
Purdue University
Purdue e-Pubs
International Refrigeration and Air Conditioning
Conference School of Mechanical Engineering

2014

Lubricants Optimized for use with R-32 and
Related Low GWP Refrigerant Blends
Edward T. Hessell
Chemtura Corporation, United States of America, ed.hessell@chemtura.com

Roberto A. Urrego
Chemtura Corporation, United States of America, roberto.urrego@chemtura.com

Travis L. Benanti
Chemtura Corporation, United States of America, travis.benanti@chemtura.com

Follow this and additional works at: http://docs.lib.purdue.edu/iracc

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/
Herrick/Events/orderlit.html

Hessell, Edward T.; Urrego, Roberto A.; and Benanti, Travis L., "Lubricants Optimized for use with R-32 and Related Low GWP
Refrigerant Blends" (2014). International Refrigeration and Air Conditioning Conference. Paper 1477.
http://docs.lib.purdue.edu/iracc/1477

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/77942277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Firacc%2F1477&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1477&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1477&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Firacc%2F1477&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1477&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engineering.purdue.edu/Herrick/Events/orderlit.html
https://engineering.purdue.edu/Herrick/Events/orderlit.html


2413, Page 1 
 

15th International Refrigeration and Air Conditioning Conference at Purdue, July 14-17, 2014 
 

Lubricants Optimized for use with R-32 and Related Low GWP Refrigerant Blends 
 

Edward HESSELL*, Roberto URREGO, Travis BENANTI 
 

Industrial Performance Products Division, Chemtura Corporation 
400 Elm Street, Naugatuck, CT 

 Phone: 203-714-8674, Email: Ed.Hessell@Chemtura.com 
 

*Corresponding Author 
 

ABSTRACT 
 

Lubricants are important components of almost all air conditioning and refrigeration systems. Their primary 
function is to lubricate the compressor, provide sealing of clearances between low and high pressure sides of the 
compressor and remove frictional heat. But the lubricant is in contact with refrigerant at all times and plays a 
thermo-fluidic role in the air conditioning system that can impact both system capacity and coefficient of 
performance (COP). Lubricants can influence capacity by altering the refrigerant-side heat transfer coefficients, and 
increasing pressure drop required to maintain set point temperatures. Lubricants can also affect the isentropic 
efficiency of the compressor. 
 
This paper presents the results of a bench test study of the solution phase behavior and lubricating performance of 
several commercial and new developmental polyol ester (POE) lubricants with low GWP R-410A replacement 
refrigerants. The results suggest that POE lubricants used today with R-410A may not be acceptable for use with R-
32 or related HFC/HFO blends. An undesirable miscibility "gap" is observed in mixtures of traditional POEs with 
R-32 in the concentration range of 10-40 wt% lubricant in refrigerant. In addition, attempts to resolve the miscibility 
issues by modification of traditional POE chemical structure lead to lubricants with diminished lubricity and load 
carrying properties.  Studies conducted with a new class of advanced polyol esters (APOEs) show that it is possible 
to design synthetic lubricants optimized for R-32, combining good refrigerant miscibility and excellent lubricity and 
load carrying performance. 

1. INTRODUCTION 
 

The transition to lower global warming potential (GWP) alternative refrigerants is critical to the realization of 
environmentally sustainable and more energy efficient refrigeration technologies (Ritter, 2013). Leading candidates 
to replace R-22 and R-410A in air conditioning and heat pump applications include R-32 (difluoromethane) and a 
plethora of HFC/hydrofluoro-olefin blends with GWPs in the range of 400-650.  Considerable data has been 
generated comparing R-410A with various low GWP alternative refrigerants in full system tests. Most notable is the 
work sponsored by AHRI under the Alternative Refrigerant Evaluation Program (AREP)(Wang and Amrane, 2013). 
But these studies have either been refrigerant “drop in” tests to commercial R-410A systems, or “soft optimized” 
tests where minor component modifications were made to better adapt a system to the  properties of the new 
refrigerants. In all cases, the lubricants used for these studies were the commercial polyol ester (POE) lubricants 
used today with R-410A. But commercial POE lubricants used today are much less compatible with R-32 and 
HFC/HFO blends. There is concern that issues may arise with long term reliability of compressors due to inadequate 
lubrication, poor oil return to the compressor and undesirable lubricant hold up in the system; problems that would 
not be observed in the short term capacity and energy efficiency tests conducted within the AREP program. But 
regardless, there is also interest in understanding if properly optimized lubricants can improve the overall 
performance of low GWP-based systems.  
 

