
Data Information Literacy Case Study Directory
Volume 1 Purdue University
Number 1 General Engineering Article 1

2015

Electrical and Computer Engineering/
Undergraduates/ Carlson & SappNelson/ Purdue
University/ 2012
Jake Carlson
Purdue University, jakecar@umich.edu

Megan R. Sapp Nelson
Purdue University, msn@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/dilcs

Part of the Electrical and Computer Engineering Commons, and the Library and Information
Science Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Carlson, Jake and Sapp Nelson, Megan R. (2015) "Electrical and Computer Engineering/ Undergraduates/ Carlson & SappNelson/
Purdue University/ 2012," Data Information Literacy Case Study Directory: Vol. 1: No. 1, Article 1.
http://dx.doi.org/10.5703/1288284315477

http://docs.lib.purdue.edu/dilcs?utm_source=docs.lib.purdue.edu%2Fdilcs%2Fvol1%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/dilcs/vol1?utm_source=docs.lib.purdue.edu%2Fdilcs%2Fvol1%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/dilcs/vol1/iss1?utm_source=docs.lib.purdue.edu%2Fdilcs%2Fvol1%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/dilcs/vol1/iss1/1?utm_source=docs.lib.purdue.edu%2Fdilcs%2Fvol1%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/dilcs?utm_source=docs.lib.purdue.edu%2Fdilcs%2Fvol1%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=docs.lib.purdue.edu%2Fdilcs%2Fvol1%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1018?utm_source=docs.lib.purdue.edu%2Fdilcs%2Fvol1%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1018?utm_source=docs.lib.purdue.edu%2Fdilcs%2Fvol1%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.5703/1288284315477

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

ADDRESSING SOFTWARE CODE AS DATA: An Embedded Librarian Approach

Jake Carlson, University of Michigan

Megan Sapp Nelson, Purdue University

INTRODUCTION

This Data Information Literacy (DIL)

Museum and Library Services (IMLS)

with Engineering Projects in Community Service (EPICS), a course for undergraduate student

variety of disciplines. We primarily worked with the graduate teaching assistants (TAs) who graded

undergraduate design submissions produced during the design cycle. The software teams created code

based data sets and supporting documentation in a

code documentation was the primary DIL need of the software teams.

To respond to these needs, the Purdue DIL team developed a rubric that provided guidance for students

to create and TAs to evaluate the documentation. Our team created a series of suggested exercises for

students that tied specific data management activities to phases of the engineering design cycle used by

EPICS (Lima & Oakes, 2006). We then implemented an embedded librarian service withi

teams. We handed out the rubrics and suggested exercises, offered a skill

enrich the students’ knowledge, met with the TAs to help them understand the document, and then

served as design reviewers (outside asses

To assess the intervention, we used the design notebooks created by individual team members to

identify instances where the students demonstrated DIL objectives. We created a coding schema that

standardized notebook analysis across tea

students did not adequately record their coding decisions or articulate the rationale behind these

decisions.

 While students showed a range in skill level in personal mastery of DIL, widespread we

evident in the competencies of data management and organization, data curation and reuse, and data

quality and documentation. The core of our program was the integration of librarians within a

preexisting, highly structured course. In the

team that is responsible for ensuring that the documentation is of sufficient quality that it can be easily

understood and is complete enough to ensure continued development of the project.

ENVIRONMENTAL SCAN OF DATA MANAGEMENT PRACTICES FOR SOFTWARE CODE

Data curators and digital preservation experts are paying more attention to software code as it is not

uncommon for code to be an important component of a data set or other electronic object (Matth

Shaon, Bicarregui, & Jones, 2010). If the data set is to be curated effectively, it logically follows that the

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

ADDRESSING SOFTWARE CODE AS DATA: An Embedded Librarian Approach

Jake Carlson, University of Michigan

Megan Sapp Nelson, Purdue University

This Data Information Literacy (DIL) team, one of two Purdue University teams in the Institute of

Museum and Library Services (IMLS)–funded project, partnered with soft- ware design teams involved

with Engineering Projects in Community Service (EPICS), a course for undergraduate student

variety of disciplines. We primarily worked with the graduate teaching assistants (TAs) who graded

undergraduate design submissions produced during the design cycle. The software teams created code

based data sets and supporting documentation in a variety of languages and platforms. The creation of

code documentation was the primary DIL need of the software teams.

To respond to these needs, the Purdue DIL team developed a rubric that provided guidance for students

documentation. Our team created a series of suggested exercises for

students that tied specific data management activities to phases of the engineering design cycle used by

EPICS (Lima & Oakes, 2006). We then implemented an embedded librarian service withi

teams. We handed out the rubrics and suggested exercises, offered a skill-training session to further

enrich the students’ knowledge, met with the TAs to help them understand the document, and then

served as design reviewers (outside assessors) for the teams.

To assess the intervention, we used the design notebooks created by individual team members to

identify instances where the students demonstrated DIL objectives. We created a coding schema that

standardized notebook analysis across teams. The assessment concluded that on the individual level,

students did not adequately record their coding decisions or articulate the rationale behind these

While students showed a range in skill level in personal mastery of DIL, widespread we

evident in the competencies of data management and organization, data curation and reuse, and data

quality and documentation. The core of our program was the integration of librarians within a

preexisting, highly structured course. In the future, we plan to focus on implementing a role within the

team that is responsible for ensuring that the documentation is of sufficient quality that it can be easily

understood and is complete enough to ensure continued development of the project.

MENTAL SCAN OF DATA MANAGEMENT PRACTICES FOR SOFTWARE CODE

Data curators and digital preservation experts are paying more attention to software code as it is not

uncommon for code to be an important component of a data set or other electronic object (Matth

Shaon, Bicarregui, & Jones, 2010). If the data set is to be curated effectively, it logically follows that the

This work is licensed under the Creative Commons Attribution 4.0 International

team, one of two Purdue University teams in the Institute of

ware design teams involved

with Engineering Projects in Community Service (EPICS), a course for undergraduate students from a

variety of disciplines. We primarily worked with the graduate teaching assistants (TAs) who graded

undergraduate design submissions produced during the design cycle. The software teams created code-

variety of languages and platforms. The creation of

To respond to these needs, the Purdue DIL team developed a rubric that provided guidance for students

documentation. Our team created a series of suggested exercises for

students that tied specific data management activities to phases of the engineering design cycle used by

EPICS (Lima & Oakes, 2006). We then implemented an embedded librarian service within the soft- ware

training session to further

enrich the students’ knowledge, met with the TAs to help them understand the document, and then

To assess the intervention, we used the design notebooks created by individual team members to

identify instances where the students demonstrated DIL objectives. We created a coding schema that

ms. The assessment concluded that on the individual level,

students did not adequately record their coding decisions or articulate the rationale behind these

While students showed a range in skill level in personal mastery of DIL, widespread weak- ness was

evident in the competencies of data management and organization, data curation and reuse, and data

quality and documentation. The core of our program was the integration of librarians within a

future, we plan to focus on implementing a role within the

team that is responsible for ensuring that the documentation is of sufficient quality that it can be easily

Data curators and digital preservation experts are paying more attention to software code as it is not

uncommon for code to be an important component of a data set or other electronic object (Matthews,

Shaon, Bicarregui, & Jones, 2010). If the data set is to be curated effectively, it logically follows that the

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

accompanying code must be accounted for in all curation planning and activities. Managing and curating

software code as a component of a dat

would otherwise be encountered in curating data. These challenges include the myriad of components

and dependencies of code (such as externally focused documentation, internal documentation, mu

versions of iterative code created, and so forth), the practice of building on or incorporating code

developed over time or from multiple authors, and the rapid pace of new technologies that are

introduced and adopted by software code writers. There

require additional planning and consideration.

Although the literature on the curation of software code as a component of a data set specifically is

relatively limited, there is a great deal of literature that

software code more generally. Data management and organization, and what we referred to in the DIL

project as data quality and documentation in particular, have received a significant amount of attention.

We focused our environmental scan on a subset of material that appeared most relevant to address the

issues faced by EPICS. We also selected a range of materials that touched on each of the 12

competencies in some way. The selected materials in our review included sc

publications, reports, books, and websites to incorporate the perspectives of both academics and

professionals in the field.

This environmental scan was helpful in in

reputation for sharing their work with others as a matter of practice. For example, the ideas of “open

source” and “open access” are assumed to be a strong component of the culture of practice of

developers, which was largely supported in our literature review (C

Hal- loran & Scherlis, 2003). However, despite an ethos and willingness to share code, many developers

do not provide the documentation necessary for others to understand or make use of their code easily

(Sojer & Henkel, 2010; von Krogh, Spaeth, & Haefliger, 2005). Furthermore, code comments or other

descriptions are often absent, or do not reflect the intent of the coder sufficiently, making it difficult if

not impossible to understand the decisions made in developing the

Menzies & Di Stefano, 2003). This is despite the availability of resources to assist in the documenting

process in software repositories and the availability of tools such as Doxygen (n.d.). Software coding is

frequently a collaborative activity, particularly in the workplace, as coders will often be assigned to work

on existing code as a part of a team whose membership will change as collaborators transition in and

out of a project. Documentation, description, and organization

activities for a soft- ware group, but they are often activities that are neglected (Lethbridge, Singer, &

Forward, 2003). Many researchers in the computer science field present these issues as research

questions to solve and suggest technology based solutions to address them (Bettenburg, Adams,

Hassan, & Smidt, 2010; Grechanik et al., 2010; Hasan, Stroulia, Barbosa, & Alalfi, 2010). However, these

proposed technology- based solutions are often more theoretical than

therefore of limited practical value.

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

accompanying code must be accounted for in all curation planning and activities. Managing and curating

software code as a component of a data set presents several challenges in addition to the ones that

would otherwise be encountered in curating data. These challenges include the myriad of components

and dependencies of code (such as externally focused documentation, internal documentation, mu

versions of iterative code created, and so forth), the practice of building on or incorporating code

developed over time or from multiple authors, and the rapid pace of new technologies that are

introduced and adopted by software code writers. Therefore, data sets that include software code may

require additional planning and consideration.

