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ABSTRACT 
 

In typical household refrigeration systems, the compressor is structurally connected to the cabinet through an assembly 

composed of rubber mounts and a steel support plate, usually called base-plate. This plate works as a vibration energy 

path from the compressor to other refrigerator components, and its dynamic behavior must be known in order to avoid 

the coincidence of resonances and operational frequencies , a situation in which the energy flow is maximized. One 

way to design a support that satisfies this requirement is to optimize the shape of the plate, locating its structural modes 

as far as possible from the operational frequency and first harmonics. In this work, the Finite Element Method (FEM) 

is used to solve the eigenvalue problem and to parameterize the optimization procedure, which is based on positioning 

of the nodes of a design region (the plate) in a FEM simplified model. Due to the large number of variables, a gradient-

based method is adopted. The objective of the methodology is to maximize the difference between two adjacent 

eigenvalues near the fundamental operation frequency of the compressor, in order to obtain a large and effective 

bandgap. A geometrical constraint is imposed to the problem and it is represented by a maximum allowed deformation 

of the plate. The gradients needed are obtained using elementary stiffness and mass matrices information. The obtained 

results show that the procedure leads to a new shape which ensures the desired dynamic characteristics for the support 

plate. 

 

 

1. INTRODUCTION 
 

Experimental results from several academic and industrial researches have shown that compressor and fan are the 

main noise sources in a domestic refrigeration system. Simpler refrigerators do not use fan, while high-end 

refrigerators commonly use fans with low noise and vibration levels. Thus, generally, the compressor is considered 

the major source of energy for most cases when dealing with noise in refrigerators. Transient excitations generated by 

the compression process are considered quasi-periodic signals, with fundamental frequency equals to the compressor 

operation frequency (60Hz in North America and Latin America and 50Hz in Europe and Asia). In practice, as the 

signals are quasi-periodic, several harmonics are present in the spectrum representation. Another important source of 

vibration is the compressor unbalance, which generates high vibration levels mainly in the fundamental frequency and 

first harmonics. Therefore, it is assumed in this work that the characteristic excitation of a compressor has the spectral 

distribution schematically illustrated in Figure 1. 
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Figure 1: Characteristic spectrum of compressor excitations. 

 

The support base-plate of a refrigerator is responsible for the structural connection between the cabinet and the 

compressor, which is its primary function. However, the plate must attend some requirements, among them, to have 

low dynamic response during operation of the compressor. The correct dynamic response of the plate is important for 

filtering the vibrations of the compressor, reducing the energy transmitted to the cabinet, as well as for not allowing 

excessive noise radiation. The project of a base-plate with desirable vibration characteristics consists on allocating its 

structural modes as far as possible from the operational frequency and first harmonics. This work presents a design 

methodology for this structure by the use of an optimization procedure. In Section 2, the vibration problem is defined, 

as well as the optimization problem and its peculiarities. In this article, a gradient-based method is used to solve the 

optimization problem. Section 3 describes the necessary gradients of the considered functions. In Section 4, some 

numerical issues are presented and, finally, Section 5 and 6 present the results and conclusions of this work. 

 

2. PROBLEM DEFINITION 

 
2.1 Simplified Finite Element Model  
The differential equation which describes the motion of a body is solved by FEM, by discretizing its geometrical 

domain, yielding to a representation by several elements. Thus, an undamped free vibration problem can be 

represented as 

 

                                                                            (𝑲 − 𝜆𝑖𝑴)𝚽𝑖 = 0  (1) 

 

where 𝑲  and 𝑴 are the global stiffness and mass matrices, respectively; 𝜆𝑖  is the 𝑖 -th eigenvalue, and 𝚽𝑖  is its 

respective eigenvector. The finite element formulation to be used must be chosen correctly, based on the geometry of 

the structure and on the degrees of freedom to be considered in the problem. In this work, the optimization procedure 

requires a good representation of the base-plate, so that an Experimental Modal Analysis is performed to assist on the 

choice of best element formulation. The methodology presented here starts with a steel flat plate, with 570x135mm, 

and 2mm thick. The experimental set up can be seen in Figure 2. The objective of this test is to compare different 

types of elements, verifying the differences between experimental and numerical results in a free configuration. In 

order to perform the numerical modal analysis, the commercial software ANSYS® 12.1 is used in this work. The 

following elements were tested: 

