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ABSTRACT 
 

In this paper, two fluid–structure interaction (FSI) models of the discharge valve are presented to study the effect of 

partly covering the discharge port by the cylinder and the roller on the effective flow and force areas. One is the full 

FSI model and another is the simplified FSI model in which the discharge port is not covered and the cylinder shape 

is simplified to be cylindrical. The pressure in the compression chamber, the displacement of the valve reed, the 

volumetric flow rate through the valve and the gas force acting on the valve reed head are obtained by the two FSI 

model. The results comparison between the two FSI models shows the effective flow and force area in the full FSI 

model are much different from those in the simplified FSI model. The factors which affect the covering area of the 

discharge port must be taken into consideration in the calculations of these two areas. 

 

1. INTRODUCTION 

 
Discharge valve of rotary compressor is a reed type valve, which consists of a valve seat, a valve reed and a retainer. 

Usually, the discharge process was assumed as a one-dimensional flow through an orifice in the mathematical model 

of the valve (Prater and Ratterman, 1992; Huang and Xie, 2008).The effective flow area was proposed to build 

relationship between the pressure drop across the valve and the mass flow rate in the flow equation, and the effective 

force area was used to build relationship between the pressure drop across the valve and the gas force acting on the 

valve reed surface in the dynamic equation. The precision of the valve model depends largely on the accuracy of 

these two areas. 

 

A number of investigators have conducted experiments to study the effective flow and force areas of the reed valve 

(Wambsganss and Cohen, 1967; Soedel, 1972; Deschamps et al., 1988). In their experiments, the fluid was 

discharged directly through the discharge port, and the flow into the discharge port was uniform. The results are 

reliable for a reciprocating compressor valve rather than for a rotary compressor valve, because the discharge port is 

covered partly by the cylinder and the roller in the rotary compressor, and the flow is non-uniform during the 

discharge process. 

 

Much numerical works have been conducted to study the transient gas flow in the rotary compressor by CFD 

approach and moving mesh technology (Liu and Geng, 2004; Geng et al., 2004; Liang et al., 2010), It is convenient 

to gain effective flow and force areas more accurately by such simulations. In addition, with the rapid development 

of fluid–structure interaction (FSI) method, three-dimensional FSI model of the reed valve has been wildly used in 

the reciprocating compressor (Kim et al., 2006; Kim et al., 2008; Choi et al., 2010; Mistry et al., 2012). 

 

In this paper, two three-dimensional FSI models for the discharge valve in the rotary compressor are presented. One 

is the full FSI model and another is the simplified FSI model in which the discharge port is not covered and the 

cylinder shape is simplified to be cylindrical. By comparing results between these two FSI models, the effect of 

partly covering the discharge port by the cylinder and the roller on the effective flow and force areas is studied. The 

conclusion is important to develop a precise mathematical model of the discharge valve in a rotary compressor. 
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2. FSI MODEL 

 
2.1 Discharge process in a rotary compressor 
The working chamber of a rotary compressor shown in Figure 1 is divided into a suction chamber and a compression 

chamber by a vane. When the pressure in the compression chamber is higher than the pressure outside the cylinder, 

the valve is opened and then the refrigerant is discharged through the oblique incision and the discharge port. Figure 

1 also shows the profile of the discharge port when the rotor rotational angle θ is θ1 degree and 360-θ2 degree. It can 

be seen that the discharge port begins to be covered partly by the roller as the rotor rotational angle rises up to a 

certain angle. And it is always covered partly by the cylinder. In this study, the rotational speed of the compressor is 

4800 r/min. 

 

 
 

Figure 1: Schematic diagram of the rotary compressor 

 

2.2 Governing equations 

 
2.2.1. Governing equations of the fluid domain: The governing equations for fluid flow consist primarily of the 

Navier–Stokes equations. In a fixed Cartesian coordinate frame of reference, they are expressed in conservative 

forms for mass, momentums and energy respectively 
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where, ρ is the density, t is the time, v is the velocity vector, τ is the stress tensor, f is the body force vector, E is the 

specific total energy, q is the heat flux vector and q is the rate of heat generation.  

