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ABSTRACT 
 

The heat transfer characteristics of a low global warming potential (GWP) refrigerant mixture 

R744/R32/R1234ze(E) in a horizontal microfin tube were investigated in this study. The condensation heat transfer 

coefficient of R744 /R32/R1234ze(E) (9/29/62 mass%) is somewhat lower than that of other mixtures 

R744/R32/R1234ze(E) (4/43/53 mass%), R32/R1234ze(E) (40/60 mass%), and (30/70 mass%) at an average 

saturation temperature of 40 °C, mass flux of 200 kg m-2s-1, and heat flux of 10 kWm-2. The temperature glides of 

R744/R32/R1234ze(E) (9/29/62 mass%), (4/43/53 mass%), R32/R1234ze(E) (30/70 mass%), and (40/60 mass%) 

are 18, 11, 10, and 8 K, respectively, at 40 °C. Likewise, the magnitude of the heat transfer coefficient decrease 

strongly affected the temperature glide. The data for the evaporation heat transfer coefficient indicated similar 

effects on the temperature glide. At an average saturation temperature of 10 °C, the evaporation heat transfer 

coefficient of R744/R32/R1234ze(E) (9/29/62 mass%) is slightly lower than that of other mixtures. The temperature 

glides of R744/R32/R1234ze(E) (9/29/62 mass%), (4/43/53 mass%), R32/R1234ze(E) (30/70 mass%), and (40/60 

mass%) are 22, 13, 11, and 9 K, respectively. The pressure gradients of these refrigerants are almost equal, and the 

difference is within the measurement uncertainty. The experimental pressure gradient agrees well with the 

predictions proposed for single components. 

 

1. INTRODUCTION 

 
Low global warming potential (GWP) refrigerant R1234ze(E) has been considered as an alternative to conventional 

refrigerant R410A for air conditioning systems. However, the latest studies revealed that the coefficient of 

performance (COP) of systems using R1234ze(E) alone is unexpectedly lower than that of R410A. Because the 

volumetric capacity is much smaller than that of R410A, the cycle using R1234ze(E) requires a much higher 

volumetric flow rate with a larger compressor displacement or higher compressor speed to maintain the 

cooling/heating load,  which results in a large pressure drop. The mixing of R744, R32, and R1234ze(E) has been 

recently attempted to increase the volumetric capacity while maintaining the global warming potential (GWP) below 

300 (Koyama et al., 2013). The COP of the cycle using these ternary refrigerants has already been evaluated, and the 

feasibility was demonstrated with a drop-in experiment (Fukuda et al., 2014). Nevertheless, the characteristics of the 

heat transfer and pressure drop of these refrigerants have not yet been clarified. As mentioned in many previous 

studies (e.g., Jacobs and Kruse, 1978; McLinden and Radermacher, 1987), exergy loss in heat exchangers can be 

minimized by utilizing the temperature glide of zeotropic mixtures. However, volatility differences result in severe 

degradation of the heat transfer coefficient (HTC), as investigated in numerous heat transfer studies (e.g., Jung and 

Radermacher, 1993; Niederküger and Steiner, 1994). 

 

To understand the transport phenomenon of these ternary mixtures, the HTC and pressure gradient during the 

condensation and evaporation process in a horizontal microfin tube was experimentally investigated in this study. 

Experimental data of R744/R32/R1234ze(E) (4/43/53 mass%) were compared to R32/R1234ze(E) (40/60 mass%) as 

the combination of GWP 300; data on R744/R32/R1234ze(E) (9/29/62 mass%) were compared to R32/R1234ze(E) 

(30/70 mass %) as the combination of GWP 200.  
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2. EXPERIMENTAL METHOD 

 
Figure 1 (a) illustrates a vapor compression cycle that facilitated the measurement of the HTC and pressure gradient. 

The HTC and pressure gradient were measured in test sections (4) and (10) for condensation and evaporation, 

respectively. To determine the bulk enthalpies of superheated vapor, the bulk mean temperature and the pressure 

were measured in mixing chambers placed at the inlet of the desuperheater (3) and the outlet of the superheater (11). 