 

 quadrangular shell with linear shape functions (SHELL181); 

 quadrangular shell with quadratic shape functions (SHELL281); 

 hexahedral solid with linear shape functions  (SOLID45); 

 hexahedral solid with quadratic shape functions (SOLID95); 

 hexahedral solid with linear shape functions and non-conforming formulation (SOLID45 + KEYOPT(1)=0 

"Include extra displacement shapes"). 
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Figure 2: Experimental Modal Analysis of a free flat plate. 

 
The last one in the list above is a linear solid element with temporary addition of 3 extra shape functions, with 

maximum value defined at the geometric center of the element. The related formulation is described in Zienkiewcz et 

al. (2005). This element type has a good representation of shear effects due to the extra shape functions considered on 

the stiffness matrices calculation. The element size used for all tested models is sufficiently small to represent the 

dynamic behavior of the plate up to the maximum frequency considered (500Hz). A regular mesh is used, with only 

one element on the thickness. A comparison between numerical and experimental natural frequencies is presented in 

Table 1. 

 
Table 1: Natural modes of the studied plate. 

 

Natural 

frequency 

order 

Measured SHELL181 SHELL281 SOLID45 SOLID95 

SOLID45            

non-

conforming 

1 34,1 34,1 34,1 56,5 34,1 34,1 

2 88,7 87,4 87,2 88,6 87,3 87,4 

3 94,3 94,5 94,5 155,9 94,5 94,5 

4 182,8 180,6 180,2 190,4 180,4 180,7 

5 185,6 186,3 186,1 306,0 186,2 186,3 

6 288,1 285,1 284,4 317,2 284,7 285,2 

7 307,6 309,2 308,8 479,4 308,9 309,3 

8 407,8 405,6 404,6 506,4 405,1 405,9 

9 460,0 462,7 461,9 684,3 462,0 462,8 

10 547,3 546,6 545,2 756,5 545,8 547,0 

 
Such discrepancy in the results of linear solid element (SOLID45) is due to the poor representation of bending in its 

formulation. In other hand, the non-conforming version of linear element (SOLID45 non-conforming) presents results 

which agree with shell and quadratic elements. Thus, by having simple implementation and good results, this last 

formulation is chosen in this work. The use of an element type with simpler formulation facilitates the analytical 

calculation of gradients, which will be described in Section 3. Shell elements, although simpler to apply, have greater 

difficulties in numerical implementation, particularly in three-dimensional cases. 

After choosing the proper element to be used, a FE model of the assembly composed by base-plate and compressor 

was developed. The plate was considered clamped at both lateral ends, and the compressor was considered as a 

concentrated mass rigidly connected to the plate. Here, only the inertial effects of the compressor are taken into 

Accelerometer 

Hammer 

Plate 
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account, and the elastic effects of the rubber mounts were neglected. Compressor dimensions, total mass (8.5kg) and 

spatial position were obtained from the catalogue of the product. Figure 3 shows the mesh of the FE model. 

 

 

 
 

Figure 3: Simplified FE model. 

 
Rigid beam elements with negligible mass were used to connect the mass element to the plate, through 4 regions with 

area equivalent to the mounts size. Besides the total mass, the moments of inertia of the compressor were considered 

in the properties of the mass element. The first modes of this simplified structure can be seen in Figure 4. 

 

 
11,75z 16,64Hz 

 
44,29Hz 

 
140,71Hz 

 

Figure 4: First modes of the simplified FE model. 

 

2.2 Parameterization of the problem 
This work proposes the use of Cartesian coordinates of the nodes which composes the base-plate FE mesh as design 

variables of an optimization procedure. However, only changes on the perpendicular direction is allowed (Z-direction). 