2.  EXPERIMENTAL 
 

2.1 Refrigerant/Lubricant Miscibility Measurements 
Glass tubes were charged with predetermined volumes of lubricant having a moisture content of less than 25 ppm. 
The tubes were then attached to a gas manifold of known volume and evacuated to < 13 Pa.  The tubes were then 
cooled using liquid nitrogen and individually charged with predetermined amounts of refrigerant using pressure 
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 (a)                 (b) 
 

Figure 2: Schematic of (a) the Mini Traction Machine and (b) the Ball-on-Disk Contact Geometry  
 

carrying polyol esters used today with R-410A and other HFC refrigerants (the current state of technology).  
Traditional polyol esters used commercially today are typically of the general structures shown in Figure 3. They are 
prepared by the reaction of either pentaerythritol or dipentaerythritol with carboxylic acids to produce a thermally 
stable lubricant with good miscibility in HFC refrigerants. The exact chemical structure of the starting carboxylic 
acids can be selected to produce a lubricant with a wide variation in physical properties that includes viscosity and 
cohesive properties such as solubility with other substances. For refrigeration applications, the mixture of acids is 
selected that provides a lubricant with properties optimized to a particular refrigerant class or even a specific 
refrigerant. The advanced polyol esters (APOE) of the study are prepared by selective polymerization of traditional 
pentaerythritol esters. The technology has been used for many years to prepare high viscosity polyol esters for 
industrial lubrication but has only recently been refined to prepare HFC miscible refrigeration lubricants (Carr, et al., 
2014, Liebfried, 1972)  
 

Table 1: Physical Properties of the POE Lubricants Included in the Study 
 

Lubricant 32 cSt POE 1 32 cSt POE 2  68 cSt POE 1 68 cSt APOE 80 cSt APOE 
KV @ 40 °C 31 31 72 64.1 80.3 

KV @ 100 °C 5.8 5.6 9.8 9.4 10.1 
Viscosity Index 129 120 120 126 107 
Density (Kg/L) 0.998 0.996 0.987 1.036 0.999 
Pour Point (°C) -60 -54 -44 -45 -42 
Flash Point (°C) 260 249 277 243 285 
Critical Solution Temperature in R-32 

10 vol% Oil in 
Refrigerant 

+2 -32 +10 -7 -18 

30 vol% Oil in 
Refrigerant 

Not Miscible -20 Not Miscible -23 -6 

 
3.2 Miscibility of POE Lubricants with R-32 Refrigerant 
Polyol ester lubricants were the oil of choice to replace mineral oils in stationary applications during the major 
conversion from CFCs and HCFCs to HFCs starting in the 1990s.  Figure 4a shows the miscibility profile of 32 cSt 
POE 1 with R-410A refrigerant. The figure shows how the phase behavior of the refrigerant/lubricant mixture varies 
as a function of both the concentration of lubricant in refrigerant and temperature. HFC/POE mixtures typically have 
two distinct phase separation temperatures at any given concentration of lubricant between -60 and +70 °C.  But an 
important trait of any good refrigerant lubricant is that a single phase exists over the entire range of relative 
concentrations between -20 to 60 °C.  Such phase behavior provides confidence that the R-410A/ISO 32 POE 1 
mixture will remain as a single phase over the entire temperature operating range of the refrigeration system. In 
contrast, the miscibility profile of the same 32 cSt POE 1 with R-32 is shown in Figure 4b. The profile contains 
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Table 2: ASTM D 3233 Load at Failure for Select POE Lubricants 

 
POE Lubricant ID ISO Viscosity Grade and Description ASTM D 3233 Failure Load (Method A), 

(lbs. force at pin failure) 
POEs Designed for R-410A 
32 cSt POE 1 ISO 32 POE designed for R-410A 950 
68 cSt POE 1 ISO 68 POE designed for R-410A 875 
POEs Designed for R-32 
32 cSt POE 2 ISO 32 Pentaerythritol Ester 750 
68 cSt POE 2 ISO 68 Pentaerythritol Ester 700 
32 cSt APOE ISO 32 Advanced POE >1000 
46 cSt APOE ISO 46 Advanced POE >1000 
68 cSt APOE  ISO 68 Advanced POE >1000 
80 cSt APOE ISO 80 Advanced POE 875 