Additionally, the circulation composition of the mixture was measured by sampling approximately 1 cc of subcooled 

liquid at the outlet of the liquid reservoir (6) just after the data were recorded. The sampled liquid was completely 

vaporized in the sampling vessel and then assayed by a thermal conductivity detector gas chromatograph. The 

refrigerant state was always evaluated at the circulation composition. Based on the bulk enthalpies of the 

superheated vapor, the enthalpies in the test sections were calculated by considering the enthalpy changes in the 

desuperheater and superheater obtained from the water side heat balance.  

 

Figure 1 (b) illustrates the structure of the test section (10) for the evaporation test. The structure of the other test 

section (4) for the condensation test was almost the same. A horizontally placed test microfin tube was surrounded 

by four water jackets and bored 0.6 mm ID pressure ports between the test sections to measure the heat transfer rates 

over the 414 mm length and pressure drops at 554 mm intervals. At the center of each subsection (i.e. the water 

jacket), four thermocouples were embedded in the outside tube wall. The internal tube surface temperature, Twi, was 

obtained from the one-dimensional heat conduction in the tube wall. 

     wi wo,top wo,bottom wo,right wo,left H2O TS tube o eq4 2 lnT T T T T Q Z D d           (1) 

The representative refrigerant temperature of each subsection, Tr TS, was defined as the arithmetic mean of the inlet 

and outlet calculated from the enthalpies and pressures by assuming thermodynamic equilibrium.  

 r TS r TS,i r TS,o 2T T T    (2) 

 r TS,i equilibrium r TS,i r TS,i R744 R32, , ,T f h P X X ,  r TS,o equilibrium r TS,o r TS,o R744 R32, , ,T f h P X X  (3,  4) 

Similarly, the representative vapor quality of each subsection, x, was calculated as follows: 

 TS TS,i TS,o 2x x x    (5) 

 TS,i equilibrium r TS,i r TS,i R744 R32, , ,x f h P X X ,  TS,o equilibrium r TS,o r TS,o R744 R32, , ,x f h P X X  (6,  7) 

Table 1 specifies the dimensions of the test microfin tube based on the symbols in the microscopic cross sectional 
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Figure 1: Experimental apparatus 
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area of Figure 2. The equivalent inner diameter, deq, is the diameter of a smooth tube that envelops an equal free 

flow volume. The surface enlargement, A, is the ratio of the actual heat transfer area to that of the equivalent 

smooth tube. Based on the actual heat transfer area, the heat flux, q, and the HTC, , were defined as follows:  

 TS1 TS1 r TS1 wiq T T   ,     TS1 H2O TS1 eq Aq Q d Z    (8,  9) 

A deviation within 1 kW m-2 of the targeted average heat flux was allowed to adjust for the test conditions, except 

for the dryout condition during the evaporation. The condensation and evaporation tests were carried out at the 

saturation temperatures, which are the average of the bubble and dew temperatures, 40 and 10 °C, respectively.  

 

Table 2 compares the thermophysical properties between the test refrigerants at average saturation temperatures of 

40 and 10 °C calculated with the REFPROP 9.1 (Lemmon et al., 2013 ). The mixing parameters for the combination 

of R32 and R1234ze(E) have been optimized by Akasaka et al. (2013) to fit the PT properties measured by 

Kobayashi et al. (2013). The following two indices, the bias,  , and the standard deviation, will be used to 

compare the predicted values.  

     cal, exp, exp, cal, exp, exp, 

1 1 1

1 1 1
  or  

n n n

j j j j j j j

j j j

P Z P Z P Z
n n n

          
  

             (10) 

 
2

1

1

1

n

j

jn
  



 

          (11) 

where n is the number of data points to be compared. The subscripts cal and exp indicate the prediction and the 

experiment. 

Table 1: Dimensions of test microfin tube 

 
Figure 2: Microscopic cross section of the tube 

Outer diameter Do 6.0 mm 
Fin root inner diameter dmax 5.45 mm 
Equivalent inner diameter deq 5.35 mm 
Fin height hfin 0.255 mm 
Helix angle  20 deg. 
Number of fins Nfin 48 - 
Surface enlargement A 2.24 - 

 

Table 2: Comparison on thermophysical properties for the test refrigerants at equilibrium conditions 

 

Refrigerant composition 

R32/1234ze(E) 

(30/70 mass%) 

R32/1234ze(E) 

(40/60 mass%) 

