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ABSTRACT 
 

The Hybrid Ground Source Heat Pump (GSHP) system features the combination of ground heat exchanger (GHE) 

and cooling tower for rejecting the cooling load, which enables the use of the renewable resource of geothermal 

energy while reducing the cost of installation for applications of high cooling demand. However, model based 

control for efficient operation of the GSHP system can be intricate due to variations in ambient conditions and 

equipment characteristics, as well as the cost, accuracy and reliability of sensors required. In this study, a nearly 

model-free self-optimizing control strategy is proposed for the efficient operation for GSHP based on the Extremum 

Seeking Control (ESC) scheme. The proposed ESC scheme is based on the feedback of the total power consumption 

of heat pump compressor, cooling tower fan, and water pump of ground loop and the control inputs are cooling 

tower relative flow rate. The heat pump is controlled with an inner-loop proportional-integral (PI) controller to 

regulate the evaporator0 leaving water at 7C. The proposed control strategy is simulated on a Modelica based 

dynamic simulation model. The vertical GHE model is adopted from the Buildings Library developed by Lawrence 

Berkeley National Laboratories (LBNL), for which the transient heat transfer process is implemented with the finite 

volume method inside and outside the borehole. Simulation was conducted for a small office building in Dallas area 

under two scenarios: one is a change in evaporator inlet water temperature (i.e. load change), and the other is a 

change in ambient air condition. The  simulation  results  demonstrated  the  effectiveness  of  the  proposed  ESC  

strategy,  and  the  potential  for  energy  saving  is  also  evaluated. 

 

1. INTRODUCTION 
 

The ground source heat pump (GSHP) technology is a renewable alternative for space conditioning by 

rejecting/absorbing heat to/from the ground, which has demonstrated higher energy efficiency for residential and 

commercial buildings.  After the first oil crisis in 1970s, GSHP systems have thrived in North America and Europe 

for energy saving and environmental protection [1]. It is well known that the GSHP systems can achieve better 

energy performance in specific locations where building heating and cooling loads demonstrate year-around balance 

due to the long-term transient heat transfer in the ground heat exchanger (GHE). However, a lot of commercial 

buildings are cooling-dominated with unbalanced loads, especially those located in warm-climate areas. Under such 

circumstance, much more heat is rejected into the ground than that absorbed from the ground, causing heat 

accumulation in the ground. Such heat accumulation results in increase of the ground temperature and then higher 

temperature of water entering the heat pump and performance degradation of the GSHP system accordingly [2]. This 

problem may be solved by increasing the total capacity of GHE, however, the system capacity is limited by the 

initial cost of construction. Therefore, developing the so-called hybrid GSHP system by utilizing supplemental heat 

rejecters such as cooling tower (as shown in Figure 1) has emerged as a cost-effective alternative.  
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Figure 1: Schematic diagram of typical hybrid GSHP System 

 

There have been extensive studies on the design strategies of the hybrid GSHP systems, as reviewed in Alavy et al. 

[3]. For example, Caneta Research [4] and Kavanaugh and Rafferty [5] presented design approaches for cooling-

dominant buildings that would require longer GHE to meet the total cooling demand rather than the total heating 

demand, and also made the prediction for the capacity of the GSHP systems.  Kavanaugh [6] revised and extended 

these design procedures for cooling tower design in hybrid systems. Chiasson [7] investigated the optimal control 

and operating strategies for the annual thermal load balance in the ground and optimized the ground loop length and 

cooling tower capacity based on simulation. For a heating-dominant building, Ni et al. [8] presented a brute-force 

approach to find the optimal design ratio for a GSHP with a gas boiler as the auxiliary heat source. 

