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Abstract 
 
            Visualization study of bubble growth with multiple tangential nozzles is investigated in a bubble absorber. 
Bubble behavior is studied with different flowing condition like still, co-current and counter-current flow of water. 
Effect of air flow rate, water flow rate, nozzle diameters, number of nozzles and orientation of nozzle angle with 
reference to vertical plane on bubble diameter is studied. Results are compared with the available information which 
is found to be in good agreement. Bubble diameter during detachment increases with increase in gas flow rate in all 
the above flow conditions. Performance between single and double nozzle also compared and presented in this 
paper. Based on this study non-dimensional correlations are proposed. 
 
1. Introduction 

 
Formation and growth of gas bubbles and their rise due to buoyancy are very important to the hydrodynamics of 
gas-liquid interference study. The phenomenon of bubble formation decides the primitive bubble size in the system 
whereas the rise velocity decides the characteristic contact time between the phases which govern the interfacial 
transport phenomena as well as mixing. The use of bubbling devices, where in bubbles is produced by injecting gas 
through submerged nozzles or orifices occurs in a large number of technical applications like bubble absorber, water 
treatment, metallurgy, and chemical processing plants. Bubble absorber is an important component of vapour 
absorption refrigeration system for heat and mass transfer. Absorption process is one of heat and mass transfer 
process occurs in bubble absorber in which a gas bubble with the liquid to increase heat and mass transfer. Kang et 
al. (2000) carried out analytical investigation of falling film and bubble type absorbers and found that absorption 
rate of the bubble type absorber was found to be always higher than that of the falling film mode. Bubble type 
absorber provides better heat and mass transfer coefficients, also good wettability and mixing between the liquid and 
the vapor. Elperin and Fominyk (2003) studied combined heat and mass transfer mechanisms at all stages of bubble 
growth and rise in a bubble absorber, which can be useful in design calculations of gas–liquid absorbers. A number 
of fluid combinations used in bubble absorber for bubble dynamic as well as   VAR system study, suggested by 
number of investigator. Different combination used for bubble dynamic study like air-water, glycerol-air, methanol-
air, ethanol-air, etc and for VAR system ammonia–water, water-lithium bromide, R134a-DMF, etc.  
 
 A wide range of research have been reported in the literature about bubble formation from a nozzle and the effect of 
orifice diameter, air flow rate and liquid properties, flowing condition on bubble formation, growth and detachment 
have been considered. Bubble dynamic study started with numerical models developed for bubble formation with 
different properties of gas and compared experimentally under constant flow, Ramakrishnan et al. (1969) and under 
constant pressure condition, Satyanaryan et al. (1969).  A simulation and experimental study conducted for single 
and multi orifice to know various effect bubble dynamics for different fluid under constant gas flow conditions by Li 
et al. (2000). Bari and Robinson (2013) proposed the bubble growth and pressure field adiabatically in submerged 
orifice at low gas flow rate by image processing. Bubble formation from single horizontal orifices submerged in 
Newtonian liquids has been investigated for chamber pressure and flow rate which are time dependent by Khurana 
and Kumar (1969). Gaddis and Vogelpohil (1986) developed an equation theoretically to predict the bubble 
detachment diameter in quiescent liquids under constant volumetric gas flow conditions in bubbling regime to 
transition regime with viscosity Wraith (1971) proposed a two stage model for the formation of gas bubbles and 
bubble coalescence between detaching bubble from a plate orifice submerged in an inviscid liquid at high gas 
injection rates. Jamialahmadi et al.  (2001) done experimental and theoretical investigation on bubble formation 
under constant flow conditions for air and variety of solutions. A numerical simulation and experiment study done 
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for bubble formation at submerged orifices under constant inflow conditions with variation of fluid properties, 
Gerlach et al.  (2007). Das et al.  (2011) investigated experimentally and analytically on bubble dynamic as a 
function of gas flow rate for three different submerged orifice sizes at various pool heights.  Effect of nozzle shape 
and operating parameter on bubble formation from vertically downward nozzle study was investigated, Tsuge et al.  
(2006). This study shows the bubble formation and bubble size are influenced by the edge angle of nozzle, inner and 
outer diameters of nozzle and gas flow rate. Experimental and numerical investigations have been carried out by 
Suresh and Mani (2010) by visualing bubble behavior and studying the effect of gas flow rate and liquid 
concentration on bubble characteristics of R134a– DMF solution in a glass absorber. Bubble behavior was studied in 
still and flowing solution. Different measuring techniques were used in many literatures to measure the bubble 
shape, bubble diameter and bubble frequency. Akita and Yoshida (1974) measured bubble size by using 
photographic method for fluid pairs. Single and two phase heat transfer in a vertical flow with tangential injection 
nozzle with heat transfer study done by Guo and Dhir (1989). 
 

