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ABSTRACT 
 
This paper contains results of an exemplary design and dimensioning process of a screw expander for an organic 
Rankine cycle for the exhaust heat recovery of internal combustion engines. Both geometric parameters and system 
parameters are varied in a wide range to maximize overall power output. It is shown that, for small scale 
applications in particular, a combination of an uncommonly large inner volume ratio with high inlet pressures can be 
advantageous, despite the fact that only relatively small isentropic expander efficiency is achieved. The remainder of 
the study includes a consideration of several part load Rankine cycle operation points and presents a method for 
averaging the final expander size. During the dimensioning process, multi chamber model simulation is used to 
predict the operation behavior of the screw expander. The multi chamber model of the machine is scaled taking 
geometrical similarity into consideration (excluding clearance heights) during the simulation process at constant 
circumferential speed. In this way it is ensured that the actual expander mass flow always matches the calculated 
ORC mass flow. Moreover, to estimate the overall performance of the heat recovery system and to find common 
pressure- and speed-dependent operating points for part and full load, a characteristic map of the selected screw 
expander is calculated. 
 

1. INTRODUCTION 
 
Growing prices of primary energy carriers and increasing environmental requirements lead to the general need to 
enhance the efficiency of technical systems and exploit the potential of lower energy conversion. A promising 
approach for both mobile and stationary applications containing internal combustion engines is exhaust heat 
recovery. Even modern diesel engines only reach efficiency values of approx. 40 % (Schreiner, 2011). Thus a 
substantial amount of the invested chemical energy is released to the environment as heat losses in the cooling and 
exhaust system. Overall efficiency can be enhanced by transferring part of this waste heat flow to a coupled organic 
Rankine cycle in order to vaporize a pressurized working fluid, which drives a heat engine. Screw expanders are 
highly suitable for the described purpose since they show an auspicious energy conversion in the lower and medium 
power range with a wide scope of operation (Hütker and Brümmer, 2013). 
The crucial factor for achieving sufficient thermal efficiency of the Rankine cycle is expander performance, which 
can be influenced by choosing the right screw expander geometry as well as by operating the ORC system at an 
advantageous operation point. An overall system approach for expander design and optimization, which leads to 
maximal system efficiency but is rather time-consuming, should therefore be favored over an expander-based 
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approach. This paper presents an approach for an application-oriented design of an exemplary screw-type steam 
expander for the exhaust heat recovery of heavy truck engines. Influences of ORC parameters and expander 
geometry on the thermal efficiency of a closed-loop ethanol cycle are discussed and examined by means of multi 
chamber model simulation. 
 

2. FUNDAMENTALS 
 
2.1 ORC System 
The organic Rankine cycle basically has the same working principle as the Clausius Rankine cycle, which converts 
heat into mechanical work, but an organic fluid with a distinctly lower boiling point is used instead of water. This 
makes it possible to use heat sources at a relatively low temperature level and therefore offers benefits for waste heat 
recovery. The liquid working fluid is pumped to an evaporator where a heat flow from the hot exhaust gases is 
exchanged. After reaching the pressure-dependent boiling temperature, the fluid state changes from liquid to 
vaporous. Eventually, a superheating is realized. The vapor subsequently flows through an expansion device (a 
screw-type expander in this particular application) where useful shaft work is converted. Afterwards, the steam is 
piped through a condenser before it finally reenters the feed pump. 
Hot exhaust gases serve as the main heat source for the organic Rankine cycle for the heat recovery of heavy truck 
engines. Thus the added heat flow depends on exhaust gas conditions and hence on internal combustion engine 
operation. The definition of thermal efficiency 𝜂𝑡ℎ for the Rankine cycle is given in equation (1), where 𝑄̇𝑒𝑥ℎ is the 
exhaust gas heat flow, and 𝑃𝑂𝑅𝐶 is the recovered power, which is composed of effective expander power 𝑃𝑒,𝑠𝑒 and 
power consumption of the feed pump 𝑃𝑒,𝑝. 

𝜂𝑡ℎ =
𝑃𝑂𝑅𝐶
𝑄̇𝑒𝑥ℎ

=
𝑃𝑒,𝑠𝑒 − 𝑃𝑒,𝑝

𝑄̇𝑒𝑥ℎ
 (1) 

The actually exchanged heat flow is affected by pinch point temperature, which is the minimal temperature 
difference between working fluid and exhaust gas and is typically present at the pressure-dependent boiling point of 
the working fluid. Assuming there are no heat losses within the system, a certain ORC mass flow 𝑚̇ can be reached 
with a defined input heat flow 𝑄̇𝑖𝑛, described in equation (2), where ℎ is the specific enthalpy of the working fluid. 