 

2.2.2. Governing equations of the solid domain: The equation of structural dynamics is used to describe the 

discharge valve motion. The governing equilibrium equation at time t+Δt is given by, in implicit time integration,  

 

                                                       
t t t t t t t t     MU CU K U R F                                                      (4) 

 

where M is the mass matrix, 
t t

U  and 
t t

U  are respectively the nodal point acceleration vector and the nodal 

point velocity vector at time t+Δt, U is the nodal point displacement vector increments from time t to time t+Δt , C 

is the damping matrix, 
t

K  is the stiffness matrix at time t, 
t t

R  is the external load vector at time t+Δt, 
t

F  is the 

nodal point force vector at time t. 

 

Contact conditions must be specified to simulate the contact processes occurring at the surfaces of the valve. The 

normal contact conditions can be expressed as (Eterovic and Bathe, 1991) 

 

                                                            0g  , 0  , 0g                                                                                (5) 

 

where g is the distance between two contacting bodies and λ is the normal contact pressure.  

 

2.2.3. Equations of fluid–structural interaction: The fundamental conditions applied to the fluid-structure interfaces 

are the kinematic condition and the dynamic condition, which can be written as follows 

 

                                                                            f sd d                                                                                           (6) 

                                                                      f s  n τ n τ                                                                                       (7) 

 

where fd  and sd  are, respectively, the fluid and solid displacement, fτ  and sτ  are, respectively, the fluid and 

solid stress. n is the unit boundary normal vector outwards from computational domain. Variables in the fluid and 

solid domain are fully coupled. The fluid and solid equations are solved individually using the latest data provided 

from each other. 

 

2.3 Finite element model  

 
Table 1: Dimensions of the compressor. 

 

Component Length (mm) 

Cylinder height 20 

Cylinder diameter 38.9 

Roller outer diameter 30.56 

Vane width 3.2 

Discharge port diameter 6.5 

 

The rotary compressor studied in this paper has a working chamber volume of 9.1 cm3. Dimensions of the rotary 

compressor and the discharge valve are shown in Table 1 and Fig. 2, respectively. In the full FSI model, the 

computation domain is divided into the fluid domain and the solid domain. The suction port, the cylinder volume 

and the discharge chamber are considered as the fluid domain, while the discharge valve is taken as the solid domain. 

3D 8-node brick elements are used to mesh the fluid and solid domains while 3D 4-node tetrahedron elements are 

for the suction port. The initial finite element model of the fluid domain and the discharge valve are shown in Fig. 3.  
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Figure 2: Dimensions of the discharge valve 

 

 
Figure 3: Initial finite element models of the full FSI model: (a) the fluid domain, (b) the discharge valve. 

 

To demonstrate effects of partly covering the discharge port by the cylinder and the roller on the effective flow and 

force areas, another FSI model named simplified FSI model is specially presented. Its cylinder is cylindrical, as 

shown in Fig.4. The fluid in the compression chamber of this model can be discharged directly through the 

discharge port without being covered. The volumetric change rate of cylinder is set to be the same in the two FSI 

models. 

 

The working fluid is R410A and the valve reed is made of Sandvik 7C steel. In the fluid domain, the pressure and 

temperature at the inlet of the suction port are given as 0.9978 MPa and 308.15 K, respectively. The pressure at the 

outlet of the discharge chamber is given as 3.385 MPa. The two FSI model is created using the commercial 

multiphysics code ADINA 8.8(ADINA, 2011).  
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Figure 4: Fluid model of the simplified FSI model 

 

3. RESULTS AND DISCUSSION 

 
Compression chamber pressure of the full FSI model and the simplified FSI model are shown in Fig. 5. The pressure 

tracking points are set at the lower surfaces of compression chambers. The flow energy loss through the discharge 

valve by the full FSI model is 46.54 W, while that by the simplified FSI model is only 37.31 W. The explanation of 

quite such a difference is that the fluid in the compression chamber of the simplified FSI model is easier to be 

discharged than that of the full FSI model because its discharge port is not covered by the cylinder and the roller. 