Although the literature on the curation of software code as a component of a data set specifically is

relatively limited, there is a great deal of literature that touches on the 12 DIL competencies and

software code more generally. Data management and organization, and what we referred to in the DIL

project as data quality and documentation in particular, have received a significant amount of attention.

our environmental scan on a subset of material that appeared most relevant to address the

issues faced by EPICS. We also selected a range of materials that touched on each of the 12

competencies in some way. The selected materials in our review included scholarly articles, trade

publications, reports, books, and websites to incorporate the perspectives of both academics and

This environmental scan was helpful in in- forming our work in several ways. Code developers have a

ion for sharing their work with others as a matter of practice. For example, the ideas of “open

source” and “open access” are assumed to be a strong component of the culture of practice of

developers, which was largely supported in our literature review (Crowston, Annabi, & Howison, 2003;

loran & Scherlis, 2003). However, despite an ethos and willingness to share code, many developers

do not provide the documentation necessary for others to understand or make use of their code easily

010; von Krogh, Spaeth, & Haefliger, 2005). Furthermore, code comments or other

descriptions are often absent, or do not reflect the intent of the coder sufficiently, making it difficult if

not impossible to understand the decisions made in developing the code (Marcus & Menzies, 2010;

Menzies & Di Stefano, 2003). This is despite the availability of resources to assist in the documenting

process in software repositories and the availability of tools such as Doxygen (n.d.). Software coding is

laborative activity, particularly in the workplace, as coders will often be assigned to work

on existing code as a part of a team whose membership will change as collaborators transition in and

out of a project. Documentation, description, and organization of code are all recognized as important

ware group, but they are often activities that are neglected (Lethbridge, Singer, &

Forward, 2003). Many researchers in the computer science field present these issues as research

solve and suggest technology based solutions to address them (Bettenburg, Adams,

Hassan, & Smidt, 2010; Grechanik et al., 2010; Hasan, Stroulia, Barbosa, & Alalfi, 2010). However, these

based solutions are often more theoretical than applied in nature by design and

therefore of limited practical value.

This work is licensed under the Creative Commons Attribution 4.0 International

accompanying code must be accounted for in all curation planning and activities. Managing and curating

a set presents several challenges in addition to the ones that

would otherwise be encountered in curating data. These challenges include the myriad of components

and dependencies of code (such as externally focused documentation, internal documentation, multiple

versions of iterative code created, and so forth), the practice of building on or incorporating code

developed over time or from multiple authors, and the rapid pace of new technologies that are

fore, data sets that include software code may

Although the literature on the curation of software code as a component of a data set specifically is

touches on the 12 DIL competencies and

software code more generally. Data management and organization, and what we referred to in the DIL

project as data quality and documentation in particular, have received a significant amount of attention.

our environmental scan on a subset of material that appeared most relevant to address the

issues faced by EPICS. We also selected a range of materials that touched on each of the 12

holarly articles, trade

publications, reports, books, and websites to incorporate the perspectives of both academics and

forming our work in several ways. Code developers have a

ion for sharing their work with others as a matter of practice. For example, the ideas of “open

source” and “open access” are assumed to be a strong component of the culture of practice of

rowston, Annabi, & Howison, 2003;

loran & Scherlis, 2003). However, despite an ethos and willingness to share code, many developers

do not provide the documentation necessary for others to understand or make use of their code easily

010; von Krogh, Spaeth, & Haefliger, 2005). Furthermore, code comments or other

descriptions are often absent, or do not reflect the intent of the coder sufficiently, making it difficult if

code (Marcus & Menzies, 2010;

Menzies & Di Stefano, 2003). This is despite the availability of resources to assist in the documenting

process in software repositories and the availability of tools such as Doxygen (n.d.). Software coding is

laborative activity, particularly in the workplace, as coders will often be assigned to work

on existing code as a part of a team whose membership will change as collaborators transition in and

of code are all recognized as important

ware group, but they are often activities that are neglected (Lethbridge, Singer, &

Forward, 2003). Many researchers in the computer science field present these issues as research

solve and suggest technology based solutions to address them (Bettenburg, Adams,

Hassan, & Smidt, 2010; Grechanik et al., 2010; Hasan, Stroulia, Barbosa, & Alalfi, 2010). However, these

applied in nature by design and

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

The environmental scan led to several other observations and findings that informed our work with

EPICS. We noted some related interests within the curation and software com

they used different terminologies in expressing these interests. For example, the idea of “software

traceability”—or the practice of recording design decisions including the who, what, where, when, and

why and explicitly connecting these d

Gueheneuc, & Antoniol, 2011; Bashir & Qadir, 2006)

“provenance,” or tracking and accounting for actions and decisions made in curating a d

(Bashir & Qadir, 2006). Traceability is a quality assurance process ensuring that design decisions are

readily identified and accounted for over the course of developing the code. Provenance is tracked to

ensure the integrity of the existing object and to demonstrate compliance with the policies and practices

of the repository. It is the difference between developing something and maintaining it. We also came

across a school of thought that advocated for “literate programming” and “human reada

essence of the argument was that rather than creating code to solely be machine readable, developers

should create code with the deliberate intent of making it suitable for human reading as well (Knuth,

1984). An offshoot of this idea, “clea

programming (Martin, 2008). Finally, the need to preserve software code seems to be catching on in the

data curation field, though we did not observe this as much in the software literature, wher

seems to be a “technology moves too fast” mentality (Chen, 2001). One particularly useful resource in

this area of preservation is the Software Sustainability Institute (http://www.software.ac.uk/), which

provides services and resources to ensure t

beyond its original life span.

METHODOLOGY

Our project partner was Engineering Projects in Community Service (EPICS), a service

Purdue University (https://engineering.purdue.edu/

engineering design concepts and skills by working with community service agencies to develop

customized engineering solutions that address real

disciplines across the university and academic years to work together on a common project. Therefore

EPICS capitalizes on the diversity of strengths that the participating students bring each semester, but

also must manage the gaps in their knowledge and abilities

with project personnel turning over each semester as projects continue till completion. One of the

librarians on this project, Megan Sapp Nelson, worked with EPICS on previous projects and had

developed a strong understanding of their information needs generally, as well as their working culture.

As an advisor to EPICS software teams for 4 years, she was familiar with the highly structured nature of

the design course and had previously developed information l

the quality of the conceptual design performed in the projects (Sapp Nelson, 2009, 2013). From past

experiences, she was aware that students had difficulty managing their software code and documenting

their work, which presented problems for all involved, including future students coming into the project,

faculty advisors and administrators in EPICS, and the community partners who will make use of the

students’ projects.

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

The environmental scan led to several other observations and findings that informed our work with

EPICS. We noted some related interests within the curation and software com- munities bu

they used different terminologies in expressing these interests. For example, the idea of “software

or the practice of recording design decisions including the who, what, where, when, and

why and explicitly connecting these decisions to the software for the purposes of quality assurance (Ali,

Gueheneuc, & Antoniol, 2011; Bashir & Qadir, 2006)—has commonalities with the data curation idea of

“provenance,” or tracking and accounting for actions and decisions made in curating a d

(Bashir & Qadir, 2006). Traceability is a quality assurance process ensuring that design decisions are

readily identified and accounted for over the course of developing the code. Provenance is tracked to

object and to demonstrate compliance with the policies and practices

of the repository. It is the difference between developing something and maintaining it. We also came

across a school of thought that advocated for “literate programming” and “human reada

essence of the argument was that rather than creating code to solely be machine readable, developers

should create code with the deliberate intent of making it suitable for human reading as well (Knuth,

1984). An offshoot of this idea, “clean code,” was particularly useful in planning our educational

programming (Martin, 2008). Finally, the need to preserve software code seems to be catching on in the

data curation field, though we did not observe this as much in the software literature, wher

seems to be a “technology moves too fast” mentality (Chen, 2001). One particularly useful resource in

this area of preservation is the Software Sustainability Institute (http://www.software.ac.uk/), which

provides services and resources to ensure that software used in research is available and sup

Our project partner was Engineering Projects in Community Service (EPICS), a service-learning center at

Purdue University (https://engineering.purdue.edu/EPICS). EPICS is focused on teaching undergraduates

engineering design concepts and skills by working with community service agencies to develop

customized engineering solutions that address real-life needs. EPICS brings students from a variety of

nes across the university and academic years to work together on a common project. Therefore

EPICS capitalizes on the diversity of strengths that the participating students bring each semester, but

also must manage the gaps in their knowledge and abilities. This is a highly transitory group of students,

with project personnel turning over each semester as projects continue till completion. One of the

librarians on this project, Megan Sapp Nelson, worked with EPICS on previous projects and had

rong understanding of their information needs generally, as well as their working culture.

As an advisor to EPICS software teams for 4 years, she was familiar with the highly structured nature of

the design course and had previously developed information literacy education interventions to improve

the quality of the conceptual design performed in the projects (Sapp Nelson, 2009, 2013). From past

experiences, she was aware that students had difficulty managing their software code and documenting

which presented problems for all involved, including future students coming into the project,

faculty advisors and administrators in EPICS, and the community partners who will make use of the

This work is licensed under the Creative Commons Attribution 4.0 International

The environmental scan led to several other observations and findings that informed our work with

munities but found that

they used different terminologies in expressing these interests. For example, the idea of “software

or the practice of recording design decisions including the who, what, where, when, and

ecisions to the software for the purposes of quality assurance (Ali,

has commonalities with the data curation idea of

“provenance,” or tracking and accounting for actions and decisions made in curating a digital object

(Bashir & Qadir, 2006). Traceability is a quality assurance process ensuring that design decisions are

readily identified and accounted for over the course of developing the code. Provenance is tracked to

object and to demonstrate compliance with the policies and practices

of the repository. It is the difference between developing something and maintaining it. We also came

across a school of thought that advocated for “literate programming” and “human readable code.” The

essence of the argument was that rather than creating code to solely be machine readable, developers

should create code with the deliberate intent of making it suitable for human reading as well (Knuth,

n code,” was particularly useful in planning our educational

programming (Martin, 2008). Finally, the need to preserve software code seems to be catching on in the

data curation field, though we did not observe this as much in the software literature, where there

seems to be a “technology moves too fast” mentality (Chen, 2001). One particularly useful resource in

this area of preservation is the Software Sustainability Institute (http://www.software.ac.uk/), which

hat software used in research is available and sup- ported

learning center at

EPICS). EPICS is focused on teaching undergraduates

engineering design concepts and skills by working with community service agencies to develop

life needs. EPICS brings students from a variety of

nes across the university and academic years to work together on a common project. Therefore

EPICS capitalizes on the diversity of strengths that the participating students bring each semester, but

. This is a highly transitory group of students,

with project personnel turning over each semester as projects continue till completion. One of the

librarians on this project, Megan Sapp Nelson, worked with EPICS on previous projects and had

rong understanding of their information needs generally, as well as their working culture.

As an advisor to EPICS software teams for 4 years, she was familiar with the highly structured nature of

iteracy education interventions to improve

the quality of the conceptual design performed in the projects (Sapp Nelson, 2009, 2013). From past

experiences, she was aware that students had difficulty managing their software code and documenting

which presented problems for all involved, including future students coming into the project,

faculty advisors and administrators in EPICS, and the community partners who will make use of the

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

The DIL team interviewed four faculty and tw

version of the Data Curation Pro- files Toolkit instrument (available for download at

http://dx.doi.org/10.5703/1288284315510). To incorporate a broad perspective on managing and

curating software code, we interviewed individuals who were affiliated and unaffiliated with EPICS and

who came from three disciplines. Table 5.1 shows the affiliations of the interviewees.