𝑚̇ =
𝑄̇𝑖𝑛

ℎ𝑖𝑛,𝑠𝑒 − ℎ𝑜𝑢𝑡,𝑝
 (2) 

In a closed-loop cycle expander outlet pressure 𝑝𝑜𝑢𝑡,𝑠𝑒 is defined by vapor pressure at condensation temperature, 
which in turn is affected by the temperature level of the available heat sink. As regards system complexity, it is 
advantageous to use the cooling system of the combustion engine for that purpose. Assuming that the cooling water 
temperature is mostly constant, expander outlet pressure can also be regarded as a constant for the whole operation 
range. The available isentropic power can be determined through knowing the ORC mass flow and the isentropic 
enthalpy difference as shown in equation (3), where ℎ𝑜𝑢𝑡,𝑠,𝑠𝑒 is the specific enthalpy after an isentropic expansion to 
expander outlet pressure. ℎ𝑖𝑛,𝑠𝑒 is determined with the expander inlet pressure and inlet temperature. 

𝑃𝑠 = 𝑚̇�ℎ𝑖𝑛,𝑠𝑒 − ℎ𝑜𝑢𝑡,𝑠,𝑠𝑒� (3) 

The presented investigation is carried out with ethanol as the ORC working fluid since it has advantageous 
properties for this specific case of application, as shown in earlier investigations by Span et al. (2011). The 
maximum steam temperature is set to 550 K to obtain a decomposition temperature safety margin for the working 
fluid. Moreover, the maximum permitted steam pressure is set to 5 MPa in relation to the mechanical load of the 
ORC components. Expansion takes place within a single screw expander so as to reduce system complexity. 
 
2.2 Screw Expanders 
Screw expanders are two-shaft rotary positive displacement machines with a defined expansion ratio. The 
characteristic rotor pair is made up of two matching helical screws and is constantly meshed during operation. As 
the profiled rotor parts are enclosed in a tight housing, working chambers connected in pairs, form between the 
screw lobes and periodically change their volume as the rotor rotates. Chamber filling and working fluid discharge is 
controlled by the position of inlet and outlet openings within the casing. 
Figure 1 qualitatively shows chamber volume progression as well as the inlet and outlet openings for a working 
cycle of a screw-type expander. A new chamber emerges between the lobes on the high pressure side of the 
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expander while the rotors turn in opposite directions. It is connected with the expander inlet port so that working 
fluid flows in while chamber volume simultaneously increases. The position of the high pressure control edge 
defines the rotor angular position and the corresponding chamber volume 𝑉𝑒𝑥,𝑡ℎ at which the filling process stops 
and the subsequent expansion phase begins. Chamber volume continuously increases during expansion while the 
chamber in question is ideally isolated from its environment. Thus chamber pressure drops. The leading lobes cross 
the low pressure control edge of the casing when maximum chamber volume 𝑉𝑚𝑎𝑥  is reached and the discharge 
phase begins in which contained fluid is displaced to the expander outlet while chamber volume simultaneously 
decreases. The working cycle ends when the chamber in question disappears since screw machines operate without 
dead spaces. Given that the angular position at maximum chamber volume is affected by screw rotor geometry, the 
angular position of expansion initiation depends on the inner volume ratio 𝑣𝑖, which is defined in equation (4). 

𝑣𝑖 =
𝑉𝑚𝑎𝑥
𝑉𝑒𝑥,𝑡ℎ

 (4) 

The inner volume ratio is a crucial expander parameter because it defines the inner expansion ratio of the screw 
expander. A large inner volume ratio leads to a shorter filling period and thus to a smaller cross section of the inlet 
opening. As a result, throttling effects increase during chamber filling. Another effect that impacts working behavior 
is inevitable leakage through clearances required to separate moving parts from the casing. This can be reduced 
however by injecting an auxiliary liquid into the working chamber in order to seal clearances. 
Like all positive displacement machines, screw expanders change the energy content of a working fluid by 
performing pressure-volume work, which is finally converted to shaft work. Effective isentropic efficiency 𝜂𝑒,𝑠 is 
hence defined as shown in equation (5), where 𝑀 is the torque obtained from the shaft, and 𝜔 is the angular velocity. 