In order to keep the thickness of the plate constant (2mm), and remembering that just one element is used to discretize 

this dimension, the movement of a top node is constrained to the movement of its respective bottom node, as can be 

seen in Figure 5. So, each design variable of the problem is associated with the movement of a pair of nodes, called 

in this work as “twin nodes”. Thus, the optimization algorithm interprets only the Z-coordinates of the nodes related 

to the bottom of the plate, since the position of other nodes is mathematically linked as 

 

                                                                  𝑧𝑗 = {
𝑧𝑗 ,                   𝑓𝑜𝑟  𝑗 = 1,2,3,4

𝑧𝑗−4 + 𝑡ℎ𝑘, 𝑓𝑜𝑟 𝑗 = 5,6,7,8
,  (2) 

 

where 𝑡ℎ𝑘 is the thickness of the plate, and the connectivity diagram is shown in Figure 5. 

Mass 

element 

Clamping 
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 (a) (b) 

 

Figure 5: (a) Parameterization. (b) Standard solid finite element. 

 
For each optimization step, a new set of design variables (vector 𝒛 containing the Z-coordinates of the nodes related 

to the bottom of the plate) is obtained, enabling the actualization of the FE mesh based on the  𝑧j coordinate and on 

the thickness 𝑡ℎ𝑘. 

 
2.3 Optimization Problem 
The objective of this work is to enforce a band-gap in the base-plate vibration spectrum around the fundamental 

frequency of excitation (here, 50Hz). For this purpose, an optimization procedure is applied to vary the natural 

frequencies of this plate, based on the parameterization described in Section 2.2. Observing Table 2, one can note that 

the value of the 3rd natural frequency of the system is 44,3Hz, very close to the fundamental frequency of excitation. 

The authors suggest tuning this structural mode to 75Hz, avoiding the resonances near 50Hz. Consequently, due to 

the target value of this tuning, the 3rd mode will be also far from 100Hz, the first excitation harmonic.  

A general optimization problem can be defined as: 

 

                                                   

min 𝑓(𝒛)

                      𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔(𝒛) ≤ 0
                            𝑧𝑙𝑜𝑤 ≤ 𝑧𝑖 ≤ 𝑧𝑢𝑝𝑝𝑒𝑟

,  (3) 

 

where 𝑓(𝒛) is the objective function, 𝑔(𝒛) is the constraint function, generally related to a physical or manufacturing 

requisite, and 𝒛 is the vector of design variables, which are bounded by 𝑧𝑙𝑜𝑤  and 𝑧𝑢𝑝𝑝𝑒𝑟. In this work, 

 

                                                                        𝑓(𝒛) = (𝜆3 − 2𝜋75)2,  (4) 

 

where 𝜆3 is the 3rd eigenvalue of the system. 

Since the modification of twin nodes coordinates are enabled only for Z-direction and considering the plate thickness 

constant, elementary volumes do not change along the process. So, a mass constraint, widely used in optimization 

procedures, cannot be used. Therefore, this work proposes a measure of mesh distortion as a constraint for the 

optimization problem, defined as 

 

                                                                          𝑔(𝒛) =
1

𝑁𝑒
∑ 𝐿𝑒

̅̅ ̅𝑁𝑒
𝑒=1 ,  (5) 

 

where 𝑁𝑒 is the number of finite elements in the plate, and 𝐿𝑒
̅̅ ̅ is the average edge of each element bottom’s face, 

defined as 

 

                                                               𝐿𝑒
̅̅ ̅ =

|𝑛2−𝑛1|+|𝑛3−𝑛2|+|𝑛4−𝑛3|+|𝑛1−𝑛4|

4
.  (6) 

 

Twin 

nodes 

Allowed 

direction 
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with 𝑛1, 𝑛2, 𝑛3 and 𝑛4 being the coordinates of the bottom nodes of element 𝑒 (see Figure 5b). The symbol |  | is 

associated with the norm of the distance between two nodes.  