TABLE 5.1 Purdue DIL Team Interviewees by Department and Affiliation

DIL Interviewee

Faculty #1

Faculty #2

Faculty #3

Faculty #4

Graduate student #1

Graduate student #2

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

The DIL team interviewed four faculty and two graduate students in the spring of 2012 using a modified

files Toolkit instrument (available for download at

http://dx.doi.org/10.5703/1288284315510). To incorporate a broad perspective on managing and

code, we interviewed individuals who were affiliated and unaffiliated with EPICS and

who came from three disciplines. Table 5.1 shows the affiliations of the interviewees.

Purdue DIL Team Interviewees by Department and Affiliation

Academic Discipline EPICS Affiliation

Electrical engineering Affiliated

Engineering education Affiliated

Computer science Nonaffiliated

Computer science Nonaffiliated

Electrical engineering Nonaffiliated

Computer science Nonaffiliated

This work is licensed under the Creative Commons Attribution 4.0 International

o graduate students in the spring of 2012 using a modified

http://dx.doi.org/10.5703/1288284315510). To incorporate a broad perspective on managing and

code, we interviewed individuals who were affiliated and unaffiliated with EPICS and

EPICS Affiliation

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

Results of the Needs Assessment

Both the faculty and students rated each of the 12 DIL competencies on a 5

how important it was for graduate students to master the competency. The rating results by our six

participants are presented in Figure 5.1.

Among the top DIL competencies for the faculty we interviewed were data quality and documentation

and metadata and data description. It is interesting to note that faculty rated these two competencies

much higher than the graduate students did, demonstrating a disconn

perceptions of faculty and students in these areas. Further

12 competencies on average, despite students indicating that they place less importance on them.

Faculty recognized data quality and documentation in developing software code as a weak

students. While students frequently are instructed to document code development, their understanding

of what this documentation should consist of and the degree to which quality docum

necessary are often misunderstood, which leads to high variability in their team’s performance and in

the quality of the code. Faculty recognized metadata and data description as important. However, while

faculty were aware of the need for meta

understanding or skills to apply metadata nor to teach their students about it.

Conversely, graduate students rated data conversion and interoperability and discovery and acquisition

higher in importance than the faculty. For data conversion and interoperability, this is likely due to one

faculty member stating that her lab did not engage in converting data, and another stating that this was

not a skill that all students needed as long as they had ac

Rather, the area of particular interest for both faculty and students within this competency was the

prevention of data loss in the conversion process. For the discovery and acquisition competency, the

faculty indicated that it may not always be crucial to the research being conducted. For ex

projects were not making extensive reuse of software code. However, the graduate students stated that

they will search for existing code that performs similar f

which may explain their rating of this competency as more important than the faculty’s. Interestingly,

we found that the primary means of locating existing code for the graduate students and faculty we

interviewed is a literature search of conference proceedings. A literature search is then followed by a

Web search to find the project or author’s website where the code may be available.

On the basis of the interviews, our environmental scan, and our know

built the educational intervention around the data quality and documentation and the metadata and

data description competencies. Our intended audiences were the graduate student TAs and their

undergraduate team members in the EPICS program.

OVERVIEW OF THE EPICS ENVIRONMENT

The EPICS curriculum develops engineering design and professional skills in an environment intended to

be a bridge to the students’ professional careers. EPICS is a highly structured and intense environme

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

Both the faculty and students rated each of the 12 DIL competencies on a 5-point scale ac

how important it was for graduate students to master the competency. The rating results by our six

participants are presented in Figure 5.1.

p DIL competencies for the faculty we interviewed were data quality and documentation

and metadata and data description. It is interesting to note that faculty rated these two competencies

much higher than the graduate students did, demonstrating a disconnect between the attitudes and

perceptions of faculty and students in these areas. Further- more, these two are highly rated within the

12 competencies on average, despite students indicating that they place less importance on them.

quality and documentation in developing software code as a weak

students. While students frequently are instructed to document code development, their understanding

of what this documentation should consist of and the degree to which quality documentation is

necessary are often misunderstood, which leads to high variability in their team’s performance and in

the quality of the code. Faculty recognized metadata and data description as important. However, while

faculty were aware of the need for metadata, they reported that they themselves did not have the

understanding or skills to apply metadata nor to teach their students about it.

Conversely, graduate students rated data conversion and interoperability and discovery and acquisition

tance than the faculty. For data conversion and interoperability, this is likely due to one

faculty member stating that her lab did not engage in converting data, and another stating that this was

not a skill that all students needed as long as they had access to someone knowledgeable in this area.

Rather, the area of particular interest for both faculty and students within this competency was the

prevention of data loss in the conversion process. For the discovery and acquisition competency, the

dicated that it may not always be crucial to the research being conducted. For ex

projects were not making extensive reuse of software code. However, the graduate students stated that

they will search for existing code that performs similar functions to the code that they were generating,

which may explain their rating of this competency as more important than the faculty’s. Interestingly,

we found that the primary means of locating existing code for the graduate students and faculty we

interviewed is a literature search of conference proceedings. A literature search is then followed by a

Web search to find the project or author’s website where the code may be available.

On the basis of the interviews, our environmental scan, and our knowledge of EPICS, we developed and

built the educational intervention around the data quality and documentation and the metadata and

data description competencies. Our intended audiences were the graduate student TAs and their

he EPICS program.

OVERVIEW OF THE EPICS ENVIRONMENT

The EPICS curriculum develops engineering design and professional skills in an environment intended to

be a bridge to the students’ professional careers. EPICS is a highly structured and intense environme

This work is licensed under the Creative Commons Attribution 4.0 International

point scale ac- cording to

how important it was for graduate students to master the competency. The rating results by our six

p DIL competencies for the faculty we interviewed were data quality and documentation

and metadata and data description. It is interesting to note that faculty rated these two competencies

ect between the attitudes and

more, these two are highly rated within the

12 competencies on average, despite students indicating that they place less importance on them.

quality and documentation in developing software code as a weak- ness in

students. While students frequently are instructed to document code development, their understanding

entation is

necessary are often misunderstood, which leads to high variability in their team’s performance and in

the quality of the code. Faculty recognized metadata and data description as important. However, while

data, they reported that they themselves did not have the

Conversely, graduate students rated data conversion and interoperability and discovery and acquisition

tance than the faculty. For data conversion and interoperability, this is likely due to one

faculty member stating that her lab did not engage in converting data, and another stating that this was

cess to someone knowledgeable in this area.

Rather, the area of particular interest for both faculty and students within this competency was the

prevention of data loss in the conversion process. For the discovery and acquisition competency, the

dicated that it may not always be crucial to the research being conducted. For ex- ample, their

projects were not making extensive reuse of software code. However, the graduate students stated that

unctions to the code that they were generating,

which may explain their rating of this competency as more important than the faculty’s. Interestingly,

we found that the primary means of locating existing code for the graduate students and faculty we

interviewed is a literature search of conference proceedings. A literature search is then followed by a

ledge of EPICS, we developed and

built the educational intervention around the data quality and documentation and the metadata and

data description competencies. Our intended audiences were the graduate student TAs and their

The EPICS curriculum develops engineering design and professional skills in an environment intended to

be a bridge to the students’ professional careers. EPICS is a highly structured and intense environment

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

as students must take on a fair amount of work in new and unfamiliar areas and are held to high

standards of professionalism by their instructors.

This environment requires students to take initiative in developing their assigned projects independently

but with the knowledge that their instructors will evaluate their work and performance. Consequently,

students receive rubrics that will be used for evaluations so that they better understand what is

expected of them. Students also learn the design life cy

their projects (Lima & Oakes, 2006). Students map their work to the stages of the design life cycle as

they progress through the course. The work is performed in teams, and within each team students

assume particular roles, such as team leader or as primary contact for the project partner (see Table

5.2). EPICS uses a number of different approaches to develop these skills. Typically, at the beginning of

the semester, EPICS holds introductory lectures for student

will evaluate their performance. Next, students participate in a series of skill sessions to teach them

some of the fundamentals they will need to know to be successful, such as programming languages,

team building skills, and appropriate use of laboratory resources. All students meet for weekly lab

sessions during the semester, where they discuss their progress and the challenges they have

encountered while working with their team. As the semester progre

two separate design review sessions, which often include a representative from the project partner

organization and professional engineers. There, students receive feedback and suggestions on their

work and the quality of their presentations.

TABLE 5.2 Defined Team Roles in the EPICS Curriculum

Role Responsibility

Team leader Team member responsible for overseeing all projects

conducted by team in a given semester

Project

leader/

manager

Team member responsible for overseeing work on a

single project for a given semester

Project

partner liaison

Team member responsible for initiating and maintaining

communication with community partner

Advisor Faculty member assigned to oversee the student team

for a given semester

Graduate

teaching

assistant

Graduate student responsible for providing resources,

holding team accountable, and grading

In EPICS, students are expected to produce documentation that describes their own work as well as the

decisions and actions taken by the team to accompany their coding files. Stu

sets using multiple techniques. The primary source

notebooks or blogs required for completion of the EPICS class. Students store their notebooks in a

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

as students must take on a fair amount of work in new and unfamiliar areas and are held to high

standards of professionalism by their instructors.

This environment requires students to take initiative in developing their assigned projects independently

but with the knowledge that their instructors will evaluate their work and performance. Consequently,

students receive rubrics that will be used for evaluations so that they better understand what is

expected of them. Students also learn the design life cycle, a framework for developing and executing

their projects (Lima & Oakes, 2006). Students map their work to the stages of the design life cycle as

they progress through the course. The work is performed in teams, and within each team students

icular roles, such as team leader or as primary contact for the project partner (see Table

5.2). EPICS uses a number of different approaches to develop these skills. Typically, at the beginning of

the semester, EPICS holds introductory lectures for students that include distribution of the rubrics that

will evaluate their performance. Next, students participate in a series of skill sessions to teach them

some of the fundamentals they will need to know to be successful, such as programming languages,

ilding skills, and appropriate use of laboratory resources. All students meet for weekly lab

ing the semester, where they discuss their progress and the challenges they have

encountered while working with their team. As the semester progresses, students present their work in

two separate design review sessions, which often include a representative from the project partner

organization and professional engineers. There, students receive feedback and suggestions on their

of their presentations.