𝜂𝑒,𝑠 =
𝑃𝑒
𝑃𝑠

=
𝑀 𝜔
𝑃𝑠

 (5) 

The delivery rate 𝜆 , which is defined in equation (6), is a measurement for expander mass flow. 𝑚̇𝑡ℎ  is the 
theoretical mass flow, which would occur in the case of lossless chamber filling without internal leakage meaning 
that fluid density at expansion start would correspond to inlet conditions 𝜌𝑖𝑛,𝑠𝑒. Inlet throttling reduces the delivery 
rate since the actual density at expansion start is lower than in the inlet. Internal leakage on the other hand increases 
the delivery rate because leakage mass flows are directed in main flow direction. 

𝜆 =
𝑚̇
𝑚̇𝑡ℎ

=
𝑚̇

𝑉𝑒𝑥,𝑡ℎ 𝜌𝑖𝑛,𝑠𝑒 𝑧𝑚  𝜔𝑚 2 𝜋⁄  (6) 

Further expander parameters describing the screw geometry are listed below: 
  

 
Figure 1: Volume curve and chamber openings for a working cycle of a screw expander 
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• Rotor profile 
• Number of lobes 𝑧𝑚, 𝑧𝑓 
• Length diameter ratio of male rotor 𝐿𝑚 𝐷𝑚⁄  
• Wrap angle of male rotor 𝜑𝑚 

 
Of course, these geometric design parameters and the choice of inner volume ratio affect the operating behavior of 
screw expanders as they not only specify the size and position of chamber openings and thus the magnitude of inner 
expansion, but also define the clearance geometry and thus the internal leakage. 
 
2.3 Multi Chamber Simulation 
Multi chamber simulation is used to predict the operating behavior of the screw expander, where the screw machine 
is abstracted to a zero-dimensional time-dependent model, which includes all information. The universal positive 
displacement machine simulation tool KaSim utilized in this investigation was developed at the Chair of Fluidics of 
TU Dortmund University. All chambers, chamber connections and miscellaneous capacities are observed 
simultaneously during thermodynamic simulation. The exchange of mass and energy between chambers or expander 
ports is considered as well as changes of state through volume alteration. The laws of mass and energy conservation 
are the basis of the calculation. Simulation results are on the one hand integral values such as expander mass flow or 
internal power and on the other hand time-dependent pressure and temperature diagrams. (Janicki, 2007), (Kauder et 
al., 2002) 
Designing a screw expander for a closed-loop application requires the expander behavior to be adapted to that of the 
ORC since the two components are highly depending on another. Steady operation is only possible if the expansion 
device delivers the evaporated steam flow for the specified system parameters, such as inlet pressure and degree of 
superheating. Moreover, expander circumferential speed for the design point is determined according to whether a 
dry running or a liquid-injected screw machine is considered. Thus machine size has to be iteratively adapted during 
simulation to obtain the intended mass flow with the given circumferential speed. Clearance heights are set to a 
constant value of ℎ = 0.1 𝑚𝑚 for this investigation as they only partly depend on machine size. The focus is 
additionally on liquid-injected machines meaning that the male rotor circumferential speed is set to 𝑐𝑚 = 35 𝑚 𝑠⁄  
for the design point. The influence of the injected auxiliary liquid is estimated by sealing 80 % of the housing 
clearance cross section and 20 % of the cross sections of other clearance types. It is also presumed that, due to 
throttling effects, only 80 % of the theoretical maximum mass flow will move through inlet and outlet cross 
sections. 
 