R744/32/1234ze(E) 

(9/29/62 mass%) 

R744/32/1234ze(E) 

(4/43/53 mass%) 

GWP100*a 207 274 200 293 

at
 4

0
 °

C
*

b
 

Pressure [MPa]  1.44 1.62 1.94 1.90 
Temperature glide [K] 10.3 9.0 18.7 11.8 
Latent heat of vaporization [kJ kg-1] 187 194 199 201 
Density [kg m-3] *c 1056/59 1031/62.4 1042/73.7 1015/69.8 

Viscosity [Pa s] *c 136/13.9 127/14.1 131/14.8 122/14.4 
Thermal conductivity [mW m-1 K-1] *c 86.6/16.3 91.4/16.5 91.2/18.0 94.7/17.4 

at
 1

0
 °

C
*

b
 

Pressure [MPa]  0.62 0.70 0.87 0.84 
Temperature glide [K] 11.7 10.2 21.6 13.7 
Latent heat of vaporization [kJ kg-1] 220 230 238 241 
Density [kg m-3] *c 1168/24.9 1146/26.3 1161/32 1134/29.8 

Viscosity [Pa s] *c 194/12.5 180/12.6 191/13.1 175/12.8 
Thermal conductivity [mW m-1 K-1] *c 101.4/13 107.4/13 108.4/14.2 112.2/13.4 

*a GWPs of mixtures are simply weighed by the mass fraction.   *b Average of dew and bubble temperatures.  

*c These data at the equilibrium state are listed in the manner of “liquid / vapor”.  
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3. RESULTS AND DISCUSSION 
 

3.1 Condensation Heat Transfer  
Figure 3 shows the variation in the condensation HTC as a function of the vapor quality at an average saturation 

temperature of 40 °C, a mass velocity 200 kg m-2s-1 and a heat flux of 10 kW m-2. In Figures 3 (a), (b), and (c), the 

experimental HTC are plotted with symbols for the single components R32 and R1234ze(E) alone, the binary 

mixtures R32/R1234ze(E), and the ternary mixtures R744/R32/R1234ze(E), respectively. The horizontal and 

vertical bars appended to the symbols show the propagated measurement uncertainty of 95% coverage (Taylor, 

1997) in the HTC and the vapor quality change in each subsection. The lines are the predicted HTC according to the 

correlation of Cavallini et al. (2009) with the correction method of Silver-Bell-Ghaly (1942, 1973) for non-

azeotropic refrigerant mixtures. Tables 3 and 4 list the comparison results of HTC between the experiment and the 

correlations two indices, the bias  and standard deviation .  

 

As shown in Figure 3 (a), the HTC of R32 exceeds that of R1234ze(E), as predicted by the correlation. Other 

correlations listed in Table 3 also predict the same tendency. The higher liquid thermal conductivity and the larger 

latent heat of R32 increase the condensation HTC. The correlation proposed for the single components seems to 

properly include these effects to predict the condensation HTC. Nevertheless, the experimental HTC values deviate 

at vapor qualities beyond 0.7. According to Kedzierski and Goncalves (1999), this deviation is typically evident in 

the test section of a counter flow configuration, such as the one used in this study. They also tested the parallel flow 

and remarked that the drastic increases in HTC appear at higher vapor qualities and only with a counter flow 

configuration.  

 

As shown in Figures 3 (b) and (c), the HTC values of binary and ternary mixtures are significantly lower than that of 

the single component. This difference typically is the result of the volatility difference. The less volatile components 

readily condense, while the more volatile components remain in the vapor phase. Therefore, the saturation 

temperature decreases as condensation proceeds. This phenomenon is dubbed temperature glide and requires 

(a) single components                           (b) R32/R1234ze(E)                          (c) R744/R32/R1234ze(E) 

Figure 3:  Difference in condensation HTC between the single components and the mixtures (The lines are HTC 

predicted by correlations of Cavallini et al. (2009) with correction method of Silver-Bell-Ghaly (1942, 1973). 
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(b) Binary mixtures, R32/R1234ze(E)
   (Tdeq +Tdew) = 40 °C, 
   200 kg m-2s-1,10 kWm-2

Vapor quality,  x    [ - ]

 30/70 mass% (GWP ≒207)
 40/60 mass% (GWP ≒274)