Defined Team Roles in the EPICS Curriculum

Faculty, Graduate, or

Undergraduate (F/G/U)

Team member responsible for overseeing all projects

conducted by team in a given semester

U

Team member responsible for overseeing work on a

single project for a given semester

U

Team member responsible for initiating and maintaining

communication with community partner

U

assigned to oversee the student team

for a given semester

Graduate student responsible for providing resources,

holding team accountable, and grading

G

In EPICS, students are expected to produce documentation that describes their own work as well as the

decisions and actions taken by the team to accompany their coding files. Stu- dents organize their data

sets using multiple techniques. The primary sources of project- level documentation are the design

notebooks or blogs required for completion of the EPICS class. Students store their notebooks in a

This work is licensed under the Creative Commons Attribution 4.0 International

as students must take on a fair amount of work in new and unfamiliar areas and are held to high

This environment requires students to take initiative in developing their assigned projects independently

but with the knowledge that their instructors will evaluate their work and performance. Consequently,

students receive rubrics that will be used for evaluations so that they better understand what is

cle, a framework for developing and executing

their projects (Lima & Oakes, 2006). Students map their work to the stages of the design life cycle as

they progress through the course. The work is performed in teams, and within each team students

icular roles, such as team leader or as primary contact for the project partner (see Table

5.2). EPICS uses a number of different approaches to develop these skills. Typically, at the beginning of

s that include distribution of the rubrics that

will evaluate their performance. Next, students participate in a series of skill sessions to teach them

some of the fundamentals they will need to know to be successful, such as programming languages,

ilding skills, and appropriate use of laboratory resources. All students meet for weekly lab

ing the semester, where they discuss their progress and the challenges they have

sses, students present their work in

two separate design review sessions, which often include a representative from the project partner

organization and professional engineers. There, students receive feedback and suggestions on their

Faculty, Graduate, or

Undergraduate (F/G/U)

In EPICS, students are expected to produce documentation that describes their own work as well as the

dents organize their data

level documentation are the design

notebooks or blogs required for completion of the EPICS class. Students store their notebooks in a

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

physical location near the lab meeting place or on a server in their digital form. The internal project

management documents and the external or user documentation are in a variety of Microsoft Office

files and are located on a server, wikis, or Subversion (SVN). Teams manage and store the code itself

using SVN. They write code using software languages such as C

Android and Apple mobile platform development tools. De

several software code data sets under development at any given time.

Within the EPICS environment, it is very important

outside of it. As projects typically span multiple semesters, students will transition in and out of the

team over the life of a project. As such, a need within EPICS is that the resulting c

be readily apparent, logical, and “human readable” to facilitate the transition between developers on

each project. Another consideration is that the software code has real

educational realm. The code is de- signed f

It is therefore very important that the code be designed and delivered in ways that support its ongoing

use and maintenance over time. More information about EPICS can be found on its website (

engineering.purdue.edu/EPICS).

The challenge for the DIL team involved supporting the development of useful software code products,

which was a complex endeavor made more complicated by the high rate of turnover among team

members between semesters. TAs are asked to hold their undergraduate student team members

accountable for the quality of their code during the grading process. However, it was evident from the

interviews that the TAs did not have the experience, com

code and the documentation that the students were submitting, and ultimately they had difficulty

holding the team members accountable.

EPICS as a whole did not have a cohesive, clearly articulated culture of practice regarding the

management and documentation of code. Some teams agreed to naming conventions for files and

variables or developed other “local” standards, but this was left up to the individual teams to decide.

Generally, the code writers looked to mor

rather than developing standards among the group by consensus. A few faculty advisors provided

expectations for code documentation, but it was not a standard across EPICS and happened

infrequently.

A variety of development tools were used as needed by indiv

documentation for code, such as JavaDocs

(http://www.oracle.com/technetwork/java/javase/doc

(http://www.yiiframework.com/). TAs supervised more than one team, which meant that the TAs had to

familiarize themselves with the tools that each team was using. On some

went through multiple weeks of training to teach them how to use the tools as well as introductory

coding skills. TAs provided guidance during this process and one

who were having difficulty.

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

physical location near the lab meeting place or on a server in their digital form. The internal project

gement documents and the external or user documentation are in a variety of Microsoft Office

files and are located on a server, wikis, or Subversion (SVN). Teams manage and store the code itself

using SVN. They write code using software languages such as C++ and JavaScript as well as utilizing the

Android and Apple mobile platform development tools. De- pending upon the team, there may be

several software code data sets under development at any given time.

Within the EPICS environment, it is very important to be able to share code both within a team and

outside of it. As projects typically span multiple semesters, students will transition in and out of the

team over the life of a project. As such, a need within EPICS is that the resulting code and code struc

ily apparent, logical, and “human readable” to facilitate the transition between developers on

each project. Another consideration is that the software code has real-world application out

signed for practical use by nonprofit agencies in the local community.

It is therefore very important that the code be designed and delivered in ways that support its ongoing

use and maintenance over time. More information about EPICS can be found on its website (

The challenge for the DIL team involved supporting the development of useful software code products,

which was a complex endeavor made more complicated by the high rate of turnover among team

s. TAs are asked to hold their undergraduate student team members

accountable for the quality of their code during the grading process. However, it was evident from the

interviews that the TAs did not have the experience, com- fort level, or tools to grade the quality of the

code and the documentation that the students were submitting, and ultimately they had difficulty

holding the team members accountable.

EPICS as a whole did not have a cohesive, clearly articulated culture of practice regarding the

ement and documentation of code. Some teams agreed to naming conventions for files and

variables or developed other “local” standards, but this was left up to the individual teams to decide.

Generally, the code writers looked to more experienced teammates to provide them with standards,

rather than developing standards among the group by consensus. A few faculty advisors provided

expectations for code documentation, but it was not a standard across EPICS and happened

ools were used as needed by individual teams that supported cre

documentation for code, such as JavaDocs

http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html

). TAs supervised more than one team, which meant that the TAs had to

familiarize themselves with the tools that each team was using. On some of the teams new students

went through multiple weeks of training to teach them how to use the tools as well as introductory

coding skills. TAs provided guidance during this process and one- on-one instruction for student coders

This work is licensed under the Creative Commons Attribution 4.0 International

physical location near the lab meeting place or on a server in their digital form. The internal project

gement documents and the external or user documentation are in a variety of Microsoft Office

files and are located on a server, wikis, or Subversion (SVN). Teams manage and store the code itself

++ and JavaScript as well as utilizing the

pending upon the team, there may be

to be able to share code both within a team and

outside of it. As projects typically span multiple semesters, students will transition in and out of the

ode and code structure

ily apparent, logical, and “human readable” to facilitate the transition between developers on

world application out- side of the

or practical use by nonprofit agencies in the local community.

It is therefore very important that the code be designed and delivered in ways that support its ongoing

use and maintenance over time. More information about EPICS can be found on its website (https://

The challenge for the DIL team involved supporting the development of useful software code products,

which was a complex endeavor made more complicated by the high rate of turnover among team

s. TAs are asked to hold their undergraduate student team members

accountable for the quality of their code during the grading process. However, it was evident from the

the quality of the

code and the documentation that the students were submitting, and ultimately they had difficulty

EPICS as a whole did not have a cohesive, clearly articulated culture of practice regarding the

ement and documentation of code. Some teams agreed to naming conventions for files and

variables or developed other “local” standards, but this was left up to the individual teams to decide.

vide them with standards,

rather than developing standards among the group by consensus. A few faculty advisors provided

expectations for code documentation, but it was not a standard across EPICS and happened

idual teams that supported creating

135444.html) and Yii

). TAs supervised more than one team, which meant that the TAs had to

of the teams new students

went through multiple weeks of training to teach them how to use the tools as well as introductory

one instruction for student coders

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

Faculty advisors generally agreed that the level of oversight for student coding projects was insufficient.

The TAs indicated that part of the difficulty in providing oversight was a subjective measure of quality

for the coding. Although EPICS faculty and

the software code as serious issues, they had not yet developed supporting materials or strong cultures

of practice in these areas within EPICS. Therefore the DIL team saw an opportunity to su

of the TAs, who in turn sup- ported the education of undergraduates in the EPICS program, through

developing resources and providing a framework for good software code documentation practices.

TABLE 5.3 - Learning Objectives for Students and

Target Audience Learning Objectives

Undergraduate

students who are

a part of software

development

EPICS teams will:

Recognize that documentation and description are integral components of

developing software code (and are

oneself and team members accountable for producing quality documentation and

description in a timely manner

Document own code and methods in developing the code in ways that enable the

reproduction of work by other

other students and the EPICS project partner

Create and communicate standard operating procedures for managing, organizing,

and documenting code and project work within the team in order to develop

consistent practice and to facilitate clear communication amongst team members

Teaching

assistants who

lead software

development

EPICS teams will:

Identify characteristics of well

recognize well

Evaluate project and software documentation in order to identify both positive and

negative data practices

Critique project and software documentation in order to assess quality and assign

grades

AN EMBEDDED LIBRARIAN APPROACH T

The DIL team developed goals and learning objectives for educational programs based on the results of

the interviews, environmental scans, and previous knowledge of EPICS. They had three overarching

goals:

1. To raise the students’ awareness of the need to generate quality documentation and description

of the software code they generated

2. To provide students and graduate TAs with the knowledge and tools to generate quality

documentation and description for software

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

Faculty advisors generally agreed that the level of oversight for student coding projects was insufficient.

The TAs indicated that part of the difficulty in providing oversight was a subjective measure of quality

for the coding. Although EPICS faculty and TAs raised documentation, organization, and transferability of

the software code as serious issues, they had not yet developed supporting materials or strong cultures

of practice in these areas within EPICS. Therefore the DIL team saw an opportunity to su

ported the education of undergraduates in the EPICS program, through

developing resources and providing a framework for good software code documentation practices.

Learning Objectives for Students and Teaching Assistants in EPICS

Learning Objectives

Recognize that documentation and description are integral components of

developing software code (and are not simply “busy work”) in order to hold

oneself and team members accountable for producing quality documentation and

description in a timely manner

Document own code and methods in developing the code in ways that enable the

reproduction of work by others in order to ensure the smooth transfer of work to

other students and the EPICS project partner

Create and communicate standard operating procedures for managing, organizing,

and documenting code and project work within the team in order to develop

istent practice and to facilitate clear communication amongst team members

Identify characteristics of well-written software documentation in order to

recognize well-written project and software documentation

Evaluate project and software documentation in order to identify both positive and

negative data practices

Critique project and software documentation in order to assess quality and assign

AN EMBEDDED LIBRARIAN APPROACH TO ADDRESSING DATA INFORMATION LITERACY NEEDS

The DIL team developed goals and learning objectives for educational programs based on the results of

the interviews, environmental scans, and previous knowledge of EPICS. They had three overarching

raise the students’ awareness of the need to generate quality documentation and description

of the software code they generated

To provide students and graduate TAs with the knowledge and tools to generate quality

documentation and description for software code

This work is licensed under the Creative Commons Attribution 4.0 International

Faculty advisors generally agreed that the level of oversight for student coding projects was insufficient.

The TAs indicated that part of the difficulty in providing oversight was a subjective measure of quality

TAs raised documentation, organization, and transferability of

the software code as serious issues, they had not yet developed supporting materials or strong cultures

of practice in these areas within EPICS. Therefore the DIL team saw an opportunity to support the work

ported the education of undergraduates in the EPICS program, through

developing resources and providing a framework for good software code documentation practices.

