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ABSTRACT 

At high ambient temperature, the air cooled HX capacity can be boosted by using evaporation of a water film 

applied directly on the heat exchanger surface in deluge, spray, or mist cooling mode. In order to accurately 

determine evaporatively cooled HX capacity, it is critical to know the portion of fin area wetted. However, 

wetting inherently is a highly non-uniform phenomenon dependent on the method of application, evaporation 

rate and air velocity. Furthermore, for typical optimized air cooled HXs the fin geometry is often complex and 

spacing narrow. This study presents a novel method to quantify HX wetted fin area through enhanced 

visualization in HX depth and sectional flow rate measurement. Flow maps for deluge and front spray cooling 

are presented at varying inlet air velocities and wetting water flow rates. This study confirms that a significant 

portion of HX remains dry which contributes to low experimentally obtained HX heat transfer rates, irrespective 

of wetting method even under moderate to high wetting water flow rates. Furthermore, it highlights the need for 

developing HX wetting technologies that ensure uniform wetting at lowest wetting flow rates.   

 1. INTRODUCTION 

Evaporative cooling is typically utilized to enhance air-cooled heat exchanger (HX) capacity especially 

during hottest portion of year. Water may be deluged onto the HX or sprayed in direction of air inlet on HX face 

area. Although there is no dearth of experimental data, the mechanisms involved are not well understood. This 

may result in over spraying of HXs in an effort to ensure uniform wetting, which may cause bridging between 

fins and consequent increase in fan energy consumption may outweigh benefits of evaporative cooling.  

One of the challenges in understanding capacity enhancement of evaporatively cooled HXs lies in the 

difficulty associated with visualization of wetting water distribution in HX depth. With the amount of surface 

area of the HX wetted often unknown, one cannot understand the reason for varying capacities of HXs as air and 

spray flow rates or operating fluid temperatures vary. Due to difficulties in air-side visualization of compact 

HXs, these issues have not been sufficiently addressed in published literature.  

The objective of current study is to quantify HX wetted fin area through 1) enhanced visualization in HX 

depth and, 2) sectional flow rate measurement for a six-tube bank deep wavy-fin HX. It is expected that this 

would help understand following questions: 

1) How HX wetted area is affected by air and spray flow rates? 

2) Does 100% wetting ensure maximum theoretical capacity?  

3) What other factors may be contributing towards achieving maximum enhancement? 

4) What is the best water distribution method and why? 

The test setup used for conducting visualization experiments was constructed as per ASHRAE Standard 41.2 

(1987) and details of test setup, and measurement data, are summarized in Popli et al. (2012, 2014) 

mailto:yhhwang@umd.edu
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2. VISUALIZATION CHALLENGES 

Once installed in test section HX can be viewed in one of following directions/view angles (Figure 1): 

1) Front view (In the direction of air inlet) 

2) Back view (Air outlet) 

3) Side view (Due to side frame plate, wetted area is not visible) 

4) Bottom side view (Underneath the HX) 

  

(a) (b) 

  

(c) (d) 

Figure 1: Conventional visualization; (a, b) front/back view, (c) side view, (d) bottom side view. 

 

The following challenges limit the application of typically utilized visualization view angles: 

1) Deeper coils 

Conventional methods work well for HXs one or two bank deep. However for visualizing of wetting on 

HXs such as the one being tested in the current work (Figure 1 c) i.e. six-bank deep in the direction of air 

inlet alternate visualization methods are required.  

2) Effect on air flow 

In addition to issues related to accessing the centre portion of HX, there is also a concern that air flow 

would be affected due to the camera placed in front of HX which may lead to reduced air velocity on the 

portion of HX being viewed thereby giving a false impression of how wetting actually occurs 

3) Tight fin spacing  

Due to hybrid wet dry operation the coils are optimized for dry cooling operation which leads to tight fin 

spacing (2 to 3 mm). This tight fin spacing further complicates visualization.  

4) Fin geometry 

Complex fin geometry such as wavy and louver, contributes further in reducing visual access to deeper 

portions of coil when viewed from front or back side of HX. 

 

Looking underneath the HX from a side view helps understand the depth of wetting at the outlet of HX. But 

gives no information of wetted profile inside HX especially as a function of air velocity. 

Dry surface Wet surface 

? 
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3. NOVEL VISUALIZATION STRATEGY  

A novel visualization strategy was implemented, as described in this Section. In addition a partitioned tray 

was also installed underneath HX to collect and separately measure wetting water falling from different 

sections.  

 

3.1 Removal of bottom air flow guide plate 

Typical HX installation configuration in the air duct is shown in Figure 2 (a) and (b) with bottom and side 

frame of HX marked, and Figure 3 shows bottom frame removed. 

 

  

(a) (b) 

Figure 2: Typical HX installation in air duct with (a) bottom and (b) side support frame of HX. 

 
 

  

Figure 3: HX installed with bottom frame removed. 