Flow direction
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(c) Ternary mixtures, 
    R744/R32/R1234ze(E)
   (Tdeq +Tdew) = 40 °C, 
   200 kg m-2s-1,10 kWm-2

Vapor quality,  x    [ - ]

 9/29/62 mass% (GWP ≒200)
 4/43/53 mass% (GWP ≒293)

Table 3: Comparison of the condensation HTC 

between experiment and correlations for single 

components 

  

R32 

n = 66 

R1234ze(E) 

n = 50 

 σ   σ  

Kedzierski and  

Goncalves (1999)  
0.11  0.29  0.28  0.25  

Chamra et al. (2005)  -0.01  0.45  -0.03  0.42  

Yonemoto and  

Koyama (2007) 
-0.09  0.32  0.05  0.25  

Cavallini et al. (2009) 0.13  0.37  -0.01  0.28  

 

Table 4: Comparison of the condensation HTC 

between experiment and correlations for 

zeotropic mixtures 

R32/R1234ze(E)       (n = 132)  σ 

Cavallini et al. (2009) with Silver-

Bell-Ghaly (1942, 1973)  
0.00  0.35  

Chamra and Mago (2006) 0.32  0.50  

R744/R32/R1234ze(E)     ( n = 123)  σ 

Cavallini et al. (2009) with Silver-

Bell-Ghaly (1942, 1973) 
0.01  0.33  

Chamra and Mago (2006) 0.27  0.41  
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additional de-superheating to cool the vapor flow to the local saturation temperature downstream. In addition, a 

concentration boundary layer forms near the interface between the vapor and liquid, which is associated with the 

strong temperature distribution. The concentration boundary layer further disturbs smooth condensation, and the 

temperature distribution near the interface reduces the effective subcooling that is the driving force of condensation. 

Therefore, the HTC of zeotropic mixtures decreases from the ideal HTC calculated only with the thermophysical 

properties of normal condensing flow.   

 

Silver (1942) shed light on the additionally required desuperheating to condense zeotropic mixtures, and Bell and 

Ghaly (1973) later proposed the correction method to include the sensible heat transfer in the total heat transfer of 

condensers. Smit et al. (2002) validated this correction method with their experimental data for R22/R142b. They 

demonstrated that the correction method works best with the correlation of Dabson and Chato (1998) proposed for 

normal condensation in horizontal smooth tubes. Therefore, the correlation of Cavallini et al. (2009), which shows 

good agreement for R32 and R1234ze(E), was selected for the microfin tubes. As shown in Figures 3 (b) and (c), the 

HTC of R744/R32/R1234ze(E) (9/29/62 mass%) is somewhat lower than those of the other binary and ternary 

mixtures. Among the thermophysical properties, only the temperature glide significantly differs, as listed in Table 2. 

The larger temperature glide of R744/R32/R1234ze(E) (9/29/62 mass%) requires more sensible heat transfer and 

reduces the effective subcooling more. As a result, the HTC of R744/R32/R1234ze(E) (9/29/62 mass%) is lower 

than that of the other ternary mixture.  

 

Figures 4 (a) and (b) plot the HTC of ternary mixtures at mass velocities from 150 to 400 kg m-2s-1. The HTC values 

of these mixtures markedly increase as the mass velocity increases. The rate of this increase in the HTC is more 

significant than that of the single component. At mass velocities of 400 kg m-2s-1 and beyond, the HTC seems to 

revert to values similar to that of the single components. The predictions obtained using the Silver-Bell-Ghaly 

correction method apparently agree well with the experimental data at a mass velocity of 200 kg m-2s-1, as shown in 

Figure 3; however, the experimental HTC deviates from the predicted HTC, especially at mass velocities above 300 

kg m-2s-1.  

 

Figure 4 (c) plots the variation in HTC of R744/R32/R1234ze(E) (9/29/62 mass%) as the function of the mass 

velocity. The symbols are the experimental HTC extracted from the data over vapor quality range from 0.4 to 0.6. 

The solid line is the predicted HTC calculated using the correlation of Cavallini et al. (2009) associated with Silver-

Bell-Ghaly (1942, 1973). The dashed line is the ideal HTC that is calculated using the correlation of Cavallini et al. 