Recognize that documentation and description are integral components of

not simply “busy work”) in order to hold

oneself and team members accountable for producing quality documentation and

Document own code and methods in developing the code in ways that enable the

s in order to ensure the smooth transfer of work to

Create and communicate standard operating procedures for managing, organizing,

and documenting code and project work within the team in order to develop

istent practice and to facilitate clear communication amongst team members

written software documentation in order to

Evaluate project and software documentation in order to identify both positive and

Critique project and software documentation in order to assess quality and assign

O ADDRESSING DATA INFORMATION LITERACY NEEDS

The DIL team developed goals and learning objectives for educational programs based on the results of

the interviews, environmental scans, and previous knowledge of EPICS. They had three overarching

raise the students’ awareness of the need to generate quality documentation and description

To provide students and graduate TAs with the knowledge and tools to generate quality

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

3. To develop a shared cultural practice in EPICS based on disciplinary values in data management

issues, particularly is- sues in quality, documentation, and the description of data and software

code

Table 5.3 lists the specific learning objectives for

Given the structured nature of EPICS and the intensity of the work, the DIL team found that the

students had little time for “additional” learning activities or events. So we decided to take an

“embedded librarian” approach to developing and delivering a DIL educational program that connected

with the EPICS structure and culture. Embedded librarianship can be defined as the process of

presenting information literacy content as a part of course curricula in ways that are direc

student outcomes for the course (Schulte, 2012). Embedded librarian

method for implementing information literacy instruction due to the presentation of information

literacy competencies in an immediately re

project-based nature of the course, an embedded librarianship approach appeared to best integrate

with the course design and content that already existed within the EPICS program.

To implement our embedded librarian approach, in the fall of 2012 we focused on three groups within

EPICS. Each of these groups had at least one faculty advisor, a graduate student TA, and multiple teams

of students that each worked on a particular project. Our approach for implem

programming was to forge connections with the faculty advisors, graduate TAs, and students in EPICS by

taking advantage of built-in opportunities to interact with each group. This included

• developing an evaluation rubric for TAs to a

• offering a skills-based session on documenting code and project work;

• attending lab sessions and observing team meetings;

• participating as reviewers in the students’ design review sessions.

To create this educational program, we first

that described criteria for developing “clean code,” to identify relevant best practices and

documentation guidance for software developers. Next, using the existing rubrics developed by EPICS as

a guide, we crafted two rubrics (Appendix A to this chapter) that the graduate TAs could use to evaluate

both the code and the documentation created by their students. We also distributed a one

document (Appendix B to this chapter) to team leaders th

and described why documentation of code is important. Finally, we shared our work with the TAs and

made some adjustments based on their feed

We held the skills session on documenting and organizing code during the third week of the semester.

The focus was on helping the team leaders in EPICS recognize what constituted quality, professional

practice in documenting and organizing code, and the need for students to interna

The session comprised three modules (see the complete lesson plan in Appendix C to this chapter). In

the first module we presented quotes from articles writ

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

To develop a shared cultural practice in EPICS based on disciplinary values in data management

sues in quality, documentation, and the description of data and software

Table 5.3 lists the specific learning objectives for the two target audiences.

Given the structured nature of EPICS and the intensity of the work, the DIL team found that the

students had little time for “additional” learning activities or events. So we decided to take an

to developing and delivering a DIL educational program that connected

with the EPICS structure and culture. Embedded librarianship can be defined as the process of

presenting information literacy content as a part of course curricula in ways that are direc

student outcomes for the course (Schulte, 2012). Embedded librarian- ship is a particularly promising

method for implementing information literacy instruction due to the presentation of information

literacy competencies in an immediately relevant manner (Tumbleson & Burke, 2010). Given the

based nature of the course, an embedded librarianship approach appeared to best integrate

with the course design and content that already existed within the EPICS program.

librarian approach, in the fall of 2012 we focused on three groups within

EPICS. Each of these groups had at least one faculty advisor, a graduate student TA, and multiple teams

of students that each worked on a particular project. Our approach for implementing our educational

programming was to forge connections with the faculty advisors, graduate TAs, and students in EPICS by

in opportunities to interact with each group. This included

developing an evaluation rubric for TAs to apply to student work;

based session on documenting code and project work;

attending lab sessions and observing team meetings;

participating as reviewers in the students’ design review sessions.

To create this educational program, we first returned to the literature review, particularly the sources

that described criteria for developing “clean code,” to identify relevant best practices and

documentation guidance for software developers. Next, using the existing rubrics developed by EPICS as

a guide, we crafted two rubrics (Appendix A to this chapter) that the graduate TAs could use to evaluate

both the code and the documentation created by their students. We also distributed a one

document (Appendix B to this chapter) to team leaders that explained the expectations for quality code

and described why documentation of code is important. Finally, we shared our work with the TAs and

made some adjustments based on their feed- back. Table 5.4 shows the full schedule.

on documenting and organizing code during the third week of the semester.

The focus was on helping the team leaders in EPICS recognize what constituted quality, professional

practice in documenting and organizing code, and the need for students to internalize these practices.

The session comprised three modules (see the complete lesson plan in Appendix C to this chapter). In

the first module we presented quotes from articles writ- ten by several prominent coders that described

This work is licensed under the Creative Commons Attribution 4.0 International

To develop a shared cultural practice in EPICS based on disciplinary values in data management

sues in quality, documentation, and the description of data and software

Given the structured nature of EPICS and the intensity of the work, the DIL team found that the

students had little time for “additional” learning activities or events. So we decided to take an

to developing and delivering a DIL educational program that connected

with the EPICS structure and culture. Embedded librarianship can be defined as the process of

presenting information literacy content as a part of course curricula in ways that are directly relevant to

ship is a particularly promising

method for implementing information literacy instruction due to the presentation of information

levant manner (Tumbleson & Burke, 2010). Given the

based nature of the course, an embedded librarianship approach appeared to best integrate

librarian approach, in the fall of 2012 we focused on three groups within

EPICS. Each of these groups had at least one faculty advisor, a graduate student TA, and multiple teams

enting our educational

programming was to forge connections with the faculty advisors, graduate TAs, and students in EPICS by

returned to the literature review, particularly the sources

that described criteria for developing “clean code,” to identify relevant best practices and

documentation guidance for software developers. Next, using the existing rubrics developed by EPICS as

a guide, we crafted two rubrics (Appendix A to this chapter) that the graduate TAs could use to evaluate

both the code and the documentation created by their students. We also distributed a one-page

at explained the expectations for quality code

and described why documentation of code is important. Finally, we shared our work with the TAs and

on documenting and organizing code during the third week of the semester.

The focus was on helping the team leaders in EPICS recognize what constituted quality, professional

lize these practices.

The session comprised three modules (see the complete lesson plan in Appendix C to this chapter). In

ten by several prominent coders that described

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

the attributes of “clean code.” We then distributed three examples of code that had been generated by

previous EPICS teams. We asked the class to identify the strengths and weaknesses of the code from the

perspective of documentation and organization. We closed this module with a disc

constitutes good code versus poor code. In the next module we discussed why writing well

and well-organized code matters. We emphasized that writing software code is inherently a

collaborative activity as the majority of code will

something edited and maintained by other coders (future EPICS students in this case). We then

introduced a coding skills inventory (see Table C.1 in Appendix C to this chapter), a list of 12 skills to

facilitate good coding habits in EPICS teams. In

on the coding skills inventory list that they saw as a high priority for their team and designed a short

learning activity that would address this skill.

support such an intervention (see the list in Appendix D to this chapter). We recognized that the teams

were at different stages in the software develop

stages of the design life cycle to facilitate this process. Finally, each team leader shared a selected skill

and activity with the group and de-

Unfortunately the skills session was volu

project leaders were invited, only five students attended from four teams. We found that this

introduction to DIL skills was not pervas

TABLE 5.4 - Embedded Librarian Engagement Activities

Semester

Timeslot

Activity

Week 2 Introduction

Week 3 Voluntary skills

session on

documenting and

organizing code

Weeks 4–6 Embedded

librarianship

Week 7 Design review #1

Weeks 8–13 Embedded

librarianship

Week 14 Design review #2

Post-semester Assessment

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

.” We then distributed three examples of code that had been generated by

previous EPICS teams. We asked the class to identify the strengths and weaknesses of the code from the

perspective of documentation and organization. We closed this module with a discussion of what

constitutes good code versus poor code. In the next module we discussed why writing well

organized code matters. We emphasized that writing software code is inherently a

collaborative activity as the majority of code will be used by others, both as a product and also as

something edited and maintained by other coders (future EPICS students in this case). We then

introduced a coding skills inventory (see Table C.1 in Appendix C to this chapter), a list of 12 skills to

itate good coding habits in EPICS teams. In the last module, the team leaders picked one of the skills

on the coding skills inventory list that they saw as a high priority for their team and designed a short

learning activity that would address this skill. We provided the team leaders with activities that could

support such an intervention (see the list in Appendix D to this chapter). We recognized that the teams

stages in the software development process, so we mapped our list of activiti

stages of the design life cycle to facilitate this process. Finally, each team leader shared a selected skill

- fined the measure of success for the activity.

Unfortunately the skills session was voluntary and there was a poor turnout. While all team leaders and

project leaders were invited, only five students attended from four teams. We found that this

introduction to DIL skills was not pervasive enough to introduce and instill a foundation of good practice.

Embedded Librarian Engagement Activities

Description

 Initial visit to the EPICS weekly lab session to introduce the

DIL team and distribute rubric materials to all students

skills

documenting and

organizing code

This session was offered to team leaders in EPICS and

covered the following:

Module 1—What is good coding?

Module 2—Why is it important?

Module 3—How to foster good coding practices in your team

Observations and consultations in weekly lab sessions

Design review #1 First round of feedback and suggestions for student work in

documenting their code and their projects

Observations and consultations in weekly lab sessions

Design review #2 Second round of feedback and suggestions for student work

in documenting their code and their projects

Collected and reviewed student lab notebooks

This work is licensed under the Creative Commons Attribution 4.0 International

.” We then distributed three examples of code that had been generated by

previous EPICS teams. We asked the class to identify the strengths and weaknesses of the code from the

ussion of what

constitutes good code versus poor code. In the next module we discussed why writing well-documented

organized code matters. We emphasized that writing software code is inherently a

be used by others, both as a product and also as

something edited and maintained by other coders (future EPICS students in this case). We then

introduced a coding skills inventory (see Table C.1 in Appendix C to this chapter), a list of 12 skills to

ers picked one of the skills

on the coding skills inventory list that they saw as a high priority for their team and designed a short

We provided the team leaders with activities that could

support such an intervention (see the list in Appendix D to this chapter). We recognized that the teams

ment process, so we mapped our list of activities to the

stages of the design life cycle to facilitate this process. Finally, each team leader shared a selected skill

ere was a poor turnout. While all team leaders and

project leaders were invited, only five students attended from four teams. We found that this

still a foundation of good practice.