 
Figure 1 Schematic diagram for bubble absorber set up. 

 
2. Experimental study 
 
 A Schematic diagram of bubble absorber experimental set up is shown in Fig.1 and a photograph of the experiment 
set up is shown in Fig. 2. The set up consists of bubble absorber, angle measurement device, water tank, water 
pump, air compressor, nozzles with polymer bearing, flow distributor, pressure, temperature and flow measuring 
instruments, and various control valves. Bubble absorber and angle measurement device are made up of acrylic 
(Polymethyl methacrylate). Acrylic tube is used for observing of bubble phenomena in the absorber to enable 
visualization and capture photographs while release from nozzles. A centrifugal pump to supply water to the water 
circuit is connected at bottom and top of the tube to realise co-current and counter-current flow configurations 
respectively, while other end is connected back to tank. A glass tube rotameter, flow control valve and bypass valve 
in water circuit are used to control the flow rate of water. At room temperature water flow rate was varied between 1 
lpm to 3.72 lpm. A two stage reciprocating compressor with storage tank capacity of 220 liters and maximum 
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Figure 2 Photograph of bubble dynamic experimental set up 
 

working pressure of 12.5 bar is used to supply air. Experiments were conducted under constant inlet pressure; which 
was achieved by bypassing a portion of compressor discharge to surrounding. A thermal mass flow controller based 
gas flow meter is used to measure air flow rate before it is admitted to distributer. Distributer is assumed to 
distribute flow equally to nozzles; a non-return valve is fitted to ensure that water does not flow back to gas flow 
meter when no air supply. Bubbles grow at the bottom of absorber tube where air is injected through copper nozzles. 
Standard copper tubes of inner diameter 1.7 mm, 3.2 mm, 4.8 mm are fitted on the periphery of absorber tube to 
inject air. The nozzles are fitted using spherical bearing so that it can be tilted in vertical and horizontal plane to 
study effect of inclination on bubble detachment diameter. Flexible plastic tubes connect distributor outlets to 
nozzles which also allow free movement of nozzles in bearings. Air, after bubbling through the tube passes along 
with water stream in case of co-current flow and is vented out through air vent at the top of absorber tube in case of 
counter-current flow and still water. Pressure and temperature of air are measured at inlet and outlet of the bubble 
absorber by sensors. A camera placed adjacent to transparent absorber tube was used to take still photographs. All 
the measuring instruments are pre-calibrated. Three numbers of copper-constantan thermocouple are used with an 
uncertainty up to ±0.5°C.  Four numbers of piezo-electric type pressure transducers and a pressure gauge are used as 
pressure sensors with a measurement uncertainty up to ±1%. Glass rotameter used to measure the flow rate of water 
with uncertainty up to ±3%. Mass flow controller unit is used to measure the volume flow rate of air with a 
measurement uncertainty of ±2%. 
 
