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ABSTRACT

Predicting the discharge line temperature (DLT) of air conditioning and refrigeration compressors is important to
ensure sufficient lubricant properties and proper performance of components that are positioned in the exhaust stream.
Understanding the DLT is also necessary for the design of waste heat recovery systems, which are of increasing
interest. However, compressor performance information published by manufacturers does not typically include DLT
values. Assumptions made in established thermodynamic models result in only modest correlation between predicted
and observed DLT values. Numerous comprehensive DLT prediction models have been developed with excellent
accuracy, but require many details of a particular compressor.

This paper presents an assessment of various thermodynamic DLT prediction methods that do not rely on individual
compressor-specific parameters. Prediction methods considered include an entropy-based model, a polytropic model
and an energy model. The energy model was expanded to include an empirical component to account for high-side heat
transfer and exhibits an accuracy that significantly exceeds the other established methods. The model was evaluated
for both traditional refrigeration and air-conditioning operating conditions and translates well to vapor-injected, econ-
omizer cycles. Lastly, a study was conducted to determine the robustness of the empirical component by analyzing the
relationship between the accuracy of the model and the number of experimental points used to produce the model.

1. INTRODUCTION

A positive displacement compressor used in vapor-compression cooling systems increases the pressure of trapped
refrigerant vapor by reducing its volume. Reducing the volume of a fixed amount of refrigerant vapor also increases its
temperature, often referred to as the heat of compression (Hanlon, 2001). Predicting the temperature of the discharge
line of an air-conditioning or refrigeration compressor is important to ensure that the components in the exhaust stream
function properly. A primary concern with elevated temperatures is that refrigerant oils will start to break down or
carbonize and may be insufficient to lubricate bearings and other moving components within the compressor (Stoecker,
2004).

Understanding the discharge line temperature (DLT) is also important in the design of waste heat recovery systems.
In cooling systems, heat removed from a cooled chamber and heat generated by the compressor are stored in the
refrigerant and rejected to the environment, representing waste heat. Waste heat recovery has long been studied for
its potential as useful energy (Goldstic and Thumann, 1985; Kaushick and Singh, 1995). With greater emphasis being
placed on energy conservation initiatives, engineers are more closely exploring strategies to utilize the waste heat
recovery. Reclaiming this heat can be used to produce hot water (Ji et al., 2003), heat buildings (Sun and Li, 1999),
and for drying clothing (Deng and Han, 2004).
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Numerous models are published in the literature that simulate compressor performance. Many of these models include
complete compressor operation including pressure profiles, valve behavior, instantaneous flow, leakage, component
forces and lubrication (Suefuji et al., 1992; Chen et al., 2002). These models require a large number of parameters,
many of which are only known by the manufacturer. Winandy et al. (2002) and Cabello et al. (2005) formulated
simplified models to produce a good estimate of DLT and significantly reduce the number of compressor-specific
parameters. However, these models still require the swept volume, built-in volume ratio, and separate heat transfer
coefficients for different portions of the compressor.

For reliability purposes and to assess the heat energy available for reclamation, a prediction model of compressor
discharge line temperatures that does not include compressor-specific parameters can be useful. This paper reviews
alternative approaches and presents a semi-empirical model that produces good correlations with test data. The re-
mainder of the paper is organized as follows. The vapor-compression cooling system is described in Section 2. Section
3 presents alternative DLT prediction models and provides an experimental evaluation of each. An empirically-based,
adjusted energy approach is formulated in Section 4. Section 5 presents observations related to the sensitivity of the
empirical model. The DLT prediction model is extended to economizer systems in Section 6.