Initial visit to the EPICS weekly lab session to introduce the

DIL team and distribute rubric materials to all students

This session was offered to team leaders in EPICS and

How to foster good coding practices in your team

Observations and consultations in weekly lab sessions

First round of feedback and suggestions for student work in

and consultations in weekly lab sessions

Second round of feedback and suggestions for student work

in documenting their code and their projects

Collected and reviewed student lab notebooks

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

As the semester progressed we made frequent visits to the EPICS labs. Early in the semester we

attended a lab for each of the three teams we were working with and introduced ourselves to the

students. We distributed the documentation

attended multiple lab sessions for each of the three group

interactions gave us the opportunity to observe how students were developing their work and to

interact with them (though in a limited fashi

DIL project). We also attended both of the design reviews (7 weeks and 14 weeks into the semester) and

were able to provide some suggestions for their work in documenting their code and their proje

Our approach in assessing this work has been twofold. First, we met individually with two of the three

TAs for the teams (the third was unavailable) and two of the faculty advisors at the end of the fall 2012

semester. We asked about any changes in st

of these topics, and possible next steps for our work with EPICS. Although the feedback we received was

generally positive, no one reported a substantial change in student activities in writing cod

documenting their work. They encouraged the DIL team to keep working with EPICS, and as a result of

these conversations, developed some ideas for the f

Second, we reviewed the lab notebooks that students

written during the fall semester. The DIL team developed a cod

knowledge and skills in documenting their work effectively. This analysis will enable us to better

pinpoint areas of need and will inform our work in de

DISCUSSION

The opportunity to embed within a highly structured, multiple section class provided this Purdue DIL

team a broad range of insights for actionable next s

EPICS leadership team.

First, we identified that the team leader and project leader

data management planning and practice within any given team. We identified this early through

interviews and attempted to address this via a one

team leaders. Given the low level of turnout

session, we needed to develop a more embedded approach

Another differentiating aspect of the EPICS environment is the assignment of specific roles to students

within their groups. Teams in EPICS select

with more specific roles such as the webmasters, project partner liaisons, and financial officers, among

others. Despite the near ubiquity of teams encountering issues with the documentation done by

previous students, teams do not acknowledge this issue in their

formally. A defined role for a student member of a team might ensure that code documentation and

description of the project were carried out efficiently and in ways that ensured a smooth

semester to semester, as well as from EPICS to the community agency when the project is done. The

current approach of having students share the responsibility of documentation

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

er progressed we made frequent visits to the EPICS labs. Early in the semester we

attended a lab for each of the three teams we were working with and introduced ourselves to the

students. We distributed the documentation rubric that we had developed. Subsequently, we each

attended multiple lab sessions for each of the three groups over the course of the semes

interactions gave us the opportunity to observe how students were developing their work and to

interact with them (though in a limited fashion as lab sessions covered many aspects not related to the

DIL project). We also attended both of the design reviews (7 weeks and 14 weeks into the semester) and

were able to provide some suggestions for their work in documenting their code and their proje

Our approach in assessing this work has been twofold. First, we met individually with two of the three

TAs for the teams (the third was unavailable) and two of the faculty advisors at the end of the fall 2012

semester. We asked about any changes in student behavior they observed, changes in their perceptions

of these topics, and possible next steps for our work with EPICS. Although the feedback we received was

generally positive, no one reported a substantial change in student activities in writing cod

documenting their work. They encouraged the DIL team to keep working with EPICS, and as a result of

these conversations, developed some ideas for the future as described in the “Discussion” section.

Second, we reviewed the lab notebooks that students in one of the groups we had worked with had

. The DIL team developed a coding schema to evaluate student

knowledge and skills in documenting their work effectively. This analysis will enable us to better

and will inform our work in developing more targeted responses.

The opportunity to embed within a highly structured, multiple section class provided this Purdue DIL

team a broad range of insights for actionable next steps, future research, and recommendations to the

First, we identified that the team leader and project leader roles are key to the dissemina

data management planning and practice within any given team. We identified this early through

ews and attempted to address this via a one-shot skill session aimed at the student project and

team leaders. Given the low level of turnout and lack of observed knowledge/skill transfer from the

session, we needed to develop a more embedded approach to data management skills building.

Another differentiating aspect of the EPICS environment is the assignment of specific roles to students

within their groups. Teams in EPICS select their project and team leaders early in the semester, along

ecific roles such as the webmasters, project partner liaisons, and financial officers, among

others. Despite the near ubiquity of teams encountering issues with the documentation done by

previous students, teams do not acknowledge this issue in their meetings or do much to address it

formally. A defined role for a student member of a team might ensure that code documentation and

description of the project were carried out efficiently and in ways that ensured a smooth

r, as well as from EPICS to the community agency when the project is done. The

current approach of having students share the responsibility of documentation and description instead

This work is licensed under the Creative Commons Attribution 4.0 International

er progressed we made frequent visits to the EPICS labs. Early in the semester we

attended a lab for each of the three teams we were working with and introduced ourselves to the

quently, we each

s over the course of the semester. These

interactions gave us the opportunity to observe how students were developing their work and to

pects not related to the

DIL project). We also attended both of the design reviews (7 weeks and 14 weeks into the semester) and

were able to provide some suggestions for their work in documenting their code and their projects.

Our approach in assessing this work has been twofold. First, we met individually with two of the three

TAs for the teams (the third was unavailable) and two of the faculty advisors at the end of the fall 2012

observed, changes in their perceptions

of these topics, and possible next steps for our work with EPICS. Although the feedback we received was

generally positive, no one reported a substantial change in student activities in writing code and

documenting their work. They encouraged the DIL team to keep working with EPICS, and as a result of

cussion” section.

in one of the groups we had worked with had

ing schema to evaluate student

knowledge and skills in documenting their work effectively. This analysis will enable us to better

veloping more targeted responses.

The opportunity to embed within a highly structured, multiple section class provided this Purdue DIL

ommendations to the

roles are key to the dissemination of good

data management planning and practice within any given team. We identified this early through

shot skill session aimed at the student project and

and lack of observed knowledge/skill transfer from the

to data management skills building.

Another differentiating aspect of the EPICS environment is the assignment of specific roles to students

their project and team leaders early in the semester, along

ecific roles such as the webmasters, project partner liaisons, and financial officers, among

others. Despite the near ubiquity of teams encountering issues with the documentation done by

meetings or do much to address it

formally. A defined role for a student member of a team might ensure that code documentation and

description of the project were carried out efficiently and in ways that ensured a smooth transition from

r, as well as from EPICS to the community agency when the project is done. The

and description instead

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

of designating a member of the team to have direct ownership of these tasks

low-quality documentation and difficulties in the transfer of work.

Therefore, the DIL team proposed a pilot project for the fal

archivist role within selected EPICS teams. The purpose is

documentation formally within the team structure by creating a specific team role. We envision the

project archivist’s role as taking a big picture approach toward capturing the description

documentation of the project, including the design constraints, decision

implementations for each team. As a result, the EPICS teams might see smoother transitions of the

project to future team members, graduate teaching as

and project partners. We will be working with a continuing lecturer and an EPICS advisor to further

define, implement, and assess the impact of the project archivist role.

Second, while the rubrics for evaluating

good start, there is a need for further curricular development to integrate the rubric into th

workflow for the semester. A high priori

templates used by EPICS. Currently, these templates do not highlight the

practices and data management. Working with the EPICS administrative team, we hope to create a

template or other workflow that highlights the need for well

providing a structure for individual and team

role as a mentor to EPICS students, using a train

Another need that the DIL team identified was a cent

undergraduate and graduate) to learn needed data skills at their point of need, while working either

independently or in a laboratory setting. We feel that a library of short videos (perhaps hosted on

YouTube channel) that covers software and data manage

The EPICS curriculum is built around the idea of working independently to write code that is then

brought back to the group for further de

clean coding, creating excellent documentatio

them outside of class. Similarly, graduate students frequently work independentl

their supervisor for comment and review. A YouTube library would create a ready reference for those

needs that arise while the students are practic

Finally, we noted that the depth and qual

team members’ lab notebooks varied widely. The highest order of learning skills according to Bloom’s

taxonomy (Bloom, 1956)—evaluation and analysis

notebooks, even as the students were engaging i

heart of excellent data management skills; by looking at the long

identified the immediate worth of clean code not only

members, project partners, clients, and users. Working with the EPICS

emphasize the reflective practice of code writing, particularly for software and hardware engineering

disciplines.

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

ignating a member of the team to have direct ownership of these tasks is a major cause of the

quality documentation and difficulties in the transfer of work.

Therefore, the DIL team proposed a pilot project for the fall of 2013 to define and imple

archivist role within selected EPICS teams. The purpose is to integrate fully the oversight of

documentation formally within the team structure by creating a specific team role. We envision the

project archivist’s role as taking a big picture approach toward capturing the description

ect, including the design constraints, decision- making processes, and design

implementations for each team. As a result, the EPICS teams might see smoother transitions of the

members, graduate teaching assistants, faculty advisors, EPICS administrators

and project partners. We will be working with a continuing lecturer and an EPICS advisor to further

define, implement, and assess the impact of the project archivist role.

Second, while the rubrics for evaluating software code and documentation that we developed are a

good start, there is a need for further curricular development to integrate the rubric into th

ter. A high priority will be to address the individual and team documentation

by EPICS. Currently, these templates do not highlight the need for excellent coding

tices and data management. Working with the EPICS administrative team, we hope to create a

template or other workflow that highlights the need for well-designed and well-written

providing a structure for individual and team-level accountability. These resources will support the TA’s

role as a mentor to EPICS students, using a train-the-trainer approach.

Another need that the DIL team identified was a central reference solution that enables students (both

undergraduate and graduate) to learn needed data skills at their point of need, while working either

independently or in a laboratory setting. We feel that a library of short videos (perhaps hosted on

overs software and data management topics would be highly useful to EPICS.

