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ABSTRACT 

 

Traditional vapor compression cooling refrigerants are considered to have high global-warming-potential (GWP), 

which face more and more legislation pressure nowadays. As an alternative option other than using low GWP 

refrigerants and natural refrigerants, solid-state cooling technologies show their advantages of zero GWP, and 

therefore recently attract more attentions. Apart from those well-studied solid-state cooling technologies, such as 

thermoelectric cooling, thermoacoustic cooling and magnetic cooling, thermoelastic cooling, a.k.a. elastocaloric 

cooling, is still under development and shows potential of better thermal performance compared with its 

competitors. In fact, from material perspective, it was estimated by literatures that the COPs for elastocaloric 

materials are 20% - 120% higher than other solid-state cooling materials under the same operating conditions. This 

study introduces the thermoelastic cooling concept at the beginning, and then demonstrates one method to operate 

the compression thermoelastic cooling cycle for air-conditioning application based on the reverse Martensitic phase 

transition principle. A dynamic model is developed to measure the temperature within the cycle under cyclic 

operation mode. The cyclic operation is a reversed Brayton cycle consisting of an adiabatic Martensite-Austenite 

phase transition process, a constant strain heat transfer process between the solid-state refrigerant and the heat 

sink/source, and a heat recovery process aiming to improve the overall performance. The model uses experimental 

curve-fitted data to predict the work required to drive the cycle. Based on the model, cooling COP of 4 is achievable 

under a 10K temperature lift case. 

 

1. INTRODUCTION 

Traditional refrigerants used for vapor compression cooling systems with large global warming potential are facing 

more and more legislation pressures nowadays. Solid-state cooling technologies, including magnetic cooling, 

thermoacoustic cooling, and thermoelectric cooling are considered as possible alternatives for vapor compression 

cooling systems. Recently, thermoelastic cooling (a.k.a. elastocaloric cooling) have been proposed as a new solid-

state cooling technology (Cui et al., 2012) with potential performance improvements to state-of-the-art vapor 

compression cooling systems. In fact, from a material perspective, thermoelastic cooling is even much better than 

magnetic cooling since the temperature span is large enough so that a single stage heat pump cycle is enough, rather 

than complicated cascade cycle widely used in magnetic cooling field.  
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The thermoelastic effect is associated with the Martensitic phase change process for the so-called shape memory 

alloys (SMAs). Figure 1 is an illustration of the stress induced Martensitic phase change process and how it is 

compared to the liquid-vapor phase change process. Figure 1 (c) shows a condensation process (below critical point) 

induced by pressure difference, during which vapor becomes liquid if the applied system pressure (vapor pressure) is 

higher than the saturated pressure at the system temperature. During the adiabatic condensation process, the liquid 

temperature increases due to the released latent heat. Similarly in Figure (a), there are two solid phases 

corresponding to two different crystals. Austenite becomes Martensite when subjected to a system stress higher than 

the “saturation stress” corresponding to the current system temperature. The released latent heat heats up the solid 

itself during the adiabatic phase change process. The reversed process is shown in Figure 1 (b), when the applied 

system stress is less than the “saturation stress”. For example, when the force is released, the Martensite transforms 

to Austenite and absorbs latent heat from itself by reducing the temperature. This stress induced temperature drop is 

the thermoelastic cooling effect. The most widely used SMAs with significant thermoelastic cooling effect are NiTi 

alloy, CuZnAl alloy (Bonnot et al., 2008), and CuAlNi alloy (Picornell et al., 2004).  

This paper introduces how to achieve continuous cooling from this thermoelastic cooling effect by demonstration of 

a reversed Brayton cycle design first. The performance of the studied thermoelastic cooling system is investigated 

by a dynamic model developed in this study. 

 

Austenite

(σsat < σsys)

Martensite

(σsat < σsys)  

Austenite

(σsat > σsys)

Martensite

(σsat > σsys)  

(a) Stress induced phase change releasing latent heat 

(σsat < σsys) 

(b) Releasing stress leads to reversed phase change 

and absorbing latent heat (σsat > σsys) 

Vapor

(Psat < Psys)

Liquid

(Psat < Psys)

Pressure 

induced 

condensation

 

Vapor

(Psat > Psys)

Liquid

(Psat > Psys)

Pressure 

induced 

boiling

 

(c) Pressure induced condensation releasing latent 

heat (Psat < Psys) 

(d) Pressure induced boiling absorbing latent heat 

(Psat > Psys) 

Figure 1: Illustration of stress induced Martensitic phase transformation process, a.k.a. elastocaloric or 

thermoelastic effect in a SMA material and comparison to adiabatic liquid/vapor phase change. 