Various simulation-based approaches have also been studied in the simulation and analysis of optimal control and 

operation of hybrid GSHP systems for cooling-dominated applications. Caneta Research [4] indicated the 

advantages of hybrid GSHP systems in warm-climate areas considering initial costs and available surface area 

limitations. Yavuzturk and Spitler [9, 10] investigated the advantages and disadvantages of various control strategies 

for a hybrid GSHP system with a cooling tower under different climatic conditions. A series of operating strategies 

for the cooling tower and various night-time schedules at various times of the year were examined.  Ramamoorthy et 

al. [11] used a system simulation approach to finding the optimal size of a supplemental cooling with a GHP system 

serving a cooling-dominated office building. For a system with both space conditioning and water heating 

requirement, Wrobel [12] presented a parameter estimation scheme for the hybrid GSHP design. Using the physics-

based models of the hybrid GSHP system in TRNSYS, Hackel [13] proposed a simulation based design optimization 

algorithm which minimizes the life-cycle cost for cooling-dominated applications. Man et al. [14] developed an 

hourly simulation model of the hybrid GSHP system with a cooling tower in order to model and analyze the heat 

transfer processes of its main components. Some operational strategies are also investigated for a sample building.  

Most existing methods for control and optimization of hybrid GSHP system operation have been based on 

nominal/empirical models. In practice, due to uncertain changes in cooling load and hard-to-estimate system 

degradation, such models may often be inaccurate. Therefore, real-time setpoint optimization not replying on exact 

system knowledge is more desirable for operations of the hybrid GSHP systems. The Extremum Seeking Control 

(ESC) has recently emerged as a major class of self-optimizing control strategies, in which the gradient estimation is 

carried out by a dither-demodulating scheme. As a dynamic realization of gradient search, ESC can search for the 

optimal input in real time in a nearly model-free fashion [15-17]. ESC has recently drawn significant attention for 

HVAC applications. Li et al. [18] and Li et al. [19] presented ESC schemes for efficient operation of the air-side 

economizer and chilled-water systems, respectively.  

In this study, an ESC based control scheme is proposed to achieve efficient operation of the hybrid GSHP system in 

real time. The ESC scheme is based on the feedback of the total power for the heat pump compressor, the tower fan 

and the water pump, and the control inputs are the tower fan speed and the condensing water flow rate. To evaluate 

the proposed control strategy, a Modelica [20] based dynamic simulation model is developed for a hybrid GSHP 

system in Dymola [21].  The proposed system diagram of ESC working on hybrid GSHP system is illustrated in the 

schematic in Figure 2. 
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Figure 2: Basic system diagram of ESC working on hybrid GSHP system 

 

The remainder of this paper is organized as follows. The dynamic models of GHE are presented first, followed by 

the models of other components of the hybrid GSHP system. The ESC framework and design procedure are briefly 

reviewed. Finally, the simulation study is presented to validate the proposed method.   

 

2. GROUND-LOOP HEAT EXCHANGER MODEL 

 
In practical applications, the heat transfer process in a GHE involves a number of uncertain factors, such as ground 

thermal properties, soil constituents, ground water fraction, and building loads over a long lifespan of several or 

even tens of years. For operation of such systems, the heat transfer process should be treated as transient. In view of 

the complexity of GHE, the associated heat transfer process is analyzed in two separated parts in this study. One is 

the part inside the borehole, including the grout, the U-tube pipes and the circulating fluid inside the pipes. This part 

is analyzed as being steady-state or quasi-steady-state. The other part is the solid soil/rock outside the borehole, 

where the heat conduction must be treated as a transient process. The temperature distribution varies with time and 

distance from the borehole center. The cylindrical source model developed in Modelica Buildings Library version 

1.5 [21] is adopted to determine the fluid temperature, which is circulated in the U-tubes and the heat pump, under 

certain operating conditions. 