Experiments are started by positioning the nozzles at 0° with reference to horizontal using the nozzle holder. The 
compressor is turned on and discharge valve is kept closed until pressure of 5 bar is reached in the storage tank; then 
air bypass valve and flow control valve is opened to allow air flow thorough the non-return valve to the absorber 
tube. Typical air pressure at the inlet of nozzle was recorded in the range of 1.1 to 1.5 bar atmospheric temperature. 
Water pump is turned on then and a desired co-current, counter-current flow or still water as the case may be; is 
maintained using rotameter and flow control valve. Air flow is always started before water flow to avoid back flow 
of water in air circuit and subsequent damage to air flow meter. For a set nozzle angle; air flow rate is accurately 
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measured and varied between 400-900 ccm, water flow rate varied between 1-3.72 lpm for both co-current and 
counter-current configurations. Then nozzle angle is increased in step of 10° up to 30° and all above variations are 
repeated. All the parameters viz., water inlet and outlet pressure, temperature, water flow rate, gas flow rate, 
pressure and temperature, are monitored using a data acquisition logger unit. Photographs are taken for every 
different set of variables with shutter speed varying from 1/8-1/2500 seconds. A number of photographs are taken to 
capture detachment stage of bubble. Bubble photographs are taken along with reference objects (measured by a 
calibrated scale) inside and beside the bubble absorber, which are in parallel with the absorber. These photos are 
uploaded and zoomed in Adobe Photoshop software version 7.0. Bubble shape either spherical or hemispherical or 
elliptical is divided into number of segments with different radii. Circles are drawn corresponding to respective radii 
and superimposed on the zoomed-in profile of bubble image uploaded in Photoshop software Suresh and Mani 
(2010). 
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The method of estimating bubble diameter is based on the assumption that the bubble is a sphere and the measured 
diameter is volumetric bubble diameter, based on equivalent volume of a sphere. Also the diameter of nozzle in the 
photograph was measured using Photoshop software and compared with its actual bubble diameter. This method 
used as calibration scale to measure the bubble diameter in glass absorber. An uncertainty of 2-3% found in the 
bubble diameter during number of repeated measurements. Errors due to distortion of the bubble surface and 
location are taken into account to estimate the bubble diameter. Image processing techniques have been used to read 
the color value of pixels in the image, to adjust color balance, brightness, contrast and image sharpness of the 
available quality of the bubble images taken account for the accuracy of measurement. 
 

 

 
Figure 3 Stages of bubble growth at different air flow rate with still water 
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Figure 4 Stages of bubble growth at different air flow rate with co-current water 

 
Figure 5 Stages of bubble growth at different air flow rate with counter-current water 
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3. Results and discussion 

 

Figure 6 Effect of gas flow rate on bubble diameter in still water 
 

Experiments with visualization study were carried out
operating parameters, viz. air flow rate from 300
inner diameters (4.8 mm, 3.2 mm and 1.7 mm)
(still, co-current and counter-current), one and two number of nozzle used for bubble diameter during detachment at 
normal pressure and temperature. Fig
still, co-current and counter-current 
Based upon the observations recorded of image at low and continuous gas flow rates, bubble dynamics takes place
bubble growth at the tip of nozzle and detachment from nozzle, then travel to the top due to buoyancy force. 
3-5 show three different stages of bubble growth at three different flow rates (500

 

 Figure 7 Effect of gas flow rate and nozzle diameter on bubble detachment diameter

Figure 6 shows the non-dimensional 
nozzle diameters in still water and single nozzle produces more or less same diameter bubble compare to two 
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Effect of gas flow rate on bubble diameter in still water for single and two nozzle

visualization study were carried out on a bubble absorber system by varying the 
ters, viz. air flow rate from 300 to 1000 ccm, water flow rate from 1 to 3.72 lpm

inner diameters (4.8 mm, 3.2 mm and 1.7 mm), vertical nozzle angle 0° to 30°, three types 
current), one and two number of nozzle used for bubble diameter during detachment at 

Figures 3-5 show the visualization of air-water bubble 
current water flow with different air flow rate at two different

Based upon the observations recorded of image at low and continuous gas flow rates, bubble dynamics takes place
bubble growth at the tip of nozzle and detachment from nozzle, then travel to the top due to buoyancy force. 

of bubble growth at three different flow rates (500, 700, 900 c

 
Effect of gas flow rate and nozzle diameter on bubble detachment diameter in still water

2014) 
 

dimensional bubble diameter (Db*) increases with increasing the air flow rate for different 
and single nozzle produces more or less same diameter bubble compare to two 
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and two nozzles 

on a bubble absorber system by varying the 
low rate from 1 to 3.72 lpm, three nozzle of 

°, three types water flowing condition 
current), one and two number of nozzle used for bubble diameter during detachment at 

 growth at different stage in 
with different air flow rate at two different nozzle angles 0° and 30°. 