 

2. THERMOELASTIC COOLING CYCLE DESCRIPTION 

 

Following the tradition of thermodynamic analysis, a reversible thermoelastic cooling cycle is plotted on a T-S 

diagram and a stress-strain (σ-ε) diagram to demonstrate its working principle, as shown in Figure 2. Given the 

context of vapor compression cycle, a σ-ε is similar to the pressure-specific volume diagram, since stress has the 
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same unit with pressure and both diagrams are used to analyze works associated with the specific thermodynamic 

cycle. The ideal reversible cycle plotted in Figure 2 is a reversed Brayton cycle, which consists of two isentropic 

processes and two iso-stress (isobaric) processes. It starts from state at unstressed state 1. The loading process 

(11’2) is isentropic from Austenite to Martensite phase, since applied system stress is greater than the 

“saturation stress” (σsat < σsys). Process 11’ is a single phase loading while the stress inside crystal is still less than 

the “saturation stress” at that temperature T1. Phase change is undergoing from 1’2, and the stress increasing is 

due to “saturation stress” increasing caused by temperature rising from 12 on the T-S diagram. The SMA is then 

cooled down (23) approaching the heat sink’s temperature at Th (ambient for a cooling cycle) while still loaded. 

Before fully unstressed, the SMA is further cooled down to state 4 via the heat recovery process, by changing the 

sensible heat from the current SMA to another set of SMA at state 6. Process 44’5 is the reversed isentropic 

phase change process when the stress is released, since the “saturation stress” is now greater than system stress 

(σsat > σsys). Again 44’ is the single phase unloading process, and 4’5 is corresponding to the reversed phase 

change process. The SMA’s cooling power is then taken away from 56 approaching the heat source’s temperature 

Tc (conditioned space temperature for a cooling cycle). While unstressed, the heat recovery process 61 finishes the 

whole cycle. 
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Figure 2: Illustration of reversed Brayton cycle and its variation as a thermoelastic cooling cycle. 
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Figure 3: Schematic of the specific thermoelastic cooling system heat transfer fluid loop used for the numerical 

model. 

The above Brayton cycle design could be achieved by the schematic in Figure 3. Here, water is used as the heat 

transfer fluid to achieve cooling SMA (23 in Figure 2), heating SMA (56) and internal heat recovery (34 and 

61), as indicated by different colors in the schematic. There are two SMA beds, a heat sink Th to reject heat, and a 
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heat source Tc to absorb heat from conditioned space. The corresponding loops are only active when they are needed. 

For example, the left side heat dumping loop (orange loop) consists of V1, V3 and Pump1, and they are turned on 

when Bed 1 needs to be cooled to Th (process 23 in Figure 2), and is not active during the rest of the cycle. A 

detailed valves and pumps sequence is specified in Table 1. Since the valves and pumps are switched periodically 

between cycles, we call the designed thermoelastic cooling system operating under cyclic operation mode.  

 

Table 1: Valves and pumps sequence of the specific thermoelastic cooling system model. 

Process in 

Figure 2 

12 23 34 45 56 61 

V1 X O X X X X 

V2 X X X X O X 

V3 X O X X X X 

V4 X X X X O X 

V5 X X X X O X 

V6 X O X X X X 

V7 X X X X O X 

V8 X O X X X X 

HRV X X O X X O 

Pump1 X O X X O X 

Pump2 X O X X O X 

Pump3 X X O X X O 

Note: “X” is close/off, “O” is open/on. 

 

3. MODEL DEVELOPMENT 

 

A dynamic model is developed to evaluate the specified thermoelastic cooling system performance according to 

schematic in Figure 3. We use a specific NiTi alloy tube (nitinol tube) as the material for SMA beds, and the basic 

properties needed for the model are listed in Table 2.  