  
Stribeck curve (LaFountain et al., 2001) and provides important information on the frictional properties of the 
lubricants under conditions of mixed film and fluid film (hydrodynamic) lubrication. At very low entrainmentspeeds 
there is some direct metal-to-metal asperity contact (near boundary lubrication conditions), but as the entrainment 
speed increases there is a pressure buildup between the contacting surfaces due to a hydraulic effect of increasing oil 
suction into the contact inlet. The increasing pressure in the contact inlet results in a progression from near boundary, 
to mixed film, to complete fluid film (hydrodynamic) lubrication. Under conditions of near boundary and mixed 
film lubrication, also termed the elastohydrodynamic lubrication (EHL) regime, the high pressure in the contact 
produces local elastic flattening of the surfaces and increases the viscosity of the lubricant. In such contacts, the CoF 
is determined by the molecular structure of the lubricant and contact temperature (Gunsel et al., 1999)( Smeeth and 
Spikes, 1996).  
  
The 32 cSt POE 1 (designed for HFC refrigerants in 1998 to 2000) is an example of a perfectly optimized lubricant 
in terms of miscibility, load carrying and lubricity performance. It has the lowest CoF observed of any of the 
lubricants. The R-32 miscible lubricants fall into two general classes; traditional POEs and advanced POEs (APOE). 
The CoF traces as a function of entrainment speed illustrate two major points. First, the frictional properties of the 
traditional POEs deteriorate as the ISO viscosity grade is increased and changes to structure are made to improve 
miscibility with R-32. Second, the R-32 miscible APOE lubricants can be designed to provide nearly identical 
frictional properties to a premium HFC miscible ISO 32 POE while still maintaining good miscibility with R-32. 
However, even this class of lubricants has limits since the ISO 80 APOE sacrifices lubricity performance in order to 
maintain miscibility with R-32.  Tests conducted at 80 °C and 120 °C (not shown) displayed a similar trend. 
 

4. CONCLUSIONS 
 
Commercial synthetic lubricants used today with R-410A have significantly different compatibility with many of the 
alternative refrigerants being considered as low GWP replacements.  R-32 and related blends provide a significant 
lubrication challenge.  It may be necessary to use higher viscosity grade lubricants which are miscible with R-32 to 
provide equivalent performance and system reliability. The physical properties, miscibility, load carrying properties 
of several types of candidate POE lubricants for use with R-32 were compared in bench tests. The results suggest 
that one developmental class of unique advanced POEs (APOEs) can be prepared that have suitable miscibility in R-
32 while still maintaining the high load carrying and lubricity of premium POEs used today with R-410A. 
Subsequent papers and presentations will describe the solution properties of the APOE/R-32 working fluids (Urrego 
et. al., 2014), energy efficiency tests in full systems (Benanti et al., 2014) and lubricant mass distribution in a 
convertible split system residential air-conditioner (Wujek et. al, 2014). 
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Figure 6: Coefficient of Friction as a Function of Entrainment Speed at 40 °C 
 

NOMENCLATURE 
 

APOE Advance POE (–) 
AHRI Air-Conditioner Heating and Refrigeration Institute (–) 
AREP Alternate Refrigerant Evaluation Program (–) 
ASHRAE American Society of Heating, Refrigerating and 
 Air-Conditioning Engineers (–) 
ASTM American Society for Testing and Materials (–) 
°C  Degrees Celsius (–) 
CFC Chlorofluorocarbon (–) 
COP  Coefficient of Performance (–) 
COF Coefficient of Friction (–) 
cSt Centistokes (viscosity) (millimeter/second2) 
GWP  Global Warming Potential (–) 
HCFC Hydrochlorofluorocarbon (–) 
HFC Hydrfluorocarbon (–) 
HFO Hydrofluoro-olefin (–) 
KV Kinematic Viscosity, Centistokes (millimeter/second2) 
MTM Mini Traction  (–) 
N Newton ( kilogram meter/second2) 
POE Polyol Ester (–) 
ppm parts per million (milligrams/liter) 
Pa Pascals (units?) 
PVT Pressure-Viscosity-Temperature (Bar-cSt-°Centigrade) 
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SRR Slide-Role-Ratio (–) 
Vdisk Velocity of the MTM disk (millimeter/second) 
Vball Velocity of the MTM ball (millimeter/second) 
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