3. APPLICATION-ORIENTED DESIGN APPROACH 
 
A screw machine is traditionally designed focusing on the thermodynamic machine itself. The initial situation is 
often a defined set of boundary conditions such as mass flow, pressure levels and temperatures, leading 
automatically to an invariable amount of available isentropic power for energy conversion. In this case, expander 
design and of expander parameter optimization would equate to maximizing power yield and therefore to 
maximizing the effective isentropic efficiency factor of the screw-type steam expander. Today, a pressure ratio of up 
to 15 can be obtained from a single stage oil-flooded industrially manufactured screw compressor (Stosic et al., 
2005). Applied by analogy to expanders, this would create an upper bound for expander inlet pressure with a given 
condensation pressure level. A traditional expander design approach would therefore be to choose one or a few 
suitable sets of ORC parameters and adapt expander geometry parameters to reach maximal effective isentropic 
efficiency. 
Since optimizing a single part of the ORC system while leaving fluid parameters unchanged does not necessarily 
mean the whole system’s potential is exploited, a system-based approach is suggested where the whole application is 
considered. Hence the available exhaust gas heat flow is the basis of the expander design process. As favorable ORC 
parameters such as expander inlet pressure and degree of superheating are still to be determined, the available 
isentropic power for the expander is not yet specified. The application-oriented design approach basically features a 
simultaneous variation of expander design parameters and system parameters. The one combination of geometric 
expander parameters and ORC parameters that provides the highest usable power yield and the highest heat recovery 
at the same time, has to be identified during the design process. Compared to a traditional design approach, this 
corresponds to an optimization of thermal efficiency in contrast to an optimization of isentropic expander efficiency. 
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Figure 3: Relative available isentropic power as a function of expander inlet pressure and degree of superheating 
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3.1 Variation of ORC Parameters 
As mentioned before, the ORC parameters are varied at the same time as expander geometry parameters, but in 
order to provide a general understanding of the system, influences of ORC parameters are presented first of all. In 
this exemplary design process, expander inlet pressure is altered from 0.5 MPa to 5 MPa for saturated steam and for 
superheated steam with 20 K and 40 K superheating. For a constant operation of the internal combustion engine, the 
ORC mass flow can be calculated within this range as shown in Figure 2. Values are related to the maximum mass 
flow rate. Mass flow rate decreases along with the degree of superheating as a greater specific heat is required to 
reach the distinct fluid state. For superheated steam, ORC mass flow rate is moderately reduced when expander inlet 
pressure is increased. However, for a process with saturated ethanol steam, the mass flow rate reaches its minimum 
at 3 MPa and rises again for greater expander inlet pressures. This is caused by the decreasing slope of the saturation 
line at higher pressure levels, which becomes lower than those of the lines of constant enthalpy, and evaporation 
enthalpy drops as a result of this. Consequently, a lower specific heat is necessary to evaporate the working fluid at 
high pressures. The ORC mass flow rate is a major boundary condition for expander design since it has to match the 
actual mass flow rate of the screw machine. With the given boundary condition of constant circumferential speed, 
the mass flow can only be adjusted via geometrical scaling to the designated ORC mass flow rate, which is pressure- 
and temperature-dependent. 
By additionally considering the available isentropic enthalpy difference for a constant expander outlet pressure, the 

 
Figure 2: Relative ORC mass flow rate as a function of expander inlet pressure and degree of superheating 
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Figure 4: Relative usable ORC power as a function of expander inlet pressure and degree of superheating 
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available isentropic power for each set of ORC parameters can be determined, as displayed in Figure 3, where data 
is again related to the maximum value. In general, the available isentropic power of the Rankine cycle increases with 
expander inlet pressure. The highest value of available isentropic power can be achieved in a saturated steam 
process. In the higher pressure range, a superheating of the steam reduces isentropic power. As can be seen, the 
pressure range that offers the best potential for exhaust heat recovery is not accessible with a traditional screw 
machine design since the pressure ratio is too great. However, this range is purposely included in the remainder of 
the study. 
 
3.2 Variation of Expander Parameters 
Identifying an advantageous expander geometry highly depends on the application, and results differ depending on 
boundary conditions such as quantity of delivered mass flow rate, working fluid, usage of auxiliary liquids etc. To 
obtain optimal results, a case specific variation of expander geometry should be implemented. Expander geometry 
parameters have to be systematically varied along with application parameters. In the preceding sub-section, 30 
ORC operation points are dealt with that represent 30 possible design points for the expansion device (for a single 
operation point of the internal combustion engine). Each screw geometry considered is therefore calculated by 
means of multi chamber simulation with simultaneous scaling meaning that the delivered mass flow rate 
corresponds to the previously determined ORC mass flow at a given inlet pressure and temperature. Thus 30 
different screw expanders that are geometrically similar (excluding constant clearance heights) are compared where 
comparability is given by the common amount of waste heat from the truck engine. This procedure ensures that the 
optimal combination of expander geometry parameters and ORC parameters is detected where utilizable power 
output is the evaluation criterion. 
Figure 4 displays the simulation results for an exemplary expander geometry that has been scaled to all 30 ORC 
operation points. Hence each data point can be allocated to a distinct dimension of the expander geometry looked at. 
The size of the expander decreases as the expander inlet pressure or the inlet density increases, and decreases 
slightly as the degree of superheating progresses, which is mainly due to the decreasing ORC mass flow rate. With 
this specific expander geometry, the highest usable power is reached with saturated vapor at 5 MPa. A superheating 
results in a drop of usable power, especially for high expander inlet pressures. Unlike for saturated vapor, a 
maximum of power forms for superheated steam in the medium pressure range. Usable power is negative for inlet 
pressures lower than 0.81 MPa, which results through the inner expansion causing a chamber pressure that is lower 
than the outlet pressure. Expansion shaft work changes its preceding sign when pressure-volume work invested 
during discharge exceeds that obtained during chamber filling and expansion. For further deliberation, the relative 
isentropic efficiency for this expander geometry is displayed in Figure 5. In the lower pressure range, results for 
isentropic efficiency correspond to the trends of usable power. For all degrees of superheating, maxima occur at 
2 MPa for the expander geometry in question and isentropic efficiency decreases in the case of a further increase of 
expander inlet pressure. The best efficiencies ratings can be reached with saturated ethanol steam. The local 
maximum forms in the pressure range where the inner expansion corresponds to the ORC pressure ratio. An 
additional reason for the drop in efficiency at higher inlet pressures is that clearance heights are constant while 
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Figure 5: Relative isentropic efficiency as a function of expander inlet pressure and degree of superheating 
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Figure 6: Characteristic map of the screw expander including common operation points (I-V) with truck engine 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