 

Table 2: Physical properties and loading/unloading parameters of NiTi alloy nitinol. (*) 

Refrigerant alloy  NiTi 

Density (kg/m3) 6400-6500 (6500) 

Specific heat (J/kg∙K) 470-620 (550) 

Conductivity (W/m∙K) 8.6-18 (18) 

Entropy change ∆s (J/kg∙K) 42 

∆Tad (K) 22.9 (measured at 300 K) 

Transformation temperature (°C) -200 –200 

Uniaxial loading work w+ (J/g) 3.94 (Compressive) 

Uniaxial unloading work w-  (J/g) 2.92 (Compressive) 

Net work with recovery (J/g) 1.02 (Compressive) 

Data source 
Cui et al., 2012, Smith et al., 1993, 

Otsuka and Wayman 1998 

* The numbers in bracket are specific numbers used for all calculation in this study. 

 

Here are several assumptions of the model: 
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• Martensitic phase transformation time scale and loading time scale is negligible compared with heat 

transfer time scale. 

• Radial heat transfer time scale is negligible compared with axial direction, Biδ < 0.01 

• Uniaxial loading and uniform phase transformation 

• Constant thermophysical properties within the small temperature range of interest 

• Incompressible flow and uniform velocity profile at any cross section inside the nitinol tube 

• Uniform fluid temperature profile at any cross section inside the nitinol tube 

• No heat transfer from nitinol tubes to surrounding 

The core part of this model is the SMA bed, or the nitinol tube. The temperature at any time of the solid nitinol tube, 

and the water inside it are predicted by the energy equation in Eq. (1) and (2). Eq. (1) shows the energy equation for 

solid, which consists of conduction term, convection interaction with water term, and generation term. The third 

term, i.e. generation term becomes zero if there is no phase change, is positive if we have Austenite to Martensite 

phase change, and is negative if we have Martensite to Austenite phase change, as described in Eq. (3).  
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Note that since we assume that the phase transition time scale is small enough to be ignored, a quasi-steady state 

phase change approximation to be reasonable. In other words, the phase fraction change rate is simplified to a 

constant during the loading/unloading process. 

The heat source and sink are modeled as lump systems according to Eq. (4), similar to a water tank without 

considering stratification. Since we assume incompressible water, there is no mass accumulation/reduction inside 

heat source or sink. The second term on the right hand side indicates the heater’s capacity for heat source, or 

cooler’s capacity for heat sink. In reality, it should be the heat exchanger capacity between the water to the air 

(ambient/conditioned space). 
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c
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    (4) 

The rest of the system are pipes. Multi-nodes model is used rather than single node to capture the transient 

temperature change more precisely, especially when the time scale becomes smaller under some operating 

conditions, as shown in Eq. (5-6). The thermal mass factor κ in Eq. (6) is to take account of pipe wall dead thermal 

mass, which is a “resistance” or a loss to the cooling power delivery. 
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The system cooling capacity is evaluated based on the heat source’s time averaged capacity during the cycle. COP is 

then evaluated based on capacity and work required to finish a cycle. 85% mechanical efficiency is assumed here in 

Eq. (8). 

 

4. RESULTS AND DISCUSSION 

 

 

Figure 4: Temperature profiles of two SMA beds during the cyclic steady state data sampling period. 

 

 

Figure 5: Demonstration of temperature profiles of heat source and heat sink (dashed lines are set points). 

 

Figure 4 demonstrates the temperature profiles of two NiTi tube beds over four cooling cycles during the “cyclic 

steady state” period. The “cyclci steady state” refers to the period during which the two beds’ temperature curves 

shape do not change between cycles. The temperature curves follow exactly the same cycle plotted on the T-S 

diagram in Figure 2. The almost vertical temperature jump/drop is due to the Martensitic phase change process 

(process 12 or 45 in Figure 2). The exponential alike curve afterwards is the heat absorbing/rejection process 

(23 or 56). The second exponential alike curve after the NiTi bed approaches temperatures of heat source/sink 

is the heat recovery process (34 or 61). Figure 5 shows the temperature profiles of heat sink Th and heat source 

Tc, respectively. The two dashed lines are setpoints for these two heat exchangers, controlled by two imaginary PID 

controllers. The corresponding temperature lift is 10K in this case. One important finding here is that the warming 

Heat sink Th 

Heat source Tc 
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up process is fast, which is less than 3 minutes. It takes around 1000 seconds to reach “cyclic steady state” in this 

specific case. 