 

3.2 Design, Construct and Install Partitioned Water Collection Tray 

A partitioned collection tray design concept in modified test setup is shown in Figure 4. The idea was to 

collect wetting water coming out of different HX tube banks. Ideally six partitions would be required but due to 

small distance between tube banks collection tray was designed to have three partitions, i.e. two banks per 

partition. Each section of tray would be connected to Coriolis mass flow meter to record respective water flow 

rates. It must be noted that this mass flow meter is in addition to the one already installed in the test setup which 

records the wetting water flow rate at spray/deluge inlet to HX. Therefore the difference of two readings would 

provide amount of water evaporated in each experiment. After the flow meter at HX outlet the water returns to 

the bucket from where it is pumped back to the inlet to complete the wetting water loop cycle. 

Bottom Frame  Side Frame 

Side Support 

Frame 

Bottom Frame Removed 
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Figure 4: Partitioned collection tray design concept in modified test setup. 

 

Figure 5 shows the partitioned collection tray placed underneath HX with each partition sealed to prevent air 

bypass between HX fins and flexible seal, and setup ready for visualization measurements. 

 

(a) (b) 

Figure 5: Partitioned collection tray placed underneath HX with each partition sealed to prevent air 

bypass between HX fins and flexible seal, (b) test setup ready for visualization measurements. 

 

Seal 

Air Inlet 
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3.3 Borescope Assisted Visualization  

A novel method of visualization was employed to gain access to deeper sections of the HX and is described 

in this Section. HX coil manufacturing process involves expanding copper tubes laid through the fins in a 

specific circuitry. However often the holes meant for tubes are left empty deliberately either because of the type 

of circuitry or as holes meant for support tubes for high width HXs (which prevents sagging in the centre of the 

coil). These holes are not visible due to the side plate. However, drilling holes through the side plate gives 

access to these holes (Figure 6c) which run throughout HX width i.e. through each fin. For the HX tested in 

current study, there were 6 holes each in 1
st
, 3

rd
 and 5

th
 tube bank. 17 out of these 18 holes were utilized for this 

study. The even numbered tube banks did not have any holes, so each visualization sub-case was repeated with 

the HX rotated such that odd numbered tube banks with the view-points became even numbered tube banks. 

Due to symmetry of HX nothing else changes when HX is rotated except the inlet and outlets ports are reversed. 

Therefore, 34 view-points are created and borescope inserted through each as shown in Figure 6.  Deluge, and 

spray cooling tests were then repeated at representative wetting water flow rates and HX frontal air velocities to 

create a wetting profile for each case. In addition water collected in each section of bottom tray is reported as 

%mass of total wetting water flow rate. 

 

 

(a) 

 

 

(b) (c) 

Figure 6: (a) Borescope inserted into HX through view point;  

                                             (b) and (c) view-points for visualization. 



2143, Page 6 

 

 

 

 

15
th

 International Refrigeration and Air Conditioning Conference at Purdue, July 14-17, 2014 

 

4. RESULTS AND DISCUSSION 

HX was divided into 6 times 20 grid and each grid was assigned wet or dry based on wetting observed through 

34 viewpoints. Figure 7 presents the flow map for deluge cooling at wetting water flow rate 166, 80 and 15 g/s.  

 
(a) 

 
(b) 

 
(c)  

Figure 7: Flow map for deluge cooling at wetting water flow rate of (a) 166 g/s; (b) 80 g/s; (c) 15 g/s. 
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Figure 8 presents the flow map for spray cooling at wetting water flow rate 8 and 3.8 g/s. Table 1 shows 

percentage mass fraction of wetting water in different tray sections and percentage wetted fin area, and HX 

capacity for deluge and spray cooling at 2.5 m/s air velocity.  

 
(a) 

 
(b) 

Figure 8: Wetting profile for front spray cooling flow rate (a) 8 g/s; (b) 3.8 g/s. 

 

Table 1: Percentage mass fraction of wetting water in different tray sections and percentage wetted fin 

area, and HX capacity for deluge and spray cooling at 2.5 m/s air velocity 

Case 
Tray Section # Wetted Fin Area 

(%) 

HX Capacity
1
 

(kW) 1 2 3 

Spray 3.8 g/s 72 0 0 13 9.9 

Spray 8 g/s 85 0 0 35 10.2 

Deluge 15 g/s 85 12 0 45 9.4 

Deluge 80 g/s 51 29 19 79 14.5 

Deluge 166 g/s 74 24 0 83 16.9 

     Note: 
1 
measurement uncertainty ±0.25 kW 
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The following observations were made in regard to deluge and spray cooling:  

Deluge cooling 

 Conclusive proof of wetting in HX depth, up to 5
th

 tube bank is wetted at higher flow rates.  

 Increasing air flow rate increased % mass of water in partitioned collection tray sections #2 and 3, 

however it is not completely in line with the flow map obtained. This is due to inclination of HX with 

vertical due to which a significant portion of water ends up in section #1 although wetting profile 

shows much more water in tube bank 3 and 4. This further highlights additional information which 

proposed visualization setup provides compared to viewing HX from front or side view only.  