 

 
 

Figure 5: P-θ diagrams of the full FSI model and the simplified FSI model 

 

Comparisons of the displacement and the velocity of the point h0 located at the center of valve reed head, the gas 

force acting on the valve reed head and the volumetric flow rate through the valve between the two FSI models are 

displayed in Fig. 6. It can be seen that the velocity of the valve reed impacting on the retainer in the full FSI model 

is 3.7 m s-1 smaller than that in the simplified FSI model. And the gas force and the volumetric flow rate in the 

simplified FSI model is larger than that in the full FSI model at the initial valve-opening period, but become close at 

later period of the discharge process. 

app:ds:valve-opening%20period
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Figure 6: Comparison between the full FSI model and the simplified model: (a) displacement, (b) velocity, (c) gas 

force, (d) volumetric flow rate 

 

 
 

Figure 7: Comparison between the full FSI model and the simplified model: (a) effective flow area, (b) effective 

force area 

 

The effective flow and force area shown in Figure 7 can be calculated as follows, respectively 

/ 2( ) /ef V c dA m p p                                                       (12) 

/ ( )ep gas c dA F p p                                                                 (13) 

where Aef and Aep mean the effective flow area and effective force area respectively, Vm means volumetric flow rate, 

Fgas means gas force acting on the valve reed head, pc means pressure in the compression chamber, and Pd means 

discharge pressure. The comparison is meaningful only under condition that the flow and force areas are the same in 

the two models. So the comparison given in Table 2 is made at the time when the displacement of the point h0 is 

approximate in the two models (h is the displacement of the point h0). It shows the effective flow and force areas in 

the simplified FSI model are much larger than that in the full FSI model. And the effective flow area declines 

obviously after the roller covers the discharge port in the full FSI model. For example, the effective flow area 

decreases to 3.67 from 7.27 and the ratio goes up to 2.14 from 1.13 when h is 0.5 mm. So because the discharge port 

is covered partly by the cylinder and the roller, the effective flow and force area are significantly affected. The rotor 

rotational angle, which determines the covered area of discharge port, must be taken into consideration in the 

calculation of the effective flow and force areas. 
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Table 2: Comparison of effective flow and force areas between the full FSI model and the simplified FSI model 

h (mm) Model θ (degree) efA  
epA  

,

,

ef sfsi

ef ffsi

A

A
 

,

,

ep sfsi

ep fsi

A

A
 

0.5 
SFSI 216.5 8.23 11.5 

1.13 10.0 
FFSI 217.6 7.27 1.15 

0.7 
SFSI 217.4 10.41 11.17 

1.19 4.62 
FFSI 220.0 8.74 2.42 

1.4 
SFSI 220.2 16.47 10.58 

1.24 1.48 
FFSI 223.2 13.23 7.16 

1.9 
SFSI 241.3 17.27 44.26 

1.16 2.02 
FFSI 244.9 14.84 21.95 

1.4 
SFSI 296.1 14.24 51.23 

1.94 4.15 
FFSI 299.0 7.34 12.34 

0.5 
SFSI 313.3 7.86 36.84 

2.14 6.81 
FFSI 317.4 3.67 5.41 

 

Figure 7 (b) and Table 2 show the effective force area at the initial valve-opening period is much smaller than that at 

later period of the discharge process(the valve reed rise and fall at these two periods, respectively). For instance, the 

effective force area increases to 36.84 from 7.16 for the full FSI model when h is 1.4 mm. And the effective force 

area increase suddenly while the valve reed impact the retainer. It reveals that the velocity of the valve reed have a 

great influence on the effective force area. 

 

4. CONCLUSION 
 

Partly covering the discharge port by the cylinder and roller can not be neglected in the research of the effective 

flow and force areas of the reed valve for the rotary compressor. Otherwise, the two areas will much larger than that 

in the real compressor. If such imprecise two areas are used in the valve model, the flow energy loss through the 

discharge valve will be underestimated, and the impact stress and the impact velocity of the valve reed impacting on 

the retainer will be an excessively high value. More experiments and simulations need to be conducted to determine 

the relationship between these two areas and the factors which determine the covering area of the discharge port, 

such as size of the oblique incision and the rotor rotational angle. 
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