Figure 6 shows the capacity profile of heat sink and heat source. Here, the two dashed lines are the time averaged 

capacities sampled during the “cyclic steady state” period. In this scenario, the cooling capacity is 65 W. 

 

 

Figure 6: Heat source and heat sink capacity variation with time (dashed lines are time averaged capacity sampled 

during the cyclic steady state period). 

 

 

Figure 7: Cooling capacity as a function of half cycle duration. 

To understand how the system performance varies, we plot the cooling capacity and COP as a function of cycle 

duration, as shown in Figure 7 and 8 respectively. Figure 7 indicates that an optimum cycle duration exists for 

cooling capacity, but is not a constant when the heat recovery flow velocity changes. This trade off is easy to 

understand, since a longer cycle duration generates more cooling capacity per cycle due to a more effective heat 

trasnfer, but loses capacity when cycling slower. The second message is not that clear. By comparing four different 

curves with different heat recovery heat transfer fluid velocity over NiTi bed, the maximum capacity is higher than 

other three cases when the heat recovery flow velocity is 0.2 m/s. This flow rate wise optimum is due to the fact that 

the cooling capacity is also strongly dependent on the heat recovery efficiency Previous study indicated that heat 

recovery efficiency favors slower heat recovery flow velocity uHR since it’s more reversible. However, a slower uHR 

requires more time for heat recovery, and limits the available time for heat transfer and heat transfer effectiveness. 

As a result, heat transfer is the limiting factor for short cycle duration cases, where a higher heat recovery flow rate 

leads to better performance. On the other hand, heat recovery is the limiting factor for longer cycle duration cases, 



 

 2244, Page 8 

 

15th International Refrigeration and Air Conditioning Conference at Purdue, July 14-17, 2014 

where a slower heat recovery flow rate results in better performance. From COP point of view, a more effective heat 

transfer and a more reversible heat recovery always help to increase COP. That’s the interpretation of Figure 8, that 

COP favors longer cycle duration.  

 

 

Figure 8: COP as a function of half cycle duration. 

 

5. CONCLUSIONS 

 

This paper introduces the new cooling concept – thermoelastic cooling, by demonstrating one way to take advantage 

of the thermoelastic effect and how to design a thermoelastic cooling system based on Brayton cycle operating 

principle. A dynamic model is developed to quantitatively understand the performance of the designed system and 

make predictions for future studies. The predicted temperature profiles and capacities curves from the dynamic 

model look physically reasonable. A simple parametric study is conducted to study the role of cycle frequency on 

the COP and cooling capacity. It is found that an optimum cycle duration and heat recovery flow rate exist for 

cooling capacity, while COP favors longer cycle duration and smaller heat recovery flow rate when the cycle 

duration is appropriate. Based on the model, COP of 4 could be achieved at a 10 K water-water system temperature 

lift.  

 

NOMENCLATURE 

 

Symbols    

Bi Biot number (-) 

COP Coefficient of performance (-)  

cp Specific heat (J∙kg-1∙K-1) 

D Diameter (m)  

ε Strain (-)  

GWP Global warming potential   

g''' Generation term (W/m3)  

HR Heat recovery (regeneration)   

∆H Latent heat (J∙kg-1)  

h Heat transfer coefficient (W∙m-2∙K-1)  

k  Thermal conductivity (W∙m-1∙K-1) 

L Length (m)  
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m Mass (kg)  

ṁ Mass flow rate (kg∙s-1) 

Q̇ Capacity (W)  

S Entropy (J∙kg-1∙K-1)  

SMA Shape memory alloy   

T Temperature (°C)  

t Time (sec)  

u Fluid velocity (m·s-1)  

w Specific work (J·g-1)  

Ẇ Work rate (W)  

α Thermal diffusivity (m2·s-1)  

σ  Stress (MPa) 

κ  Thermal mass factor (-)  

ρ Density (kg·m-3)  

ξ Martensite phase fraction (-) 

Subscript 

ad adiabatic  

cyc cycle  

f fluid  

HT heat transfer  

mech mechanical 

mot motor  

rec recovery  

S solid  

+ loading  

-  unloading 
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