al. (2010). This model over predicts the tube side pressure drop at low measured values, the prediction is better at 

higher pressure drop values. Similar results were obtained in van de Bor (2014), see Fig. 10. 
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Figure 10: The pressure drop model by Zhang et al. (2010) tends to slightly overpredict the tube side pressure drop. 

The lines indicate the +25%/0/-25% error band 
 

 

6. CONCLUSIONS 

 
 The heat transfer coefficient increases with increasing heat load 

 Tested flow rates are too low to obtain maximum heat transfer performance 

 Pressure drop increases with increasing flow rate and vapor quality 

 The annular flow model predicts larger heat transfer coefficients than obtained from the measurements 

assuming equilibrium conditions and constant heat flux along the tube 

 Annular flow might not occur at low flow rates, additional resistances might exist that were not modeled or 

the heat exchanger loading is too low. 

 

 

NOMENCLATURE 

 
A area (m

2
) 
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d diameter (m) 

h enthalpy (J kg
-1

) 

L length (m) 

m  mass flux (kg s
-1

) 

n number of control volumes (-) 

N number of tubes (-) 

P pressure (Pa) 

Q  heat load (W)   

T temperature (C) 

U overall heat transfer coefficient (W m
-2 

K
-1

) 

α Heat transfer coefficient (W m
-2

 K
-1

) 

 

Subscript 

Abs absorption 

exp experimental 

i inside 

in inlet 

o outside 

out outlet 

S shell side  

T tube side, total  
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