2. COOLING SYSTEM DESCRIPTION

To identify the thermodynamic properties of refrigerant gas at different states within a refrigeration cycle, a schematic
is shown in Fig. 1. The compressor draws a mass flow of cool, low pressure refrigerant gas at its inlet (state 2 in Fig. 1),
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Figure 1: Schematic of a vapor compression cooling system.

and discharges hot, high pressure gas (state 3 in Fig. 1). The compressor is expected to operate at different cooling
conditions signified by variations in the evaporator, condenser and compressor inlet conditions. ASHRAE (2010)
specifies an operating condition with the following temperatures: the evaporator dew-point temperature Te, the con-
denser dew-point temperature Tc, the temperature of the gas returning to the compressor T2, the condenser liquid
subcool temperature T4 and ambient temperature T∞.

2.1 Thermodynamic Analysis of the Cooling System

The compressor suction pressure p2 is commonly assumed to be equal to the saturation pressure associated with
the evaporator temperature Te. That is, pressure losses in the suction line are considered negligible. Likewise, the
compressor discharge pressure p3 is assumed to be identical to the saturation pressure associated with the condenser
temperature Tc.

An important principle of thermodynamics is the state postulate, which asserts that the state of a compressible sub-
stance is completely defined by two independent properties (Sontag et al., 2008). That is, two given properties of a
superheated refrigerant are sufficient to determine any other thermodynamic property. With given values of T2 and
p2 at the compressor inlet, the suction density ρ2, specific volume v2, enthalpy h2 and entropy s2 can be determined
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by using tables of the refrigerant thermodynamic properties (Dupont, 2011), refrigerant databases such as RefProp
(Lemmon et al., 2013), or the Peng and Robinson (1976) equations of state .

2.2 Cooling System Performance Measures

The mass flow ṁ is the average rate at which the compressor moves refrigerant through the cycle. Knowing compressor
parameters, such as speed ω, displacement Vd, and volumetric efficiency ηv , the mass flow can be calculated as

ṁ = ηv ω ρ2 Vd. (1)

The cooling capacity of the system Q̇ at a specific operating condition is the rate at which heat is absorbed by the
refrigerant from the chamber to be cooled. The enthalpy of the refrigerant exiting the condenser, h4, is determined
by the condenser pressure p3 and the liquid subcool temperature T4. No energy is exchanged within the refrigerant
control valve, and h1 = h4. Capacity is calculated as the heat transfer rate across the evaporator,

Q̇ = ṁ (h2 − h1) . (2)

The electrical power required to operate the compressor Ẇ is the rate at which work is performed to compress the
refrigerant vapor, inefficiencies within the motor, friction, and flow losses. Defining ηc as the compressor efficiency,
electrical power can be calculated as

Ẇ =
ṁ

ηc

∫ v3

v2

p dv. (3)

Note that Vd, ω, the relationship between p and v, and compressor-specific losses must be known to apply Eqs. (1),
(2), (3). Compressor rating is widely available and provides more accurate estimates of ṁ, Q̇, and Ẇ , as discussed in
the following section.

2.3 Experimental Performance Data

Compressor manufacturers conventionally provide rating information across an operating map in accordance with ARI
Standard 540 (2004). The compressor performance values are tabulated over a range of Te and Tc. The tabular data is
then represented by a ten-coefficient, third-order polynomial equation of the form

X = C1 + C2Te + C3Tc + C4T
2
e + C5TeTc + C6T

2
c + C7T

3
e + C8T

2
e Tc + C9TeT

2
c + C10T

3
c . (4)

where X can represent power input, mass flow rate, current or compressor unit efficiency. The rating coefficients
Ci are determined by a regression and are provided by compressor manufacturers for engineers designing a system
or components. Groll (2010) has reported succesfully using X to represent DLT values, however the corresponding
coefficients are not consistently cataloged and are typically unavailable.

3. FUNDAMENTAL MODELS FOR DISCHARGE LINE TEMPERATURES

Three common models used to determine the DLT are evaluated in the following sections. The validity of the prediction
models was assessed using 302 DLT measurements from various scroll compressors ranging from 2-ton to 15-ton, using
various refrigerants (R22, R134a, R404A, R407A, R407C, R410A), evaporator temperatures ranging from −10 ◦F to
55 ◦F and condenser temperatures ranging from 70 ◦F to 140 ◦F.