 

3. SENSITIVITY ANALYSIS 

 
As a gradient-based optimization method will be used in this work, derivatives of the objective function and constraints 

are needed. Using symmetry properties of mass and stiffness matrices, the derivative of the 𝑖-th eigenvalue of a system 

related to the 𝑗-th component of design variable vector 𝒛 can be obtained by (Haftka and Gurdal, 1992) 

 

                                                                     
∂λi

∂zj
= 𝚽𝑖

T (
∂𝑲

∂𝑧𝑗
−  λi

∂𝑴

∂𝑧𝑗
) 𝚽𝑖 ,  (7) 

 

considering the eigenvectors normalized by the mass matrix. By this way, the sensitivity of a eigenvalue related to a 

perturbation zj on Z-coordinate depends on the respective derivatives of mass and stiffness matrix. When a node has 

its coordinates changed, only the elements in the vicinity are distorted. Thus, one can prove that Equation 7 can be 

rewritten as 

 

                                                            
∂λ𝑖

∂𝑧𝑗
= ∑ (𝚽𝑖𝑒

T (
∂𝑲𝑒

∂𝑧𝑗
−  λi

∂𝑴𝑒

∂𝑧𝑗
) 𝚽𝑖𝑒)

𝑁𝑣
𝑒=1 ,  (8) 

 

where 𝑁𝑣  is the number of elements in which node 𝑗 takes part; 𝚽𝑖𝑒  is the vector corresponding to the entries of 

eigenvector 𝚽𝑖  related to the element 𝑒 degrees of freedom; and 𝑲𝑒 and 𝑴𝑒 are, respectively, the elementary stiffness 

and mass matrices related to element 𝑒. 

One can observe, from Equation 8, that the extra calculation required are the derivatives of elementary matrices, since 

the eigenvector and eigenvalue are directly obtained by modal analysis in the current iteration. As seen previously, 

the proposed parameterization do not change the volume of each element. So, ∂𝑴𝒆/ ∂𝑧𝑗 = 0 for all elements of the 

plate. Calculation of elementary stiffness derivatives is based on FE procedure, and can be obtained as follows: 

 

                          
∂𝑲𝑒

∂𝑧𝑗
= ∑ (

∂𝑩𝑒

∂ 𝑧𝑗

T
𝑪𝑩𝑒(𝑝)det(𝑱𝑒) + 𝑩𝑒

T𝑪
∂𝑩𝑒(𝑝)

∂ 𝑧𝑗
det(𝑱𝑒) + 𝑩𝑒(𝑝)T𝑪𝑩𝑒(𝑝)

det(𝑱𝑒)

∂ 𝑧𝑗
) 𝛼𝑝

𝑁𝑝

𝑝=1 ,  (9) 

 

where 𝑪 is the constitutive matrix, 𝑩𝑒 is the matrix of shape functions derivatives in element local coordinates, and 

𝑱𝑒 is the Jacobian matrix (Bathe, 1996). Equation 9 refers to a numeric integration, with 𝑁𝑝 integration points (𝑝) 

obtained from the Gauss rule. The weight factor 𝛼𝑝  is related to the chosen integration points. All analytical 

developments for finding the derivatives of elementary stiffness matrices, based on Equation 9, is purposely omitted 

of this article. As mentioned above, solid elements with non-conforming formulation will be used on the modeling of 

the plate, and its FE equations must be considered. 

Now, using Equation 8 and 9, the derivatives of Equation 4 can be obtained by 

 

                                                                     
∂𝑓(𝒛)

∂𝑧𝑗
= 2(𝜆3 − 2𝜋75)

∂𝜆3

∂𝑧𝑗
.  (10) 

 

On the other hand, the derivatives of constraint function (Equation 5) are directly calculated by 

 

                                                                          
∂𝑔(𝒛)

∂𝑧𝑗
=

1

𝑁𝑒
∑

∂𝐿𝑒̅̅ ̅

∂𝑧𝑗

𝑁𝑒
e=1 .  (11) 

 

For example, for a node 𝑗 referent to position 1 in Figure 5b in an element 𝑒, one can obtain 

