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ABSTRACT 
 

The present paper is aimed at putting forward a two-dimensional model for thermoelectric cells. The energy 

conservation equation was formulated in order to account for the Fourier, the Thomson and the Joule effects on the 

temperature distribution. The electric field was also solved to come out with the current and voltage distributions. 

The governing equations were discretized by means of the finite-volume method, whereas the TDMA algorithm was 

adopted for solving the sets of linear equations. An explicit iterative solution scheme was employed to address the 

temperature influence on the Seebeck coefficient. The model results were compared with experimental data, when a 

satisfactory agreement was achieved for both cooling capacity and COP, with errors within a ±10% band. In 

addition, the model was employed to assess the effects of the thermoelectric properties and the couple geometry on 

the thermodynamic performance of the thermoelectric cell. 

 

1. INTRODUCTION 
 

In the past decades, solid-state cooling technologies have come onto particular market niches, especially the 

applications related to portable cooling (Hermes and Barbosa, 2012). The most significant advances have been 

achieved in the realm of the thermoelectric cooling, in which an electric current produces a temperature difference in 

a pair of dissimilar semiconductor materials. A typical thermoelectric module is manufactured with two thin ceramic 

wafers and an array of p- and n-type blocks of doped semiconductor material sandwiched between them. A pair of 

p- and n-type blocks connected electrically in series and thermally in parallel make up a thermoelectric couple. 

 

Several studies have been conducted both theoretically and numerically to assess the thermodynamic performance of 

thermoelectric cells. Some influencing works are summarized in Tab. 1. The literature review points out that most 

models are one-dimensional, being not able to evaluate the influence of the couple geometry on its performance. In 

addition, the literature analysis also reveals that the few available multidimensional (2D/3D) models are often 

developed aided by commercial packages, which not only restrict the access to the mathematical formulation, but 

also to the numeric scheme. At last, most models do not account for the heat transfer in the air cavity, which also 

might affect the system performance. The present paper is therefore aimed at advancing a two-dimensional model, 

in the realm of non-equilibrium thermodynamics, which is able to evaluate the sensitivity of the thermophysical 

properties and the cell geometry on its thermodynamic performance. 

 

Table 1: Summary of the recent literature on performance assessment of thermoelectric cells 

Author Year Approach 
Thomson 

effect 

Cavity 

convection 

Cavity 

radiation 

Physical 

Domain 

Properties as 

f=f(T) 

Huang et al. 2005 Analytical Yes Yes Yes 1D No 

Pramanickand Dass. 2006 Analytical Yes No No 1D No 

Lee and Kim 2006 Numerical No No No 1D No 

Yamashita 2009 Analytical-Experimental Yes No No 1D Yes 

Chen et al. 2011 Numerical Yes Yes Yes 3D No 

Meng et al. 2011 Numerical Yes Yes Yes 1D Yes 

Du and Wen 2011 Numerical-Experimental Yes No No 1D Seebeck only 

Chen et al. 2012 Numerical Yes No No 3D Seebeck only 

Pérez-Aparicio et al. 2012 Numerical Yes Yes Yes 3D Yes 
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2. MATHEMATICAL FORMULATION 
 

A thermoelectric cell is comprised of several pairs of p and n semiconductors connected electrically in series and 

thermally in parallel, and separated from each other by a cavity filled with air. The physical model is restricted to a 

thermoelectric pair, as illustrated in Fig. 1, which in turn is subdivided into ten domains, as summarized in Tab. 2. 

The dimensions in Tab. 2 refer to the thermoelectric device (Tellurex, 2007), which has been taken as reference for 

the present study. 

 

The mathematical model is based on the following key assumptions: (i) steady-state two-dimensional model, (ii) the 

thermophysical properties of each material are function of the temperature only, (iii) the internal contact resistances 

(both thermal and electric) are negligible, (iv) both n and p elements have the same Seebeck coefficient, but with 

different signs, and (v) the heat transfer by both advection and radiation are disregarded, so that Nu=1 (pure heat 

conduction) in the cavity. Hence, a local energy balance yields, 

 

qq &
rr

=⋅∇                     (1) 

 

where q&  is the rate of heat generation, and the heat flux, q
r

, is calculated from the following relation obtained from 

the irreversible thermodynamics (Reynolds, 1968): 

 

jTTkq
rrr

α+∇−=                    (2) 

 

where the first term on the right-hand side stands for the heat conduction (referred hereafter as Fourier effect), where 

k is the thermal conductivity, and the second term is associated with the Seebeck effect, being α the Seebeck 

coefficient. The divergent of eq. (2) yields, 

 

( ) ( ) ( )jTTjTkq
rrrrrrrr

⋅∇α+α∇⋅+∇⋅∇−=⋅∇                 (3) 