3.1 Entropy Approach

As discussed in Sec. 2.1, the entropy at the compressor inlet s2 and pressure at the exhaust p3 can be generated from the
operating point. Assuming an ideal, adiabatic compression process, the entropy of the exhaust gas will be the same as
that of the inlet gas, s3 = s2. To account for inefficiencies, which would tend to increase exhaust entropy, an efficiency
measure α was defined to model the increase. That is, s3 = α s2. The exhaust entropy along with discharge pressure
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(s3, p3) provides the two quantities necessary to use a refrigerant property database and determine T3. Ignoring any
heat transfer with the environment, the exhaust temperature T3 is assumed equal to DLT. Using the 302 measurements,
an iterative process was used to determine an efficiency measure of α = 1.0233 that produced the lowest difference
between predicted and measured DLT. The percent of measurements that fell within various error ranges is listed in
Table 1. A plot of the correlation between predicted and measured DLT with ±5% bands is shown in Fig. 2a.

Calculation Approach
Entropy Polytropic Energy Balance Energy & Heat Loss

No. of Data-Based Parameters 1 2 1 3
Mean Prediction Error 0.00 ◦F −0.046 ◦F 11.6 ◦F 0.00 ◦F
Prediction Std. Dev. 22.47 ◦F 19.06 ◦F 8.72 ◦F 3.30 ◦F
Prediction within ±5 ◦F 22.77 % 35.31% 19.33 % 92.41 %
Prediction within ±10 ◦F 39.60 % 61.72 % 51.00 % 98.35 %
Prediction within ±15 ◦F 53.14 % 80.20 % 69.67 % 99.34 %

Table 1: DLT prediction accuracy of alternative methods.
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(b)  Polytropic approach (a)  Entropy approach 

(d)  Adjusted energy approach (c)  Energy approach 

Figure 2: Measured and predicted DLT correlation plots for the various approaches. The dashed lines represent a ±5%
range.
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3.2 Polytropic Compression Approach

A gas compression process is often considered as polytropic and follows the relationship

pvγ = C (5)

where γ is the polytropic exponent and C is a constant of proportionality. The value γ is experimentally determined,
but for a given gas is often considered constant over a range of operating conditions (Lenz, 2002). For the compression
process

p3
p2

=

(
v2
v3

)γ
. (6)

The real gas equation of state is given as pv = ZRT , where R is a gas constant and Z is a compressibility factor.
Substituting into Eq. (6) and rearranging,

T3 = T2
Z2

Z3

(
p3
p2

)(γ−1)/γ

. (7)

As in the previous approach, exhaust temperature T3 is assumed equal to DLT. A regression was performed on each
refrigerant to determine the values of γ and (Z2/Z3) that produced T3 from Eq. (7) that produced the lowest difference
between predicted and measured DLT. Resulting values obtained for γ are given in Table 2. The comprehensive
prediction results are listed in Table 1 and a error plot with ±5% bands is shown in Fig. 2b.

Refregerant R22 R134a R404A R407A R407C R410A
Z2/Z3 0.9855 1.0331 1.0131 0.9561 0.9525 0.9912
γ 1.2814 1.1447 1.1538 1.2173 1.2139 1.249

Table 2: Polytropic exponents for purpose of DLT prediction.

3.3 Energy Balance Approach

Energy flows into the compressor as electrical power Ẇ and with the inlet gas as ṁ h2. As discussed in Sec. 2.1, the
enthalpy at the compressor inlet h2 and pressure at the exhaust p3 can be generated from the operating point. Energy
exits the compressor chamber with the exhaust gas as ṁ h3. Rearranging this energy balance,

h3 =
Ẇ + ṁ h2

ṁ
. (8)

Since compressor coefficients for mass flow and electrical power are published in accordance with ARI Standard 540,
ṁ and Ẇ and are readily available. With h3 and p3 known, a refrigerant property database provides the exhaust
temperature T3. As with the other two approaches, heat transfer with the environment is ignored and DLT = T3. The
prediction results are listed in Table 1 and a error plot with ±5% bands is shown in Fig. 2c.