 

2.1 Quasi -three-dimensional model 
The heat flows per unit length for two pipes are denoted as q1 and q2, respectively. Assuming the validity of linear 

superposition, the steady-state temperature is deemed as the sum of the temperature resulted from the two heat 

sources. Taking the average temperature of the borehole wall as reference yields the following equations [22, 23]: 

                                                                                     (1a) 

                                                                                     (1b) 

R11 and R22 are the thermal resistances between the two pipes and borehole wall, respectively. R12 is the thermal 

resistance between the two pipes. Tb is the average temperature of the borehole wall. In practice, typical U-tube 

pipes have symmetric structure, therefore 
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 is the thermal resistances between the fluid and outer pipe wall. rpi and 

rp are the inner and outer radius of pipe, respectively. rb is the radius of borehole and D is the half spacing of U-tube 

shanks. h is the convective heat transfer coefficient of the fluid and the inner wall of U-tube, k denotes the thermal 

conductivity of soil/rock around the borehole, while kb and kp are the thermal conductivity of grouting material and 
pipe material, respectively. The difference between the inlet and outlet temperatures of GHE is not large, usually 
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less than 10K, so physical parameters along the pipes (such as specific heat, density, etc.) are approximated 

constant. The heat conduction of the grout and ground in the axial direction is ignored. The heat flow rate can be 

expressed as: 

   
   (      )    (      )

  
     

  
                                                                (3a) 

   
   (      )    (      )

  
     

  
                                                                (3b) 

In this model, the convective heat flow along the fluid channels is balanced by the conductive heat flows among the 

fluid channels and borehole wall. With this hypothesis, the energy equilibrium equation of the fluid in downward 

and upward pipes can be formulated as: 
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The boundary conditions: 

                                                                                                         (5) 

2.2 Cylindrical source model 

The borehole heat exchanger, with vertical length of LBor, is vertically discretized into n elements of height L=LBor⁄n. 

For each segment, the transient conductive heat transfer in the borehole, in the soil and for the far-field boundary 

condition [24]. 
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)                                                              (6) 

where ρ is the mass density, c is the specific heat capacity per unit mass, T (r, t) is the temperature at radius r and 

time t, and k is the thermal conductivity of soil/rock around the borehole. 

The boundary conditions: 
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        for  t  0                                             (7a) 

 (   )       for           (7b) 

where    is the borehole radius. 

3. HYBRID GSHP MODEL 

The dynamic model of hybrid GSHP system is developed with Dymola 2014 [20] and Modelica Buildings Library 

1.5 [21]. For this study, the dynamics of heat pump and cooling tower are much faster than that of GHE, so the static 

state models of heat pump and cooling tower are adopted. The hybrid GSHP system model consists of a 20-borehole 

GHE, a water-to-water heat pump, a counter-flow cooling tower and a plate heat exchanger. A variable-flow water 

pump model is constructed for the GHE water loop, which gives power consumption under different operating 

scenarios. 

3.1 Cooling tower model 

The York cooling tower model Buildings.Fluid.HeatExchangers.CoolingTowers.YorkCalc in the Modelica 

Buildings Library 1.5 [21] is adopted to compute the thermal performance of the cooling tower. This model takes as 

parameters the approach temperature, the range temperature and the inlet air wet bulb temperature at the design 

condition. The water flow rate is used as input to compute the heat transfer with water side of the cooling tower. 
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                                                                                       (8) 

 

where      is the specific heat of water,        is the water mass flow rate at the nominal/designed condition, and 

     is the range temperature, which is defined as the temperature difference between the entering water and exiting 

water for the cooling tower. The nominal fan power is sized to be 1.05% of the design load [25], i.e. 

 

                                                                                     (9) 

 

Based on the York data, the nominal power consumption of the fan is determined by: 

 

                                                                                       (10) 

 

             [W/ (kg/s)] is defined as the fan power divided by the water mass flow rate at the nominal condition , 

with the default value being 275 Watts for a water flow rate of 0.15 kg/s [21].  For off-design conditions, the relative 

air flow rate FRair and relative water flow rate FRwat are introduced to get the cooling tower performance. The York 

Calculation is followed to compute the approach temperature for free convection and forced convection.  
 