R
el

at
iv

e 
us

ab
le

 p
ow

er
 P

O
R

C
 [-

] 

Male rotor circumferential speed cm [m/s] 

III 

I 

II 

IV 

V 

1 MPa 
1.5 MPa 
2 MPa 

2.5 MPa 
3 MPa 

3.5 MPa 

4 MPa 

4.5 MPa 

5 MPa 

Maximum power 

scaling leads to reduced expander sizes. Consequently, the impact of leakage on energy conversion increases. 
Although isentropic efficiency ratings of this specific screw expander decrease with high inlet pressures, since the 
inner expansion ratio is limited and power consumption of the feed pump increases, the highest usable power can be 
generated with an expander inlet pressure of 5 MPa. 
Expander parameters, e.g. inner volume ratio, are varied one after the other in order to find a beneficial design, and 
the expander geometries are recalculated by means of multi chamber simulation whilst being scaled depending on 
the ORC mass flow for all 30 ORC operation points. Expander performance is then rated by comparing the maximal 
usable power output of the different expander geometries within the defined field of ORC parameters. Compared to 
a traditional design approach, this procedure requires considerably more effort and calculation time, but ensures that 
expander geometry is optimized in terms of thermal efficiency. 
 
3.3 Evaluation of Expander Performance 
It has been shown that expander performance for a single operation point of the combustion engine should be 
measured in thermal efficiency or in usable power output. Optimizing the isentropic efficiency of the expander does 
not necessarily lead to an optimization of the overall system performance. Previous content was discussed in the 
context of a single truck engine operation point. A number of characteristic operation points and related timeframes 
are identified to represent a realistic driving cycle in order to continue. The general relationships between inlet 
pressure, inlet temperature and ORC mass flow rate remain, but magnitudes of mass flow rate and available 
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Figure 7: Pressure volume diagram of the final expander design 

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

0.0E+00 5.0E-06 1.0E-05 1.5E-05 2.0E-05 2.5E-05 3.0E-05

C
ha

m
be

r 
pr

es
su

re
 p

 [P
a]

 

Chamber volume V [m3] 

Idealized working cycle 

Actual working cycle 

isentropic power directly depend on the available exhaust gas flow. For the discussed truck application five 
descriptive part load points are identified and taken into account as soon as during the design process. Again, the 
thermal efficiency of the ORC should be maximized which corresponds to maximizing the average usable power 
during the driving cycle. Part load is considered by following the application-oriented design approach presented 
before for each of the five part load operation points of the ORC. Thus, for each set of expander geometry 
parameters, a set of five geometrically similar screw machines with different sizes is created (for each of the 30 
ORC operation points). The driving cycle time frame and the achieved usable power in the part load point are then 
used to weight expander volume in order to determine an average expander size. 
A characteristic map of the selected screw expander is calculated to find pressure and expander speed-dependent 
operating points for part and full load and to evaluate the overall performance of the heat recovery system. A final 
adjustment of expander size is carried out since weighting expander volume represents a compromise. A slight 
enlargement positively affects the average usable power of the ORC system and enables the system to work at full 
engine load. A characteristic map of the final expander geometry is presented in Figure 6 where mechanical and 
fluid friction losses are estimated in accordance with Zellermann’s (1996) experimental results. Common operation 
points exist where delivered expander mass flow and ORC mass flow rate are equal. The inlet pressure and 
rotational speed of the expander should be selected in such a way that usable power output is maximal for each 
design point. Inlet pressure and expander speed should thus be controlled along the curve of maximum power, 
depending on engine operation. 
 