The EPICS curriculum is built around the idea of working independently to write code that is then

ck to the group for further development. It is important that students have instruction on

clean coding, creating excellent documentation, and project management planning that is available to

them outside of class. Similarly, graduate students frequently work independently, submitting code to

rvisor for comment and review. A YouTube library would create a ready reference for those

while the students are practicing or expanding their skill sets.

noted that the depth and quality of project documentation and reflection captured in the

team members’ lab notebooks varied widely. The highest order of learning skills according to Bloom’s

evaluation and analysis—were not of- ten present within the EPICS

notebooks, even as the students were engaging in a creative process. Evaluation and analysis are at the

heart of excellent data management skills; by looking at the long-term life span of the project, stu

identified the immediate worth of clean code not only for themselves but also for future EPICS

members, project partners, clients, and users. Working with the EPICS administrators, we hope to

flective practice of code writing, particularly for software and hardware engineering

This work is licensed under the Creative Commons Attribution 4.0 International

is a major cause of the

l of 2013 to define and implement a project

to integrate fully the oversight of

documentation formally within the team structure by creating a specific team role. We envision the

project archivist’s role as taking a big picture approach toward capturing the description and

making processes, and design

implementations for each team. As a result, the EPICS teams might see smoother transitions of the

EPICS administrators

and project partners. We will be working with a continuing lecturer and an EPICS advisor to further

documentation that we developed are a

good start, there is a need for further curricular development to integrate the rubric into the EPICS

vidual and team documentation

need for excellent coding

tices and data management. Working with the EPICS administrative team, we hope to create a

written code while

level accountability. These resources will support the TA’s

ral reference solution that enables students (both

undergraduate and graduate) to learn needed data skills at their point of need, while working either

independently or in a laboratory setting. We feel that a library of short videos (perhaps hosted on a

ment topics would be highly useful to EPICS.

The EPICS curriculum is built around the idea of working independently to write code that is then

mportant that students have instruction on

ning that is available to

y, submitting code to

rvisor for comment and review. A YouTube library would create a ready reference for those

captured in the

team members’ lab notebooks varied widely. The highest order of learning skills according to Bloom’s

ten present within the EPICS

cess. Evaluation and analysis are at the

life span of the project, students

ture EPICS team

s, we hope to

flective practice of code writing, particularly for software and hardware engineering

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

CONCLUSION

This approach toward developing and imple

structure and environment of EPICS. Embedded librarianship was a natural choice given the highly

structured nature of the EPICS program and engineering disciplines. This approach allowed

relatively large number of students (40 approximately) in ways that aligned with their current practices.

However, employing an embedded librarian approach in our program took a great deal of planning and

investment for the DIL team to set up

Several interrelated factors should be ad

librarian approach requires that librarians build solid relationships with the people running the program.

When a librarian is embedded in a c

teaching assistant. We decided to partner with a service

three groups and their graduate student TAs oversee

structure required us to build connections with the faculty advisors, the graduate student TAs, the EPICS

administration, the student team leaders, and othe

relationships in working with EPICS, as di

advisors. Nevertheless, our approach still required multiple meetings to introduce ourselves, explain

what we were trying to do, and establish contact with a great

librarians who wish to launch a DIL program plan to cultivate and maintain relationships as a part of

their program development.

Second, we worked hard to align our efforts to fit into the structure of our partner. EPICS has a very

structured way of doing things that did not allow for a great deal of deviation. Therefore, we had to

identify these structures early on an

in meaningful ways. We took advantage of opportunities to reach stud

skill session early in the semester and attending design reviews at the midpoint and end of the

semester. However, we also had to create additional ways of connecting with students within the EPICS

structure. Our approach was to align our instruction and interactions as best we could with current

practices. We did this by creating a rubric for evaluating student documentation and organization

practices and making ourselves available during some lab sessions.

Third, the embedded librarian approach required a fairly significant time commitment. In addition to the

time that we invested in identifying which of the DIL competencies to address and in developing the

knowledge to design an educational program to respond, the DIL tea

sessions and design reviews, offering the skill session, developing resources, and meeting with faculty

advisors and TAs affiliated with EPICS. We believe that the in

definitely helped make an impact, forge relationships, and better understand the EPICS environment.

However, it was occasionally difficult to find the time to devote to making these personal appearances

given our other responsibilities and because we followed EPIC

time commitment continues as we review the content of team lab notebooks to better determine the

impact the DIL program had on students and to observe where their DIL competencies strengths and

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

ing and implementing a DIL educational program was to embed into the

structure and environment of EPICS. Embedded librarianship was a natural choice given the highly

structured nature of the EPICS program and engineering disciplines. This approach allowed

relatively large number of students (40 approximately) in ways that aligned with their current practices.

However, employing an embedded librarian approach in our program took a great deal of planning and

investment for the DIL team to set up and carry out.

Several interrelated factors should be ad- dressed in this type of DIL model. First, the embedded

librarian approach requires that librarians build solid relationships with the people running the program.

When a librarian is embedded in a course, this may include just the faculty instructor and his or her

teaching assistant. We decided to partner with a service- learning center and to focus our efforts on

r graduate student TAs overseeing the work of multiple teams of st

structure required us to build connections with the faculty advisors, the graduate student TAs, the EPICS

administration, the student team leaders, and others. Sapp Nelson’s prior experience aided our

relationships in working with EPICS, as did Carlson’s previous interactions with one of the faculty

advisors. Nevertheless, our approach still required multiple meetings to introduce ourselves, explain

establish contact with a great number of people. We recommend tha

ians who wish to launch a DIL program plan to cultivate and maintain relationships as a part of

Second, we worked hard to align our efforts to fit into the structure of our partner. EPICS has a very

doing things that did not allow for a great deal of deviation. Therefore, we had to

identify these structures early on and then determine how best to integrate ourselves to reach students

in meaningful ways. We took advantage of opportunities to reach students, such as holding a voluntary

skill session early in the semester and attending design reviews at the midpoint and end of the

semester. However, we also had to create additional ways of connecting with students within the EPICS

was to align our instruction and interactions as best we could with current

practices. We did this by creating a rubric for evaluating student documentation and organization

practices and making ourselves available during some lab sessions.

dded librarian approach required a fairly significant time commitment. In addition to the

time that we invested in identifying which of the DIL competencies to address and in developing the

knowledge to design an educational program to respond, the DIL team put in many hours attending lab

sessions and design reviews, offering the skill session, developing resources, and meeting with faculty

advisors and TAs affiliated with EPICS. We believe that the in-person contact was worth the effort as it

lped make an impact, forge relationships, and better understand the EPICS environment.

occasionally difficult to find the time to devote to making these personal appearances

given our other responsibilities and because we followed EPICS’s schedule rather than our own. The

time commitment continues as we review the content of team lab notebooks to better determine the

impact the DIL program had on students and to observe where their DIL competencies strengths and

This work is licensed under the Creative Commons Attribution 4.0 International

menting a DIL educational program was to embed into the

structure and environment of EPICS. Embedded librarianship was a natural choice given the highly

structured nature of the EPICS program and engineering disciplines. This approach allowed us to reach a

relatively large number of students (40 approximately) in ways that aligned with their current practices.

However, employing an embedded librarian approach in our program took a great deal of planning and

dressed in this type of DIL model. First, the embedded

librarian approach requires that librarians build solid relationships with the people running the program.

ourse, this may include just the faculty instructor and his or her

learning center and to focus our efforts on

ing the work of multiple teams of students. This

structure required us to build connections with the faculty advisors, the graduate student TAs, the EPICS

ence aided our

d Carlson’s previous interactions with one of the faculty

advisors. Nevertheless, our approach still required multiple meetings to introduce ourselves, explain

ople. We recommend that

ians who wish to launch a DIL program plan to cultivate and maintain relationships as a part of

Second, we worked hard to align our efforts to fit into the structure of our partner. EPICS has a very

doing things that did not allow for a great deal of deviation. Therefore, we had to

d then determine how best to integrate ourselves to reach students

ents, such as holding a voluntary

skill session early in the semester and attending design reviews at the midpoint and end of the

semester. However, we also had to create additional ways of connecting with students within the EPICS

was to align our instruction and interactions as best we could with current

practices. We did this by creating a rubric for evaluating student documentation and organization

dded librarian approach required a fairly significant time commitment. In addition to the

time that we invested in identifying which of the DIL competencies to address and in developing the

m put in many hours attending lab

sessions and design reviews, offering the skill session, developing resources, and meeting with faculty

person contact was worth the effort as it

lped make an impact, forge relationships, and better understand the EPICS environment.

occasionally difficult to find the time to devote to making these personal appearances

S’s schedule rather than our own. The

time commitment continues as we review the content of team lab notebooks to better determine the

impact the DIL program had on students and to observe where their DIL competencies strengths and

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

weaknesses lie. Here too, we believe that the time commitment in assessing student work will pay off as

we continue to develop our partnership with EPICS.

Beyond the lessons learned from developing the program itself, we gained a better understanding of the

12 DIL competencies from the interviews. We decided to focus on only 2 of the 12 competencies for our

work with EP- ICS on the basis of its needs and our ability to respond to those needs. However, the

needs ex- pressed were many and may provide additional opportunities for fol

the faculty and the students we interviewed in

representation was important. In addition to the breadth of needs expressed in the interviews, we

observed wide variations in baseline skills of students working with EPICS. For this project, we

deliberately kept the definitions of the com

opinions and perspectives on the competencies with little direction or interference from

work with EPICS on data quality and documentation, it was clear that its success is very much specifically

oriented on a particular skill in that com

reproduction of the research result

statement really meant for EPICS and how it was (or was not) understood by the students, TAs, faculty

advisors, and EPICS administration to be able to respond effect

understanding of the setting were as important to our program as defining our terms. This was very

much an iterative process.

NOTE

This case study is available online at http://

REFERENCES

Ali, N., Gueheneuc, Y. G., & Antoniol, G. (2011).

Comprehension (ICPC), 2011 IEEE 19th International Conference on (pp. 111

Library version]. http://dx.doi.org/10.1109/ICPC.2011.42

Bashir, M. F., & Qadir, M. A. (2006). Traceability techniques: A cri

2006. INMIC '06. IEEE (pp. 265–268) [IEEE Xplore Digital Library version].

http://dx.doi.org/10.1109/INMIC.2006.358175

Bettenburg, N., Adams, B., Hassan, A. E., & Smidt, M. (2011). A lightweight approach to uncover

technical artifacts in unstructured data. In Program Comprehension (ICPC), 2011 IEEE

Conference on (pp. 185–188) [IEEE Xplore Digital Library version]. http://

dx.doi.org/10.1109/ICPC.2011.36

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

, we believe that the time commitment in assessing student work will pay off as

we continue to develop our partnership with EPICS.

Beyond the lessons learned from developing the program itself, we gained a better understanding of the

om the interviews. We decided to focus on only 2 of the 12 competencies for our

ICS on the basis of its needs and our ability to respond to those needs. However, the

pressed were many and may provide additional opportunities for follow up. In particular both

the students we interviewed indicated that competency with data visualization and

representation was important. In addition to the breadth of needs expressed in the interviews, we

ine skills of students working with EPICS. For this project, we

ept the definitions of the competencies loose, as we wanted interviewees to express their

opinions and perspectives on the competencies with little direction or interference from

ity and documentation, it was clear that its success is very much specifically

oriented on a particular skill in that competency: “Documents data sufficiently enough to enable the

reproduction of the research results and the data by others.” How- ever, we needed to define what this

statement really meant for EPICS and how it was (or was not) understood by the students, TAs, faculty

advisors, and EPICS administration to be able to respond effectively. Learning the context and

understanding of the setting were as important to our program as defining our terms. This was very

is available online at http://dx.doi.org.10.5703/1288284315477.