 

                                                           
∂𝐿𝑒̅̅ ̅

∂𝑧𝑗
=

1

4
(

1

|𝑛2−𝑛𝑗|
(𝑧2 − 𝑧𝑗) +

1

|𝑛𝑗−𝑛4|
(𝑧𝑗 − 𝑧4)).  (12) 
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4. NUMERICAL PROCEDURE 
 

4.1 Gradient-based algorithm 
The optimization procedure proposed was implemented with a MATLAB® version of the Method of Moving 

Asymptotes (MMA), developed by Svanberg (1987). A simple program interface was written for reading and writing 

the relevant data from files used in both FEM software and MMA optimizer, and to calculate numerically the objective 

and constraint function sensitivities. It was defined an iterative procedure following the steps: i) input initial design 

values; ii) enter the optimization loop. It calls the FEM program (after writing the current iteration values of design 

variables to a file) to run a modal analysis in batch mode and return to optimization procedure the eigenvalues and 

eigenvectors; iii) calculate the sensitivities in the interface module and send these information to MMA; iv) if attended 

the stopping criteria, stop the optimization and plot the optimized design. Otherwise, repeat from (ii). 

 

4.2 Initial design 
A design point referent to a totally flat plate infers to numerical instabilities in the sensitivities calculation (Leiva, 

2003). This problem occurs due to the symmetry of the geometry in Z-direction, since a node movement in negative 

or positive sense leads to the same values on derivatives of the objective function. In order to overcome this problem, 

it is suggested a slight initial deformation of the plate proportional to the shape of the mode to be optimized (values 

lower than 1mm). This problem can be better understood by observing the distribution of the sensitivities over the 

plate in Figure 6. Note that, for a flat initial design, there is not a defined pattern on the distribution of the sensitivities, 

while using a slight initial perturbation the results obtained are more comprehensive. For the sake of simplicity, this 

test is performed in the absence of the compressor in the model.  

 

 

Initial design: flat plate 

 

Zero initial 

deformation 

 

Calculated 

derivatives of 

objective 

function 

                               (a) 

Initial design: proportional to a mode shape 

 

Slight initial 

deformation 

based on a 

mode shape 

(graphically 

amplified) 

 

Calculated 

derivatives of 

objective 

function 

                               (b) 

Figure 6: Sensitivities distribution. 
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6,0 
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However, it can be seen some instabilities in regions near boundary conditions, probably caused by numerical 

truncation on very low derivative values. This problem, which can disturb the optimization process, is solved by 

applying a sensitivity filter. 

 

4.3 Sensitivity filter 
In order to avoid abrupt variation on the objective function derivatives along the design domain, this work suggests 

the use of a methodology presented by Bendsøe and Sigmund (2003), in which a filter is applied to obtain a weighted 

local average of the derivative values. Here, this filter is adapted  and defined as 

 

                                                                     
∂𝑓(𝒛)

∂𝑧𝑗

̅̅ ̅̅ ̅̅
=

1

∑ 𝐻𝑖

𝑁𝑓𝑖𝑙𝑡
𝑖=1

∑ 𝐻𝑖
∂𝑓(𝒛)

∂𝑧𝑗

𝑁𝑓𝑖𝑙𝑡

𝑖=1
.  (13) 

 

where 𝑁𝑓𝑖𝑙𝑡  is the number of 𝑖 nodes inside a defined search radius 𝑟𝑚𝑖𝑛  , and 𝐻𝑖 = 𝑟𝑚𝑖𝑛 −  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑗, 𝑖). After 

numerical tests, this filter is used in this work with 𝑟𝑚𝑖𝑛 = 10𝑚𝑚. This procedure is performed to each design variable 

(node position), for all iterations, based on a matrix obtained in the beginning of the whole process (with all nodes and 

its neighborhood).  

The same sensitivity distribution shown in Figure 6b, without filter, is presented in Figure 7, with application of 

Equation 13 using 𝑟𝑚𝑖𝑛 = 10𝑚𝑚. All major instabilities were removed with this procedure. 