To regulate the cooling tower leaving water temperature at a setpoint value, a PI controller is implemented to adjust 

the relative air flow rate, and the corresponding fan power consumption is obtained. The output of the controller y (= 

FRair) is the nominalized volume flow rate of the air (relative air flow rate). When y < 0.3, it is free convection heat 

transfer process and Pfan = 0. When y ≥ 0.3 it is forced convection heat transfer process and the fan power can be 

determined by:  

                                                                                  (11) 

where   is the relative air flow rate,   is water mass flow rate             is the ratio of fan power and water 

mass flow rate with the default value 1833[W/ (kg/s)] [21].  

3.2 Heat pump model 

The performance of heat pump affects the efficiency and energy consumption of whole hybrid GSHP system. 

Therefore, a heat pump simulation model is needed to calculate the coefficient of performance (COP) and effusing 

fluid temperature of the heat pump according to its entering fluid temperature, and then the energy consumption of 

heat pump can be analyzed. 

A simplified heat pump model is used to simulate the operation of whole hybrid GSHP system.  The COP of this 

model changes with temperatures in the same way as the Carnot efficiency changes. The COP can be computed by 

the model based on the Carnot effectiveness, in which case  

                         
    

         
                                                     (12) 

where Teva is the evaporator temperature, and Tcon is the condenser temperature. ηcar is the Carnot effectiveness. An 

inner-loop proportional-integral (PI) controller is implemented to regulate the evaporator leaving water temperature 

at 280.15K. 

The water pump model is described to predict the power consumption by the pump. A pump model from 

Buildings.Fluid.Movers.FlowMachine_Nrpm has been adopted [21], with the pump affinity law defined similarly to 

that for the fan modeling.  

4. EXTREMUM SEEKING CONTROL 

The objective for ESC is to find the optimal input     ( )  in real time for a generally unknown and/or  time-varying 

performance function  (   ) with the online measurement of the objective value to be minimized [15],  i.e. 

       ( )         (   )                                                                    (13) 
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where     ( )  is the input vector. The nonlinear system with input-output performance function  (   )  is assumed 

to have a convex characteristic with a global minimum. The self-optimizing algorithms are designed to find the 

minimum value of the performance function. A typical dither ESC block diagram is shown in Figure 3. The transfer 

functions   ( )  and   ( )  denote the input dynamics and sensor dynamics, respectively. The output of the 

performance function   (   )  is assumed to be directly observable for feedback. The demodulation and signals 

dither are as follows: 

  
 ( )       (   )      (   )                                                              (14) 

   
 ( )         (      )        (      )                                                 (15) 

where    and    are the frequency and phase angle, respectively.    is the dither amplitude. The dithered output 

signal passes through the high-pass filter    ( ), multiplied by the demodulating signal   ( ) and low-pass filtered 

by    ( ), resulting in a signal proportional to gradient      . Closed-loop integral control can make the gradient 

vanish if the closed-loop system is stable. The compensator  ( )  can be designed to enhance the transient 

performance or stability. 

 

Figure 3: Block diagram of designed dither ESC 

The design of a dither ESC needs to determine several components mentioned above: the dither signal  ( ), the 

high-pass filter     ( ) , the low-pass filter     ( ) , and the compensator   ( ) . The detailed design method is 

introduced by Li [27]. In practical applications, all actuators have physical limitations, which saturate the control 

actions at certain point. The integral windup could be a problem for ESC system operations. Therefore integral 

windup could be a problem for ESC system operations. To avoid the integral windup, some anti-windup techniques 

have been proposed in the past [28, 29]. Li and Seem [30] proposed a back calculation based anti-windup strategy, 

which is compatible with the simple nature of extremum seeking control. In this study, this scheme is applied to deal 

with the possible integral windup due to relative air flow rate saturation. 

 

5. SIMULATION RESULT AND DISCUSSION 

In this study, the dither ESC control scheme is applied to the hybrid ground-source heat pump system to minimize 

the total power consumption of by regulating the relative air flow rate. In order to demonstrate the ESC for 

minimizing the total power consumption under different load conditions, the building load scenario described by 

Chiasson [7] has been adopted, in which a generic office building located in Dallas for cooling-dominated 

applications is presented. The modeled office building had a plan area of 1858m
2
 in two floors with a rectangular 

floor plan. The hourly heating and cooling loads for the generic buildings follow those in [7].  