4. ADJUSTED ENERGY BALANCE APPROACH

Observing Fig. 2, the energy balance approach has the narrowest correlation band and warrants further investigation.
Note from Table 1 that the energy approach has the lowest standard deviation, but the average estimated DLT is 11.6 ◦F
higher than measured values. The DLT is lower than T3 because of heat transfer from the hot, high-pressure side of the
compressor to the environment. This high-side heat transfer Q̇ex may be substantial as T3 can be significantly above
the ambient temperature T∞. Expressing this high-side heat transfer energy balance gives,

ṁ h3 − Q̇ex = ṁ hDL. (9)
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where hDL is the enthalpy of the refrigerant vapor as it enters the discharge line. Being a nearly constant pressure
process, the specific heat cp can be used to linearly relate the enthalpy difference to the temperature difference.

h3 − hDL = cp (T3 − DLT) . (10)

Figure 3 illustrates the heat transfer from the hot, high side refrigerant through the compressor housing, which involves:
a) forced convection from the refrigerant flow to the wall of the housing; b) conduction through the housing wall; c)
free convection to the environment. The heat transfer across a series of conductive and convective barriers is expressed

 

Ambient temperature, T∞ 

Forced convection 
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Compression chamber exhaust 
temperature, TG2 

Free convection to 
environment 

Conduction through 
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Figure 3: Heat transfer from the refrigerant exiting the compression chamber to environment.

in terms of the thermal resistance of each barrier RTi as

Q̇ex =
T3 − T∞∑

RTi
. (11)

For both reciprocating compressors (Adair et al., 1972) and scroll compressors (Jang and Jeong, 2006), the thermal
resistance of the forced convection portion of the heat transfer RT1 has been found to correlate with the Reynolds
Number Re as established by Dittus and Boelter (1930),

RT1 = f(Re−0.8). (12)

The Reynolds Number is defined as Re = ρv̄D/µ where the D is diameter of the flow channel, v̄ is the mean flow
velocity, ρ is the refrigerant density and µ is the dynamic viscosity. Since ṁ = ρ2v̄(πD2/4), the Reynolds number
can be written as

Re =
4ṁ

πµD
. (13)

While the shell size of hermetic compressors and viscosity of refrigerant is variable, the largest change among refrig-
eration compressor families and across the operating map occurs in the mass flow. Thus, the thermal resistance of heat
flow from discharge gas to the shell is considered to be primarily dependent on the mass flow as

RT1 = f(ṁ−0.8). (14)

The thermal resistance of the compressor housingRT2 and the natural convection to the ambientRT3 are not dependent
on the condition of the refrigerant flow, and consequently will have a low dependence on the compressor operating
condition (Te, Tc, T2). While the diameter and shell thickness vary for different hermetic compressors, the percentage
of variance is relatively minor. Thus, RT2 and RT3 will be considered constant. Combining Eqs.(10), (11), (13), (14),
the temperature difference between exhaust and discharge line temperatures is expected to correlate to the mass flow
as

T3 − DLT = A(T3 − T∞)
ṁ−0.8

cp
+B, (15)

where A and B are regression constants. Equation (15) was used with the 302 measurements previously discussed to
provide regression values A = 2.6564 and B = 1.4280. This high-side heat transfer adjustment was applied to the
energy balance discussed in the previous section. The prediction results for this adjusted energy approach are listed in
Table 1 and an error plot with ±5% bands is shown in Fig. 2d. This alternative prediction strategy provides a modeling
advantage over the other approaches.
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5. OBSERVATIONS FROM THE DLT MODEL