 
 

4. DESIGN RESULTS 
 
In the scope of this exemplary design process, ten different expander geometries were examined where the inner 
volume ratio, the length to diameter ratio and the number of lobes were varied systematically. Multi chamber 
simulation was carried out for all geometries for various ORC parameters, and expander size was iteratively scaled 
to match the corresponding ORC mass flow rate. In doing so, five operation points of the internal combustion engine 
were considered and used to average the final expander dimension. In this particular case, expanders with a high 
inner volume ratio perform promisingly as they allow the high isentropic power available at exceptional high 

Table 1: Geometry parameters of the final expander design 
 
Profile SRM asymmetric (Schibbye 1979) 
Number of lobes 𝑧𝑚 = 4; 𝑧𝑓 = 6  
Length to diameter ratio 𝐿𝑚 𝐷𝑚⁄ = 1.0  
Male rotor wrap angle 𝜑𝑚 = 200°  
Inner volume ratio 𝑣𝑖 = 8.0  
Rotor center distance 46.2 mm 
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expander inlet pressures to be used, even though isentropic efficiency only reaches moderate values. The final 
results of the application-oriented design can be found in Table 1. The high inner volume ratio in particular is a 
unique feature and marks a significant difference compared to traditionally designed screw machines. 
The calculated pressure volume diagram of the final expander design for a circumferential speed of 50 m/s and an 
inlet pressure of 5 MPa for saturated steam is displayed in Figure 7. An idealized expander working cycle is plotted 
for the purpose of comparison. At first, the wide discrepancy between calculation results and idealized working 
cycle is striking. Throttling effects negatively affect the working chamber pressure during the inlet phase. In 
addition, the immense pressure ratio causes a chocked flow through the inlet cross section, and internal leakages 
reduce the mass that is contained in the chamber. This combined with growing chamber volume affects the given 
pressure curve. Especially at the time of chamber emergence, when clearances are large compared to chamber 
volume, pressure decreases substantially. The slope of the pressure curve declines during expansion, and chamber 
pressure finally drops to low pressure level when the outlet opening is reached at maximum chamber volume. 
Although leakage flows are directed in main flow direction, a delivery rate of only 40 % is reached at this particular 
operation point. The influence of inlet throttling clearly outweighs internal leakage. As expander size was scaled to 
match the ORC mass flow, the low delivery rate was automatically compensated during the application-oriented 
design process by enhancing expander size. The high usable power output of the expander is hence not only affected 
by high pressures but to a great extent by the size of the working volume also. The usable power is 17 kW for this 
operation point. 
 

5. CONCLUSION 
 
In the case of the heat recovery application looked at, the application-oriented design approach targets an 
optimization of thermal efficiency which corresponds to maximizing usable ORC power output. Throughout the 
design process, both expander geometry and ORC parameters should be varied systematically so as to examine the 
full system potential. A traditional design approach most often focuses on optimizing isentropic expander efficiency 
since the expander is frequently looked at separately from the overall system. This might lead to disadvantageous 
results for heat recovery applications. 
Simulation results show that the available isentropic power increases for saturated ethanol steam at high inlet 
pressures. Overheating the steam is not advisable as it causes a decrease in ORC mass flow rates. A screw expander 
with a high inner volume ratio (𝑣𝑖 = 8) operating at high inlet pressures of up to 5 MPa promises high thermal 
efficiency ratings, even though only moderate expander isentropic efficiency ratings can be achieved. 
 

NOMENCLATURE 
 
A Cross section (m2) 
c Circumferential speed (m/s) 
D Diameter (m) 
h Specific enthalpy (J/kg) 
L Length (m) 
ṁ Mass flow (kg/s) 
M Torque (Nm) 
ORC Organic Rankine cycle (–) 
p Pressure (Pa) 
P Power (W) 
Q̇ Heat flow (W) 
T Temperature (K) 
vi Inner volume ratio (–) 
V Volume (m3) 
z Number of lobes (–) 
α Angular position (°) 
η Efficiency factor (–) 
λ Delivery rate (–) 
ρ Density (kg/m3) 
φ Wrap angle (°) 
ω Angular velocity (1/s) 
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Subscript 
e Effective 
ex Expansion 
exh Exhaust gas 
f Female 
in Inlet 
m Male 
max Maximum 
out Outlet 
p Pump 
s Isentropic 
se Screw expander 
th Thermal, theoretical 
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