 

Then the input dynamics is estimated based the slowest step response to achieve better robustness: 

  ( )  
              

                                                                                     (16) 

The cutoff frequency of the input dynamics ωc is about 0.000827 rad/s. The dither frequency ωdis selected as 

0.0000628 rad/s. FHP(s) and FLP(s) are chosen as 

   ( )  
  

                                                                                     (17a) 

   ( )  
          

                                                                                     (17b) 
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The dither amplitude is selected as 0.02.  

5.1 Fixed cooling load condition 

The standard ESC performance is tested under fixed part-load operating conditions. The ambient wet-bulb 

temperature for the cooling-tower inlet air flow is set to be 296.15K. Under the full-load condition, the mass flow 

rate for the evaporator water loop is set to be 6kg/s, while the entering water temperature is set at 286.15K. The part-

load operating conditions are simulated by adjusting the evaporator entering water temperature TEW. Figure 4(a) 

shows the static map from relative air flow rate to the total power consumption under 80% cooling load (TEW 

=284.95K), with the optimal relative air flow rate and power consumption estimated as 0.515 and 32.6kW, 

respectively.   

The simulation first starts at a fixed relative air flow rate of 0.9, and the ESC controller is turned on at t = 500,000s.  

As shown in Figure 4(b), the ESC search results in the average steady-state relative air flow rate of 0.53 and the total 

power of 33.2kW, respectively, with the 1% settling time of about 731520s.  Compared to the estimated optimum in 

the static map, the steady-state error is about 3.1% and 1.5% for the relative air flow rate and the total power, 

respectively. The ESC controller is then tested for 50% cooling load with the adjustment of the evaporator inlet 

water temperature TEW from 284.95K to 283.15K.  

 
Figure 4(a): Static map under 80% cooling load              Figure 4(b): ESC simulation results for 80% cooling load 

 

The other simulation condition is the same as the previous case of fixed cooling load conditions. The static map 

from relative air flow rate to the total power consumption for 50% cooling load is presented in Figure 5(a), with the 

optimal relative air flow rate is 0.412 and total power is 20.1kW.  For the decrease of cooling load, the total power 

consumption of the whole hybrid GSHP decreases, correspondingly the optimal relative air flow rate decreases too. 

As shown in Figure 5(b), the ESC searched average steady-state relative air flow rate and the total power of the 

second condition are about 0.425 and of 20.4kW, differing from the estimated optimum by only 2.9% and 1.6%, 

respectively. The power output settles within ±1% of its steady state is about 782,365s. Also, as marked in Figure 

5(b), if the relative air flow rate remained at initial value of 0.9 during cooling load change, the system would 

consume 26.8kW. Therefore, dither ESC adapts the system operation with power saving of 6.4kW (23.8%). 

 
Figure 5(a): Static map under 50% cooling load               Figure 5(b): ESC simulation results for 50% cooling load 
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5.2 Variable cooling load conditions 

Then the standard ESC controller is tested with a change in cooling load conditions by varying the evaporator inlet 

water temperature in the simulation. The ramp starts at t=2,000,000s, and lasts for 60s. The ambient wet-bulb 

temperature for the cooling-tower inlet air flow is also set as 296.15K. The ESC simulation results for 80% to 50% 

cooling load are shown in Figure 6(a), which shows the integral windup problem of the standard ESC with actuator 

saturation. In the upper subplot, the optimum is successfully achieved by ESC search before the ramp change. From 

2,000,000s, under the change of system condition, the relative air flow rate is saturated at 1. The ESC fails to search 

for the new optimum due to the integral windup.  The relative air flow rate is stuck at the saturation limit. The lower 

subplot of Figure 6(a) shows the cooling load variation by changing the evaporator inlet water temperature. Then, 

the back-calculation based anti-windup ESC scheme is applied to the same case above. As shown in Figure 6(b), the 

anti-windup ESC responds to the system condition change when the ramp change of TEW starts and converges to the 

new optimum successfully. Compared to the results for standard ESC, the optimal searched relative air flow rate for 

anti-windup ESC is closed to static value. In this case, the system would consume 29.2kW. Therefore, anti-windup 

ESC adapts the system operation with power saving of 8.8kW (30.2%).  