(2009) alone while simply considering the effect of thermophysical properties in “normal” condensation. The 

experimental HTC of the ternary mixture approaches that of the ideal HTC as the mass velocity increases. This 

finding suggests that increasing the mass velocity mitigates the mass transfer resistance caused by the volatility 

difference. Smit and Meyer (2002) experimentally confirmed a similar effect. The mass fraction of refrigerant 

mixture R22/R142b influences the average HTC at vapor qualities ranging from 0.1 to 0.85 and mass velocities 

between 40 to 350 kg m-2s-1; on the contrary, it does not influence the HTC at mass velocities beyond 350 kg m-2s-1. 

Although the critical mass velocity at which the influence of the mass transfer resistance vanishes is different, these 

two results are qualitatively identical. The concentration boundary layer is most likely thinned and partly broken at 

higher refrigerant flow speeds, and the critical mass velocity depends on the magnitude of the volatility difference.  

(a) 4/43/53 mass%                                  (b) 9/29/62 mass%                   (c) comparison with ideal HTC 

Figure 4:  Mitigation of mass transfer resistance by increasing mass velocity in condensation HTC 

0 200 400 600
Mass velocity,  Gr  [ kg m-2s-1 ]

(c) R744/R32/R1234ze(E) (9/29/62 mass%)
    at vapor quality 0.5,   10 kW m-2 
     (Tbub + Tdew)/2 = 40 °C 

ideal HTC 

Silver-Bell-Ghaly

(1942, 1973)

0.2 0.4 0.6 0.8 1

2

4

6

8

10

0
Vapor quality,  x    [ - ]

H
T

C
, 

 
  

[k
W

m
-2

K
-1

]

(a) R744/R32/R1234ze(E) (4/43/53 mass%)
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3.2 Evaporation Heat Transfer 
Figures 5 (a), (b), and (c) plot the evaporation HTC of the single components R32 and R1234ze(E) alone, the binary 

mixtures R32/R1234ze(E), and the ternary mixtures R744/R32/R1234ze(E), respectively, at an average saturation 

temperature of 10 °C, a mass velocity 200 kg m-2s-1, and a heat flux of 10 kW m-2. The lines are the predicted HTC 

calculated by the correlation of Mori et al. (2002) for single components, and of Cavallini et al. (1998) for the binary 

and ternary mixtures. The onset and completion dryout qualities and post-dryout HTC are predicted by the 

correlation of Yoshida et al. (2000) and Mori et al. (2000). 

 

Compared in Figure 5 (a), the HTC of R32 markedly exceeds that of R1234ze(E). This finding is primarily 

attributed to the higher liquid thermal conductivity and the larger latent heat of R32, as listed in Table 2. The surface 

tension of R32 is smaller than that of R1234ze(E) at a given saturation temperature, and this difference reduces the 

bubble departure diameter and increases the bubble departure frequency. Thus, this effect enhances the nucleate 

boiling contribution at lower vapor qualities of approximately less than 0.4. Table 5 lists the deviation of the 

predicted HTC from the experimental HTC, i.e.   and . These deviations are acceptably small, except for that of 

the correlation proposed by Chamra and Mago (2007), and these correlations accurately predict the evaporation 

HTC for both the single components R1234ze(E) and R32.  

 

As plotted in Figures 5 (b) and (c), the evaporation HTC values of the binary and ternary mixtures are drastically 

lower than those of the single components. This behavior is typical of zeotropic mixtures. The evaporation process 

enriches the liquid phase in the less volatile components due to this volatility difference, while the vapor phase 

becomes richer in the more volatile components. Thus, a concentration boundary forms over the liquid-vapor 

interface and in the superheated sublayer of the nucleate boiling site adjacent to the tube wall. Therefore, the 

saturation temperature is locally increased in the rich concentration boundary layer of the less volatile component. 