 

where 0j =⋅∇
rr

 at steady-state conditions to ensure the continuity of the electron flux. In addition, the definition of 

electric field yields, 

 

TjV ∇α+ρ=∇−
rrr

                   (4) 

 
Figure 1: Schematic representation of the physical model 
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Table 2: Summary of the physical domains 

Subdomain Description Material Dimensions [mm] 

1 & 6 Bottom (1) and top (6) electric insulators Al2O3 4.8 x 0.62 

2 & 9 Left (2) and right (9) electric conductors at the bottom Cu 1.9 x 0.41 

3 & 7 n-type (3) and p-type (7) semiconductors Bi2Te3 1.4 x 1.14 

4 Electric conductor at the top Cu 1.9 x 0.41 

5 & 10 Left (5) and right (10) side air cavities Air 0.5 x 1.55 

8 Central air cavity Air 1.0 x 1.55 

 

Therefore, the rate of heat generation q&  is calculated as follows: 

 

( ) ( ) TjjjVjq ∇⋅α+⋅ρ=∇−⋅=
rrrrrr

&                  (5) 

 

where the first term on the right-hand side stands for the Joule heating, whereas the second term is regarded with the 

work produced by the electric current against the Seebeck effect. Invoking the 2
nd

 thermoelectric relation, 

 

α=τ TddT                    (6) 

 

and replacing eqs. (3) and (5) into eq. (1), the following equation for the temperature distribution in a thermoelectric 

material can be derived, 

 

( ) ( ) 0jjTjTk =⋅ρ+∇⋅τ−∇⋅∇
rrrrrr

                 (7) 

 

where the first term refers to the Fourier conduction, the second one to the Thomson (thermoelectric) effect, and the 

third to the Joule heating. Writing eq. (4) for the electric current, and recalling that 0j =⋅∇
rr

 at steady-state 

conditions, one can derive the following expression for the voltage distribution along the domain, 

 

( ) ( ) 0TV =∇γα⋅∇+∇γ⋅∇
rrrr

                  (8) 

 

where γ=ρ-1
 is the electrical conductivity. The first term stands for the electric conduction, whereas the second one 

refers to the distortion on the electric field induced by the thermoelectric effect. Equation (7) and (8) rule the 

thermoelectric phenomena, being both expressed for 2-D Cartesian domain as follows: 
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where jx and jy are the x and y components of the electric current density, respectively, in [A/m
2
]. Equations (9) and 

(10) require two boundary conditions each. For the latter, prescribed inlet (Vin) and outlet (Vout) voltages were 

adopted. In addition, bearing in mind that there is no electron flux through subdomains 1 and 6, dV/dy=0 boundary 

conditions have also been adopted. In case of eq. (9), prescribed temperatures were used for both hot (Th) and cold 

(Tc=Th-∆T) ends. Zero heat flux boundary conditions (dT/dx=0) were also employed for the cell symmetry. Figure 2 

depicts the conditions used for each boundary of the physical domain. The thermophysical properties of the Bi2Te3-

elements were calculated from 2
nd

-order polynomial fits obtained from data provided by Rowe (1995), 

 
78211 10959.8T109771.2T103935.2 ⋅−⋅+⋅=ρ −−              (11) 

388.5T10372.2T10682.3k 225 +⋅−⋅= −−
              (12) 

57210 10329.4T100546.8T105952.8 −−− ⋅+⋅+⋅−=α              (13) 
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where T is in [K], ρ in [Vm/A], k in [W/mK], and α in [V/K]. The Thomson coefficient, τ, was calculated from eqs. 

(6) and (13). Both the air and the Al2O3-elements were assumed to be perfect electric insulators, with thermal 

conductivities (at 300 K) of 30 and 0.026 W/mK, respectively. For the copper, a thermal conductivity of 400 W/mK 

and an electrical resistivity of 1.687·10
-8

 Vm/A have been adopted. The heat transfer inside the air cavity was 

modeled assuming a unitary Nusselt number, so the effects of free convection and radiation were neglected. 

 
Figure 2: Schematic representation of the boundary conditions 

 

3. NUMERICAL SCHEME 
 

Because of the non-linearities, eqs. (9) and (10) have to be solved iteratively to come out with the temperature and 

voltage distributions along the domain. A computational code was written based on the so-called finite-volume 

method (Patankar, 1980). The method consists of dividing the physical domain into non-overlaping control volumes 

in which the mass, momentum and energy quantities are conserved. The centroid of each control volume, as 

illustrated in Fig. 3.a, corresponds to an integration cell of the discretized domain. The properties (T, V) are 

evaluated at the centroids, whereas the fluxes (q, j) are evaluated at the control surfaces. A non-uniform Cartesian 

mesh was generated by means of the equation introduced by Wood (1996). Mesh independent solutions have been 

found for computational grids with 3000+ control volumes. A snapshot of a computational domain with 3120 

control volumes is depicted in Fig. 3.b. 