 

  
Figure 6(a): Standard ESC with actuator saturation           Figure 6(b): Anti-windup ESC with actuator saturation 

  

In summary, the proposed ESC scheme is validated with simulations on the detailed simulation model of hybrid 

GSHP system. It is noteworthy that the extremum seeking control does not rely on the knowledge of the plant 

models. Compared to the model based methods in the aforementioned literatures, this scheme does not rely on 

unreliable sensors or accurate process model, which makes the method much more robust to sensor failure and plant 

variation due to unknown environment changes and the hard-to-estimate system degradation. Also, the back-

calculation based anti-windup ESC scheme can also handle the problem comes from actuator saturation. 

6. CONCLUSION 

This paper presents an ESC based hybrid GSHP control scheme which can minimize the combined power 

consumption of GHE loop water pump, cooling tower fan and pump, and heat pump compressor. The proposed ESC 

control strategy is tested on a dynamic simulation model of the hybrid GSHP system developed by utilizing the 

Buildings Library of the Lawrence Berkeley National Laboratory. The transient heat conduction model of vertical 

GHE is a combination of Quasi-three-dimensional model inside the borehole and cylindrical source model outside 

the borehole. A static polynomial cooling tower model based on a York cooling tower correlation is adopted to 

regulate the leaving water temperature and fan power consumption. The heat pump model is based on the evaporator 

temperature, condenser temperature and Carnot efficiency. An inner-loop proportional-integral (PI) controller is 

implemented to regulate the evaporator leaving water temperature at 280.15K. 

Simulation study was performed for a scenario of fixed cooling load condition and then for varying cooling load 

conditions, in which ramp changes are introduced to the evaporator inlet water temperature. The ESC searched 

results show reasonable steady-state errors compared to the predicted static maps even under varying cooling load 

conditions. The power saving performance is also evaluated for the simulated examples with respect to the cooling 

tower relative air flow rate, which indicates about 23.8% power saving across the adjustable range of inputs. The 

effectiveness of the back-calculation based anti-windup ESC is also validated by simulation. 
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NOMENCLATURE 

 
R thermal resistance     (m K W

-1
)  

Tb borehole wall temperature     (K)   

Tf fluid temperature     (K) 

q                                   heat flows per unit length          (W m
-1

) 

rpi inner radius of pipe                        (m) 

rp                                  outer radius of pipe                        (m) 

rb                                                    borehole radius                               (m) 

D        the half spacing of U-tube shanks (m) 

h                                   convective heat transfer coefficient(W m
-1

K
-1

) 

k                                   thermal conductivity                      (W m
-1

K
-1

) 

LBor                               borehole vertical length                 (m) 

M                                  mass                                               (kg) 

Cp                                                   fluid specific heat                           (J kg
-1

K
-1

) 

n                                   element number   (-) 

ρ                                   fluid density                                   (kg m
-3

) 

m                                  mass flow rate                                (kg s
-1

) 

                                  range temperature           (K) 

P                                   power consumption                       (W) 

y                                   relative air flow rate                       (-) 

ηcar          Carnot effectiveness   (-) 

Teva                               evaporator temperature                  (K) 

Tcon                               condenser temperature                   (K) 

Subscript  

1, 2                              pipe number 

in                                 inlet 

w                                 water 

                                                fan power 

nom                             nominal condition 

b                                  grouting material 

p                                  pipe material 

f                                   fluid 
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