This increase requires more heating to yield nucleate boiling on the tube wall and to evaporate the liquid-vapor 

interface. Moreover, additional heat is required to heat the vapor flow to the local saturation temperature because of 

Table 5: Comparison of the evaporation HTC 

between experiment and correlations for the 

single components 

 

R32 

n = 90 

R1234ze(E) 

n = 44 

 
   

Momoki et al. (1995) -0.04 0.23 0.11 0.36 

Thome et al. (1997) 0.02 0.18 0.18 0.46 

Mori et al. (2002) -0.01 0.17 0.13 0.45 

Yun et al. (2002) -0.04 0.31 -0.41 0.33 

Chamra and Mago (2007) 1.01 0.51 0.92 0.92 

 

Table 6: Comparison of the condensation HTC 

between experiment and correlations for the 

zeotropic mixtures 

R32/R1234ze(E) (n =189)   

Murata (1996) 2.64 4.70 

Cavallini et al. (1998) 0.54 0.42 

Chamra and Mago (2007) -0.14 0.33 

R744/R32/R1234ze(E) (n =128)   

Cavallini et al. (2007) 0.59 0.34 

Chamra et al. (2006) -0.20 0.21 

 

(a) single components                           (b) R32/R1234ze(E)                          (c) R744/R32/R1234ze(E) 

Figure 5:  Difference in evaporation HTC between the single components and the mixtures. (The lines are 

HTC predicted by correlations of Mori (2002) for single components and Cavallini et al. (1998) for mixtures.) 
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the temperature glide, as mentioned by Butterworth (1981) and Stephan (1992). Therefore, the heat transfer 

degradation is distinct in the evaporation HTC of the zeotropic mixtures for the entire range of vapor quality. Table 

6 lists the deviation between the predicted HTC and the experimental HTC. Despite the complicating mechanism of 

the volatility difference, the selected correlations satisfactorily agree with the experimental HTC, except for the 

correlation proposed by Murata (1996) for binary mixtures. A comparison of the HTC between mixtures shows that 

the HTC of R744/R32/R1234ze(E) (9/29/62 mass%), which showed the largest temperature glide, is slightly lower 

and begins dryout at a slightly lower vapor quality than the other mixtures. The correlation proposed by Cavallini et 

al. (1998) qualitatively predicts this difference, as shown in Figures 5 (b) and (c).  

 

Figures 6 (a) and (b) plot the evaporation HTC of R744/R32/R1234ze(E) (4/43/53 mass%) and (9/29/62 mass%), 

respectively, at mass velocities from 150 to 600 kg m-2s-1. The lines are the predicted HTC calculated using the 

correlation of Cavallini et al. (1998) as well as that of Yoshida et al. (2000) and Mori et al. (2000) for the dryout 

region. The correlation of Cavallini et al. (1998) unfortunately overestimates the HTC at lower vapor qualities. If the 

suppression of nucleate boiling by the volatility difference were more accurately predicted, the correlation would 

show excellent agreement with the present experimental HTC. The experimental data showed an obvious positive 

correlation with the mass velocity, and the correlation qualitatively predicts this effect.  

 

Figure 6 (c) shows the variation in the evaporation HTC of R744/R32/R1234ze(E) (9/29/62 mass%) as a function of 

the mass velocity. The symbols are the experimental HTC extracted from the database for vapor qualities ranging 

from 0.4 to 0.6. The solid line shows the predicted HTC of zeotropic mixtures calculated using the correlation of 

Cavallini et al. (1998). The dashed line shows the ideal HTC calculated using the correlation of Cavallini et al. 

(1998), which only considers the effect of the thermophysical properties and was proposed for single components. 

The experimental HTC approaches the ideal HTC. Increasing the mass velocity apparently mitigates the influence of 

the mass transfer resistance, and the predicted HTC exhibits this effect very well. In contrast to the condensation, the 

HTC of the mixture remains lower than that of the ideal HTC. The influence of the mass transfer resistance seems to 

be more severe in evaporation heat transfer.  

 

3.3 Pressure Gradient 
Figures 7 (a) and (b) plot the pressure gradient of the ternary mixtures during condensation and evaporation, 

respectively, at mass velocities of 150 and 400 kg m-2s-1. The lines are the pressure gradient predicted by the 

correlation of Yonemoto-Koyama (2007) and Kubota et al. (2001) for condensation and evaporation, respectively. 

Even though these correlations were proposed for single components and not zeotropic mixtures, they accurately 

predict the pressure gradient of the mixtures. As listed in Table 7, other correlations for the single components also 

agreed well with the experimental HTC. The influence of the volatility difference on the pressure gradient is 

seemingly negligible. Therefore, the pressure gradients of these two mixtures of similar thermophysical properties 

are comparable, despite the difference in the temperature glide. The pressure gradient during the evaporation is 

considerably larger than that of the condensation because the vapor density is smaller at lower reduced pressures, i.e. 

lower saturation temperatures.  