 

 

(a) (b) 

Figure 3: Computational mesh: (a) typical control volume, (b) non-uniform grid with 3120 control volumes 
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Equations (9) and (10) were discretized using a 2
nd

 order central-differencing scheme. The non-linear terms have 

been incorporated into the source term. The resulting algebraic equations for temperature and voltage are as follows: 

 

( ) ( ) ( )( )
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where the superscript asterisk stands for the property available from the previous iteration. The sets of linear 

equations have been solved iteratively through the TDMA algorithm. The properties at the interfaces between 

different materials have been calculated in order to guarantee the continuity of the electron and heat fluxes. More 

detailed information on the numerical scheme can be found in Oliveira (2014). 

 

4. MODEL VALIDATION 
 

The code predictions were validated against experimental data obtained from the manufacturer of a particular 

thermoelectric module. All simulations were carried out for Th=323 K, but varying the ∆T between the hot and the 

cold ends from 0 to 60 K, and the ∆V applied to the whole thermoelectric module from 11 to 16 V. Figure 4 shows a 

comparison between the calculated and measured electric current, where one can see the maximum difference 

achieved (for ∆T=0 K and ∆V=16 V) was below the 10% threshold. In all cases, one can see the model is able to 

follow the experimental trends closely. 
 

  

(a) (b) 

Figure 4: Comparison between calculated and experimental electric current: (a) ∆T=0 K, (b) ∆T=60 K 



 

2108, Page 6 
 

15
th

 International Refrigeration and Air Conditioning Conference at Purdue, July 14-17, 2014 

Additional validation parameters are the cooling capacity 
cQ&  and the COP, calculated respectively as follows: 

 

∑
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where 
hQ&  is the heat released at the hot end, calculated as follows: 

 

∑
=









∆

δ

−
=

n

1i i1

1h
zh x
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where Lz is the cell dimension in the z direction (perpendicular to the paper sheet), N is the number of thermoelectric 

pairs in the cell, and n and m are the number of control volumes in the x and y directions, respectively. Figure 5 

shows the calculated and the experimental cooling capacities agreed to with errors within the 10% threshold. The 

higher difference is observed for low voltages and ∆T=0 K. A similar behavior is observed in Fig. 6 for the COP. In 

all cases, the experimental trends are well reproduced by the model. 

 

Figure 7 explores the temperature distributions obtained for four different cases: (a) no thermoelectric effect (Joule 

heating only) and ∆T=0 K, (b) thermoelectric effect and ∆T=0 K, (c) thermoelectric effect and ∆T=30 K, and (d) 

thermoelectric effect and ∆T=60 K. In all cases, ∆V=16 V. The temperature profiles along the A-A cut (at x=1.1 

mm) are also depicted in Fig. 7. For case (a), where no thermoelectric effect takes place, one can see that the Joule 

heating is symmetrically dissipated by Fourier conduction in such a way the maximum temperature takes place at 

the center of the thermoelectric elements. This is so as ∆T=0 K. In cases the thermoelectric effect is on, the locus of 

the maximum temperature migrates from the center to the bottom inasmuch the ∆T increases. 

 

  

Figure 5: Comparison between calculated and 

experimental cooling capacity 

Figure 6: Comparison between calculated and 

experimental COP 

 

5. SENSITIVITY ANALYSIS 
 

5.1 Sensitivity to Thermophysical Properties 

The sensitivity analysis was carried out considering as response variables the cooling capacity and the COP, whereas 

the thermophysical properties (i.e. thermal conductivity, Seebeck coefficient, and electric conductivity) were taken 

as independent parameters. 
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(a) 

  

(b) 

  

(c) 

 

(d) 

  

Figure 7: Temperature distribution along the domain for ∆V=16 V and different ∆T 
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A 2-level, 3-factor factorial design was then planned totalizing 2
3
=8 runs. The levels were set as ±5% spans taking 

the figures provided by eqs. (11) to (13) as reference. The simulation runs were carried out for ∆T=0 K and                

∆V=16 V. The regression model adopted in this work is as follows: 

 

γαλ+γαλ+γλ+αλ+γλ+αλ+λ+λ=Ψ ˆˆk̂ˆˆˆk̂ˆk̂ˆˆk̂ˆ
76543210

            (19) 

 

where γ=1/ρ is the electric conductivity, Ψ̂  is the dimensionless response variable, λ are the coefficients calculated 

from the least-squares method, and ϕ̂  are the dimensionless values of ϕ, calculated from: 