Based upon the observations recorded of image at low and continuous gas flow rates, bubble dynamics takes place, 
bubble growth at the tip of nozzle and detachment from nozzle, then travel to the top due to buoyancy force. Figures 

, 700, 900 ccm).  

 

in still water (Panda and Mani, 
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nozzles. Due to frictional loss the pressure of injecting air decrease so it affects t
the bubble diameter comparison between different nozzle diameter for air mass flow rate (Panda and Mani, 2014). 
is seen from Figs. 8 and 9 that the 
tends to increase in co-current  flow and 
decrease in bubble diameter within the tested range of liquid flow rate can be attributed to increased upward force 
acting on bubble surface caused by liquid
current flow exerts force on bubble downwards and 
diameter of bubble. 
 

Figure 8 Comparison between one and two nozzle bubble diameter 

 

Figure 9 Comparison between one and two nozzle bubble diameter 
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Due to frictional loss the pressure of injecting air decrease so it affects the bubble diameter. Figure 7 shows 
the bubble diameter comparison between different nozzle diameter for air mass flow rate (Panda and Mani, 2014). 

 non-dimensional bubble diameter for the same Reynolds number of air (R
current  flow and decrease in counter-current flow with increase in 

decrease in bubble diameter within the tested range of liquid flow rate can be attributed to increased upward force 
face caused by liquid; which tends to detach the bubble earlier. Liquid flowing in 

on bubble downwards and hence delays the detachment which results in 
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he bubble diameter. Figure 7 shows 
the bubble diameter comparison between different nozzle diameter for air mass flow rate (Panda and Mani, 2014). It 

bble diameter for the same Reynolds number of air (Rea) is 
with increase in water flow rate. This 

decrease in bubble diameter within the tested range of liquid flow rate can be attributed to increased upward force 
Liquid flowing in counter-

delays the detachment which results in decreased 
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Figure 10 Comparison between one and two n
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Comparison between one and two nozzle bubble diameter with on 0° and 30° orientation

Figure 11 Comparison between experimental and correlation 
 

Figure 12 Comparison between experimental and correlation 
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with on 0° and 30° orientation in still water 
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Figure 10 shows the effect of nozzle angle on bubble diameter. Though the effect is small, it is observed that 
diameter ratio is smallest for nozzle at 0° angle orientation and it increases with increase in angle. A horizontal 
nozzle resembles to a cross flow situation, which tends bubble to break off earlier from nozzle resulting in smaller 
diameter. As the nozzle angle increase the diameter ratio of bubble increases during detachment.  

 
Three correlations were developed for different flow condition like still, co-current and counter current. Figures 11-
13 show the comparison between experimental results and correlation data, which is in good agreement within range 
of ±20% error. 
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Figure 13 Comparison between experimental and correlation  
4. Conclusions 
 
Bubble dynamic study with visualization have been carried out on a bubble absorber experimentally to know the 
effect of air flow rate, water flow rate, flowing condition, different nozzle diameter, number of nozzles and 
orientation of nozzle angle. Bubble behavior was visualized using photographic and image processing studies. The 
diameter of bubble increase as the air flow rate increase with a constant diameter nozzle. As diameter of nozzle 
increase the bubble diameter also increase. As the number of nozzle increase the bubble diameter also effects. 
Bubble diameter increases more or less similar with two nozzles compared to one nozzle in a particular volume of 
liquid. The orientation of inject nozzle angle also affects the bubble diameter, as the nozzle angle increase the 
bubble diameter increase due to buoyancy effect. A number of correlation developed based on the flowing condition 
which will useful for bubble dynamic study. 
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Nomenclature 
 
 

V Volume of bubble i No of experiments 
Re Reynolds number Subscript 

d Bubble diameter a Air 

D Ratio of bubble diameter to nozzle diameter b Bubble 

θ Nozzle vertical angle w Water 

N No. of nozzle n Nozzle 

lpm Liter per minute Superscript 

ccm  Cubic centimeter per minute * Non-dimensional  

 