 Approximately 45 to 83% of HX is wetted overall depending on deluge flow rate 

 The study also highlighted a drawback of deluge cooling overflow distributors which are responsible 

for causing mal-distribution of wetting water over HX width.  While a constant and evenly distributed 

water flows through the centre portion of HX, the distribution towards the end was found to be uneven.  

Spray Cooling 

 Enhanced visualization method clearly shows that a significant portion (up to 87%) of HX remained 

dry when front spray cooling was applied to evaporatively enhance HX capacity 

 Even when spray rate is increased to 8 g/s deeper tube banks 5 and 6 are not wetted. Thus, increasing 

the flow rate or adding more nozzles in front of HX would not be as beneficial since tube 1 and 2 only 

are wetted. It must be note that due to direction of airflow having a spray nozzle on back side of HX 

may not be helpful  

 Wetting profile was found to be parabolic in shape and closely follows the shape of spray pattern on 

HX face. Non-uniformity of spray pattern is visible through boroscope inserted at different depths in 

HX width. 

It is interesting to observe that with approximately 13% wetted fin area front spray cooling achieves a higher 

capacity compared to deluge cooling at 15 g/s which wets approximately 45% of HX fin area. Therefore, wetted 

area alone does not determine HX capacity, spray droplet area to spray volume ratio may also be critical in 

determining capacity enhancement. To further analyse this, HX capacity was plotted as a function of 

evaporation rate for deluge, spray cooling at 2.5 m/s air velocity in Figure 9.  

 

Figure 9: HX capacity as a function of evaporation rate for deluge, spray cooling at 2.5 m/s air velocity. 
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Thus, in addition for the coil to be completely wet sufficient evaporation must occur on HX fin surface to allow 

additional heat transfer due to latent heat removal. Another parameter is the amount of evaporation that ends up 

as useful heat transfer enhancement and is defined as shown in Table 2. 

         

     
 

           

                                                      
 

Table 2: Summary of results 

Case 
Mevap,total Qtotal  Qtotal –Qww, sensible Qdry 

Evaporative 

capacity 

enhancement 

Mevap 

contributing to 

evaporative 

capacity 

enhancement 

         

     
 

g/s kW kW kW kW (g/s) (-) 

Spray 3.8 1.41 9.9 9.9 6.6 3.3 1.46  1 

Spray 8.0 1.64 10.2 10.2 6.6 3.6 1.59 1 

Deluge 15 1.27 9.4 9.4 6.6 2.7 1.23 1 

Deluge 80 4 14.5 13.6 6.6 7.0 3.12 1.28 

Deluge 166 5.5 16.9 16.0 6.6 9.4 4.17 1.31 

 

However, increasing wetting water flow rate alone is not sufficient to enhance the evaporation. For deluge 

cooling at 166 g/s and HX frontal air velocity of 2.5 m/s, approximately 16.9 KW cooling capacity is obtained. 

The corresponding baseline (dry case) value for 2.5 m/s air velocity was 6.58 kW. The additional 10.32 kW 

capacity is due to evaporative cooling and sensible cooling of deluge water. The sensible cooling is measured as 

difference between the inlet and outlet deluge water temperature, and found to be 0.9 kW. Therefore, 9.42 kW 

capacity comes due to evaporation of water on airside of HX tubes. Using the latent heat of water, this would 

require at least 4.17 g/s of deluge water to evaporate. However, the evaporation rate measured was 

approximately 5.5 ± 0.43 g/s. Thus approximately 31% of deluge water ends up not contributing to useful 

evaporative cooling enhancement.  

4. CONCLUSIONS  

A study was conducted to improve air-side visualization for compact HXs with wavy fin pattern and six-tube 

bank deep HX. A novel visualization method was proposed and implemented, which consisted of borescope 

assisted flow mapping of deluge and front spray cooling as a function of air velocities and wetting water flow 

rates. In addition a quantitative method to support visualization results was also implemented for which a 

partitioned tray was utilized to separately record mass flow rate of wetting water flowing at HX bottom outlet.  

Visualization provides useful insight into how the HX capacities enhance as a result of % fin area wetted. 

Deluge cooling achieves maximum 85% wetted fin area. Furthermore, visualization provides a conclusive proof 

that up to 85% of HX volume remained dry when front spray cooling was applied to HX. Increasing the spray 

rate or number of nozzles would not address the issue since tight fin spacing and wavy fin geometry acts as 

droplet arrestor and prevents wetting in HX depth. Thus, the hottest section of HX remains completely dry.  
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NOMENCLATURE 

 
Abbreviations   

HX  Heat exchanger (-) 

HVAC  Heating, ventilation, and air-conditioning (-) 

Parameters   

CEF  Capacity enhancement factor ( ̇ wet/ ̇ dry ) (-) 

PRΔPa  air-side pressure drop penalty ratio (ΔPwet/ΔPdry ) (-) 

Subscripts   

air  air-side (-) 

dry  dry case experiment (-) 

evap  evaporation  (-) 

wet  wet case experiments (-) 

ww  wetting water (-) 
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