 

( ) ( ) 12ˆ
minmaxmin −ϕ−ϕϕ−ϕ=ϕ                (20) 

 

Figure 8 shows the cooling capacity is mainly affected by the electric conductivity and the Seebeck coefficient, and 

marginally affected by the thermal conductivity, which play a negative role on the cooling capacity. The higher-

order interactions have not played any material effects on the cooling capacity. Figure 8 also shows the effects of the 

thermophysical properties over the COP, where one can see the Seebeck coefficient plays a dominant role, followed 

by the thermal and electric conductivities, which played a marginal role. These treds are confirmed by the definition 

of the figure-of-merit of the thermoelectric material, Z= α2γ/k, which is straightforwardly related to the COP. 

 

 
Figure 8: Results of the sensitivity analysis: cooling capacity and COP 

 

5.2 Sensitivity to Aspect Ratio 

To assess the influence of the geometry, the aspect ratio was varied by increasing the height of the thermoelectric 

cell, Ly, in two fashions: (a) constrained base area (i.e. fixed Lx, see Fig. 9), and (b) constrained volume of 

thermoelectric material (see Fig. 10). In all cases, ∆T=0 K and the voltage was varied from 14 to 20 V. Figure 11 

shows the COP is weakly affected by Ly. Indeed, a slight increase can be observed. This is so as the cooling capacity 

depletes inasmuch the electric current decreases, which diminishes the power consumption at the same rate. As the 

COP is the ratio between the cooling capacity and the power consumption, one can expect the COP figure is not 

significantly changed from one case to the other. 

 

 
(a) 

 
(b) 

Figure 9: Samples of geometries analyzed in case of constrained base area: (a) aspect ratio ½, (b) aspect ratio 2 
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(a) 

 
(b) 

Figure 10: Samples of geometries analyzed in case of constrained volume: (a) aspect ratio ½, (b) aspect ratio 2 

 

 
Figure 11: Influence of the aspect ratio on the COP in case of constrained area (solid bullets) and constrained 

volume (open bullets) 

 

 

6. CONCLUDING REMARKS 
 

A first-principles two-dimensional steady-state model was put forward to evaluate the thermodynamic performance 

of thermoelectric cells in the realm of the non-equilibrium (irreversible) thermodynamics. The model takes into 

account the Fourier conduction, the Joule heating, and the Thomson effect, being able to predict the cooling 

capacity, the power consumption, and the COP in case of prescribed voltage supply and prescribed temperatures at 

the hot and cold ends. The governing equations were discretized by means of the finite-volume method using a 

central-differencing scheme. The non-linearities typical of the thermoelectric phenomena were embedded into the 

source term, and the resulting sets of algebraic equations were solved iteratively by the TDMA algorithm. 

 

The tailor-made model was coded in-house and its predictions for electric current, cooling capacity and COP were 

compared against experimental data obtained from the manufacturer of a particular thermoelectric cell. It was 

observed the numerical predictions and experimental data not only agreed to within 10% thresholds, but also the 

model is able to follow the experimental trends very closely. 

 

The influence of the thermophysical properties on the response variables (cooling capacity and COP) was assessed 

by means of a 2
3
 factorial design, which has pointed out that the Seebeck coefficient and the thermal conductivity 

play major roles on the cooling capacity, whereas the COP is more sensible to the Seebeck coefficient. The 

influence of the geometry was also assessed by varying the aspect ratio according to two different ways: constrained 

base area and constrained volume. It was observed that both the cooling capacity and the power consumption vary at 

the same rates, in such a way the COP, which relates the cooling capacity and the power consumption, has showed a 

similar behavior for constrained base area and constrained volume of thermoelectric material. 
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NOMENCLATURE 

 
Roman 
COP coefficient of performance [W/W] 

j electric current density [A m
-2

] 

k thermal conductivity [W m
-1

K
-1

] 

Lx width [m] 

Ly height [m] 

Lz length [m] 

m number of integrating cells (y-direction) 

n number of integrating cells (x-direction) 

N number of thermoelectric pairs in the cell 

q&  heat generation [W m
-3

] 

q heat flux [W m
-2

] 

Q&  heat transfer rate [W] 

T temperature [K] 

V voltage [V] 

Z figure-of-merit [K
-1

] 

 

Greek 

α Seebeck coefficient [V K
-1

] 

γ electrical conductivity [V
-1

 m
-1

 A] 

ϕ generic variable 

ρ electrical resistivity [V m A
-1

] 

τ Thomson coefficient [V K
-1

] 

 

Subscripts 

c  cold end 

e, w, n, s  control surfaces 

P, E, W, N, S control volumes 

h  hot end 
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