Y. G., & Antoniol, G. (2011). Trust-based requirements traceability. In Pro

Comprehension (ICPC), 2011 IEEE 19th International Conference on (pp. 111–120) [IEEE Xplore Digital

.org/10.1109/ICPC.2011.42

r, M. F., & Qadir, M. A. (2006). Traceability techniques: A critical study. In Multitopic Con

268) [IEEE Xplore Digital Library version].

http://dx.doi.org/10.1109/INMIC.2006.358175

an, A. E., & Smidt, M. (2011). A lightweight approach to uncover

technical artifacts in unstructured data. In Program Comprehension (ICPC), 2011 IEEE 19th International

188) [IEEE Xplore Digital Library version]. http://

This work is licensed under the Creative Commons Attribution 4.0 International

, we believe that the time commitment in assessing student work will pay off as

Beyond the lessons learned from developing the program itself, we gained a better understanding of the

om the interviews. We decided to focus on only 2 of the 12 competencies for our

ICS on the basis of its needs and our ability to respond to those needs. However, the

low up. In particular both

dicated that competency with data visualization and

representation was important. In addition to the breadth of needs expressed in the interviews, we

ine skills of students working with EPICS. For this project, we

petencies loose, as we wanted interviewees to express their

opinions and perspectives on the competencies with little direction or interference from us. For our

ity and documentation, it was clear that its success is very much specifically

ciently enough to enable the

ever, we needed to define what this

statement really meant for EPICS and how it was (or was not) understood by the students, TAs, faculty

text and gaining an

understanding of the setting were as important to our program as defining our terms. This was very

based requirements traceability. In Pro- gram

120) [IEEE Xplore Digital

tical study. In Multitopic Conference,

an, A. E., & Smidt, M. (2011). A lightweight approach to uncover

19th International

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

Bloom, B. S. (1956). Taxonomy of educational ob

David McKay Co. Inc.

Chen, S. (2001). The paradox of digital preserva

http://dx.doi.org/10.1109/2.910890

Crowston, K., Annabi, H., & Howison, J. (2003).

2003 Proceedings (Paper 28; pp. 327

aisel.aisnet.org/icis2003/28/

Doxygen. (n.d.). Generate documentation from source code.

http://www.stack.nl/~dimitri/doxygen/index.html

Grechanik, M., Fu, C., Xie, Q., McMillan, C., Poshyvanyk

exaMPLes ARchive. In Proceedings of the 32nd ACM/IEEE Intern

Engineering, Vol. 2 (pp. 259–262) [ACM

http://dx.doi.org/10.1145/1810295.1810347

Halloran, T. J., & Scherlis, W. L. (2002). High quality and open source software practices. Paper

presented at Meeting Challenges and Surviv

Engineering, Orlando, FL. Retrieved from http://flosshub.org/system/files/Halloran Scherlis.pdf

Hasan, M., Stroulia, E., Barbosa, D., & Alalfi, M. (2010).

software process. In Software Maintenance (ICSM), 2010 IEEE International Conference on (pp. 1

[IEEE Xplore Digital Library version]. http://dx.doi.org/10.1109/ICSM.2010.5609680

Knuth, D. E. (1984). Literate programming. Com

111.http://dx.doi.org/10.1093/comjnl/27.2.97

Lethbridge, T. C., Singer, J., & Forward, A. (2003).

of the practice. IEEE Software, 20(6), 35

Lima, M., & Oakes, W. (2006). Service

Great Lakes Press.

Marcus, A., & Menzies, T. (2010). Software is data too. In Proceedings of the FSE/SDP Workshop on

the Future of Software Engineering Research (pp. 229

http://dx.doi.org/10.1145/1882362.1882410

Martin, R. C. (2008). Clean code: A handbook of

Prentice Hall.

Matthews, B., Shaon, A., Bicarregui, J., & Jones, C. (2010). A

International Journal of Digital Cura

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

6). Taxonomy of educational objectives, Handbook I: The cognitive domain. New York:

he paradox of digital preservation. Computer, 34(3), 24–28.

10890

Crowston, K., Annabi, H., & Howison, J. (2003). Defining open source software project success. In ICIS

2003 Proceedings (Paper 28; pp. 327–340). Retrieved from AIS Electronic Library: http://

cumentation from source code. Retrieved from

.nl/~dimitri/doxygen/index.html

Grechanik, M., Fu, C., Xie, Q., McMillan, C., Poshyvanyk, D., & Cumby, C. (2010). Exemplar: EXEcu

ceedings of the 32nd ACM/IEEE International Conference on Software

262) [ACM Digital Library version].

http://dx.doi.org/10.1145/1810295.1810347

Halloran, T. J., & Scherlis, W. L. (2002). High quality and open source software practices. Paper

eeting Challenges and Surviving Success: 2nd Workshop on Open Source Software

Engineering, Orlando, FL. Retrieved from http://flosshub.org/system/files/Halloran Scherlis.pdf

Hasan, M., Stroulia, E., Barbosa, D., & Alalfi, M. (2010). Analyzing natural-language artifacts of the

software process. In Software Maintenance (ICSM), 2010 IEEE International Conference on (pp. 1

[IEEE Xplore Digital Library version]. http://dx.doi.org/10.1109/ICSM.2010.5609680

rate programming. Com- puterJournal,27(2),97–

111.http://dx.doi.org/10.1093/comjnl/27.2.97

Lethbridge, T. C., Singer, J., & Forward, A. (2003). How software engineers use documentation: The state

of the practice. IEEE Software, 20(6), 35–39. http://dx.doi.org/10.1109/MS.2003.1241364

. (2006). Service-learning: Engineering in your community (1st ed.). Okemos, MI:

Marcus, A., & Menzies, T. (2010). Software is data too. In Proceedings of the FSE/SDP Workshop on

ture of Software Engineering Research (pp. 229–231) [ACM Digital Library version].

http://dx.doi.org/10.1145/1882362.1882410

Martin, R. C. (2008). Clean code: A handbook of agile software craftsmanship. Upper Saddle River, NJ:

Shaon, A., Bicarregui, J., & Jones, C. (2010). A framework for software preserva

tional Journal of Digital Curation, 5(1), 91–105. http://dx.doi.org/10.2218/ijdc.v5i1.145

This work is licensed under the Creative Commons Attribution 4.0 International

jectives, Handbook I: The cognitive domain. New York:

Defining open source software project success. In ICIS

340). Retrieved from AIS Electronic Library: http://

plar: EXEcutable

ational Conference on Software

Halloran, T. J., & Scherlis, W. L. (2002). High quality and open source software practices. Paper

ing Success: 2nd Workshop on Open Source Software

Engineering, Orlando, FL. Retrieved from http://flosshub.org/system/files/Halloran Scherlis.pdf

tifacts of the

software process. In Software Maintenance (ICSM), 2010 IEEE International Conference on (pp. 1–5)

How software engineers use documentation: The state

rg/10.1109/MS.2003.1241364

gineering in your community (1st ed.). Okemos, MI:

Marcus, A., & Menzies, T. (2010). Software is data too. In Proceedings of the FSE/SDP Workshop on

231) [ACM Digital Library version].

agile software craftsmanship. Upper Saddle River, NJ:

framework for software preservation. The

105. http://dx.doi.org/10.2218/ijdc.v5i1.145

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

Menzies, T., & Di Stefano, J. S. (2003). More success and failure

actions on Software Engineering, 29(5), 474

Sapp Nelson, M. (2009). Teaching interview skills to undergraduate engineers: An emer

library instruction. Issues in Science

http://dx.doi.org/10.5062/F4ZK5DMK

Sapp Nelson, M. (2013). Find the real need: Under

Integrating information into engineering design (pp. 87

Schulte, S. J. (2012). Embedded academic librari

Library & Information Practice, 7(4), 122

Sojer, M., & Henkel, J. (2010). Code reuse in open source software

drivers, and impediments. Economic Pol

Tumbleson, B. E., & Burke, J. J. (2010). Embed

synergies. Public Services Quarterly,

Von Krogh, G., Spaeth, S., & Haefliger, S. (2005).Knowledge reuse

exploratory study of 15 open source pro

Conference on System Sciences (HICSS’05)

http://dx.doi.org/10.1109/HICSS.2005.378

This work is licensed under the Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

Menzies, T., & Di Stefano, J. S. (2003). More success and failure factors in software reuse. IEEE Trans

actions on Software Engineering, 29(5), 474–477. http://dx.doi.org/10.1109/TSE.2003.1199076

Sapp Nelson, M. (2009). Teaching interview skills to undergraduate engineers: An emer

Issues in Science & Technology Librarianship, (58).

http://dx.doi.org/10.5062/F4ZK5DMK

13). Find the real need: Understanding the task. In M. Fosmire & D. Radcliffe (Eds.),

Integrating information into engineering design (pp. 87–99). West Lafayette, IN: Purdue University.

12). Embedded academic librarianship: A review of the literature. Evidence Based

Library & Information Practice, 7(4), 122–138.

Sojer, M., & Henkel, J. (2010). Code reuse in open source software development: Quantitative evi

drivers, and impediments. Economic Pol- icy, 11(12), 868–901.

, & Burke, J. J. (2010). Embedded librarianship is job one: Building on in

synergies. Public Services Quarterly, 6(2–3), 225–236. http://dx.doi.org/10.1080/15228959.2010.497457

Von Krogh, G., Spaeth, S., & Haefliger, S. (2005).Knowledge reuse in open source software: An

ploratory study of 15 open source projects. In Proceedings of the 38th Annual Hawaii International

Sciences (HICSS’05)—Track 7 (Vol 7, p. 198b) [CS Digital Library version].

http://dx.doi.org/10.1109/HICSS.2005.378

This work is licensed under the Creative Commons Attribution 4.0 International

factors in software reuse. IEEE Trans-

477. http://dx.doi.org/10.1109/TSE.2003.1199076

Sapp Nelson, M. (2009). Teaching interview skills to undergraduate engineers: An emerging area of

standing the task. In M. Fosmire & D. Radcliffe (Eds.),

t Lafayette, IN: Purdue University.

anship: A review of the literature. Evidence Based

pment: Quantitative evidence,

instructional

dx.doi.org/10.1080/15228959.2010.497457

in open source software: An

ceedings of the 38th Annual Hawaii International

7 (Vol 7, p. 198b) [CS Digital Library version].

	Data Information Literacy Case Study Directory
	2015

	Electrical and Computer Engineering/ Undergraduates/ Carlson & SappNelson/ Purdue University/ 2012
	Jake Carlson
	Megan R. Sapp Nelson
	Recommended Citation

	Microsoft Word - 424474-convertdoc.input.412385.nFAXD.docx