 

 
 

Figure 7: Filtered sensitivities distribution. 

 

5. RESULTS 
 
The procedure described in the sections above is applied for the simplified model presented in Figure 4. After 

numerical tests, the value chosen for the constraint limit is 100,1% of its initial value, in order to prevent a large 

distortion of the plate. The bounds for the design variables are defined as 𝑧𝑙𝑜𝑤𝑒𝑟 = −10𝑚𝑚  and 𝑧𝑢𝑝𝑝𝑒𝑟 = 10𝑚𝑚. 

Furthermore, a sensitivity filter with 𝑟𝑚𝑖𝑛 = 10𝑚𝑚 is applied. The 3th mode is used to create the initial deformation. 

The variation of the first five natural frequencies along the optimization procedure can be seen in Figure 8. 

 
 

Figure 8: Natural frequencies of the model along the optimization procedure. 
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After 20 iterations, the optimization procedures reaches the objective of tuning the 3th mode to 75Hz, without violation 

of the constraint function. An interesting observation to be pointed is that there are no significant changes in the values 

of others eigenvalues. The final shape with an amplified scale can be seen in Figure 9, while the mesh with real 

deformation is presented in Figure 10. One can see that a little variation on the shape of the base-plate is sufficient to 

rearrange its initial modes. 

 

 

 
 

 

Figure 9: Final design of the base-plate (amplified scale). 

 

 

 
Figure 10: Final design of the base-plate. 

 

In this work, the same mode used in tuning was used as a profile to the initial deformation. However, other modes 

could be used, leading to possibly different final designs (this problem has, probably, multiple local minima). Finally, 

to verify the quality of solid finite element mesh of the resulting design, the same case was performed with shell 

elements, indicating no significant differences on the values of natural frequencies.  

Sound Power Level of vibrating structures are directly related to its spatial mean square velocity (Fahy, 2001). This 

measure, for an unitary force applied on mass element, is obtained by harmonic analysis with damping factor 0,03%, 

and it is graphically presented in Figure 11. A good behavior for 50 and 100Hz can be observed. 

 

 
 

Figure 11: Mean square velocity of the plate: original vs. optimized. 

1,E-11

1,E-10

1,E-09

1,E-08

1,E-07

1,E-06

1,E-05

1,E-04

1,E-03

1,E-02

0 50 100 150 200 250 300 350 400 450 500

M
ea

n
 S

q
u

a
re

 V
el

o
ci

ty
[(

m
m

/s
)²

]

Frequency [Hz]

Placa Plana

Placa Otimizada

3,0mm 

 

 
-1,5mm 

Original 

Optimized 



 

 2312, Page 10 
 

15th International Refrigeration and Air Conditioning Conference at Purdue, July 14-17, 2014 

 

6. CONCLUSIONS 

 
Structural shape optimization has proven to be an excellent tool in design of new components. The great advantage of 

methods based on the movement of nodes is the possibility of creating unconventional geometries, hardly obtained by 

traditional parametric methods. The application of this method, however, is not a simple task, and varies depending 

on the problem studied. In this work, the dynamic behavior of a support base-plate was changed by tuning the 3rd 

mode of the structure, in order to guarantee that the fundamental frequency and the first harmonic of excitation do not 

cause excessive vibration on the system. The obtained results show that the procedure leads to a new shape that ensures 

the desired dynamic characteristics for the support plate. A more realistic model can be used for more accurate results, 

and an experimental validation is recommended.  

 

NOMENCLATURE 

 
FE finite element  

𝑲 stiffness matrix   

𝑴 mass matrix  

𝚽 eigenvector  

𝜆 eigenvalue  

𝑧 perturbation on Z-direction  

𝑡ℎ𝑘 thickness  

𝐿 element edge  

𝑛 node position  

𝑪 constitutive matrix  

𝑩 matrix of shape functions derivatives  

𝑱 Jacobian  

MMA Method of Moving Asymptotes  

𝑟𝑚𝑖𝑛  filter radius  
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