 

0 200 400 600
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(c) R744/R32/R1234ze(E) (9/29/62 mass%)
    at vapor quality 0.5,   10 kW m-2 
     (Tbub + Tdew)/2 = 10 °C 

ideal HTC 

Cavallini et al. (1998)

(a) 4/43/53 mass%                                  (b) 9/29/62 mass%                  (c) comparison with ideal HTC    

Figure 6:  Effect of mass velocity on mass transfer resistance in evaporation HTC 
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4. CONCLUSIONS 

 
The heat transfer coefficient and pressure gradient of the binary mixtures R32/R1234ze(E) and the ternary 

mixtures R744/R32/R1234ze(E) with a GWP of approximately 200 and 300 in horizontal microfin tubes have 

been experimentally investigated in this study. The condensation HTC of R32 alone is somewhat higher than 

that of R1234ze(E) due to superior thermophysical properties, as predicted by the correlations. However, the 

HTC values of the binary and ternary mixtures are drastically lower those that of the single components. The 

HTC severely decreased due to the mass transfer resistance. This severe influence of the mass transfer 

resistance was quantified: the influence is obviously mitigated by increasing the mass velocity. At mass 

velocities exceeding 400 kg m-2s-1, the HTC of the mixture approaches that of the single component. The 

correction method proposed by Silver-Bell-Ghaly (1942, 1973) predicts the influence of the mass transfer 

resistance in general; however, this correction underestimates the HTC at higher velocities, where the mass 

transfer resistance is fully mitigated. Similar to the condensation HTC, the evaporation HTC of R32 alone is 

higher than that of the R1234ze(E) alone. The evaporation HTC values of the binary and ternary mixtures were 

also drastically lower those that of the single components due to the mass transfer resistance caused by the 

volatility difference. The mass transfer resistance appears to suppress the nucleate boiling contribution and the 

forced convective contribution. Therefore, the decrease in the HTC is more severe for the evaporation than the 

condensation. Despite the complicating mechanism of the mass transfer resistance, the experimental HTC and 

predicted HTC by Cavallini et al. (1998) showed satisfactory agreement. The correlation proposed for single 

components for the condensation and the evaporation accurately predicted the pressure gradients of the 

mixtures. The influence of the volatility difference on the pressure gradient is negligible. 

 

NOMENCLATURE 

 
Do outer diameter (m)  Subscripts 

P pressure (Pa) bottom bottom 

    Table 7: Comparison of the pressure gradient between experiment and correlations for zeotropic mixtures 

Condensation Evaporation 

R744/R32/R1234ze(E) (n =128)  σ R744/R32/R1234ze(E) (n =156)  σ 

Cavallini et al. (1997) 0.08  0.18  Goto et al. (2001, 2007) -0.38  0.14  

Goto et al. (2001, 2007) -0.42  0.11  Newell and Shah (2001) -0.02  0.25  

Yonemoto and Koyama (2007) -0.24  0.22  Kubota et al. (2001) -0.10  0.13  

Newell and Shah (2001) -0.35  0.21  Filho et al. (2004) 0.50  0.19  

 

  

 

 

 

 

 

 

 

 

 

 

 

(a) condensation                                                               (b) evaporation 

Figure 7:  Pressure gradient of the ternary mixtures. (The lines are the prediction of Yonemoto-Koyama 

(2007) and Kubota et al. (2001) for condensation and evaporation respectively.)  
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Q heat transfer rate (W) cal  calculation 

T temperature (°C) exp  experiment 

X mass fraction ( - ) H2O  water 

Z tube length (m) i  inlet 

deq equivalent inner diameter (m) left  left 

h enthalpy (J kg-1) o  outlet 

n number of data points ( - ) R32  R32 

q heat flux (W m-2) R744 R744 

x vapor quality ( - ) right right 

 heat transfer coefficient (W m-2K-1) TS test section 

 bias ( - ) top  top 

A surface enlargement ( - ) tube  tube 

 thermal conductivity (W m-1K-1) wi  inner wall  

 standard deviation ( - ) wo  outer wall 
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