A study was conducted to evaluate the number of measurement points required to construct an acceptable adjusted
energy balance model. Of the 302 measurements, 100 random points were set aside to use as an evaluation data set.
The remaining 202 measurements can be potentially used to determine the heat loss regression coefficients A and B.
From these 202 measurements, n = 15 random points where used to construct the regression model of Eq. (15). This
model was subsequently used to predict the DLT of the 100 evaluation points that were set aside. The regression was
repeated, determining A and B with n = 15, 45, 90, and 180 random selected measurements. The prediction accuracy
for various n measurements used to construct the regression model are provided in Table 3. Observed is that a larger
sample size slightly improves accuracy at the ±2% level. However, the larger error bands do not show improvement
and this accuracy limit is attributed to random measurement error. This study illustrates that Eq. (15) is an appropriate
fit for the heat loss and relatively few measurements are required to perform the regression.

n 15 45 90 180
Prediction within ±2% 57% 58% 60% 63%
Prediction within ±5% 95% 96% 94% 95%

Prediction within ±10% 100% 100% 99% 99%
Prediction within ±15% 100% 100% 100% 100%

Table 3: DLT prediction accuracy with n points used to generating regression coefficients.

A second study applied the adjusted energy balance DLT prediction model to an externally generated data set. Winandy
et al. (2002) formulated a simplified model that required only limited compressor-specific parameters. They provided
28 DLT measurements for an 8-ton hermetic compressor using R22, evaporator temperatures ranging from −5 ◦F
to 55 ◦F and condenser temperatures ranging from 85 ◦F to 145 ◦F. Constants A = 2.6564 and B = 1.4280 (as
determined in Sec. 4) were used in Eq. 15 and applied to that data set. An error plot with ±5% bands is shown in
Fig. 4, illustrating good correlation.

 

 

 

Figure 4: DLT correlation plot for the adjusted energy model applied to measurements presented in Winandy et
al. (2002). The dashed lines represent a ±5% range.

6. ECONOMIZER, VAPOR-INJECTED CYCLE

The use of an economizer cycle, as shown in Fig. 5, can increase cooling capacity and efficiency of a cooling system.
The DLT model was readily applied to the economizer cycle, accounting for the additional energy being introduced
into the compressor with the injected refrigerant. The pressure of the vapor being injected into the compressor p7 ∼= p6
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(a) Physical Components (b) Cycle plot on a p-h grid 
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Figure 5: Schematic of an economizer cooling system.

and the injected mass flow ṁi become additional operating parameters. To differentiate between flows, the mass flow
drawn through the compressor inlet is ṁ2 and through the compressor outlet is ṁ3. Thus, ṁ2 + ṁi = ṁ3.

The temperature of the refrigerant within the heat exchanger T6 is taken as the saturation temperature corresponding
with the injection vapor pressure p6. The temperature of the injected refrigerant entering the compressor T7 is typically
5 to 10 ◦F higher than the saturation temperature. For the purposes of this model, T7 = T6 + 5. Knowing the two
properties of the injected refrigerant (T7, p7) the injection enthalpy h7 can be determined from a refrigerant database.
The energy balance of the suction plenum and compression chamber expressed in Eq. (8) must be modified to include
the injected flow’s enthalpy,

h3 =
Ẇ + ṁ2 h2 + ṁi h7

ṁ3
. (16)

For an economizer cycle, the energy approach with discharge plenum heat transfer adjustment can be used by replacing
Eq. (8) with Eq. (16). This economizer prediction model was assessed using 219 DLT measurements from several
different hermetic compressors ranging from 2-ton to 15-ton, using various refrigerants (R404A, R407A, R407C,
R410A), evaporator temperatures ranging from −40 ◦F to 45 ◦F and condenser temperatures ranging from 50 ◦F to
140 ◦F. The error plot with ±5% bands is shown in Fig. 6.

 

 

 

 

 

 

Figure 6: Measured and predicted DLT correlation plots for compressors operating in an economizer cycle. The dashed
lines represent a ±5% range.
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CONCLUSIONS

This paper assesses various DLT prediction methods that do not rely on compressor-specific parameters. Compared
to entropy and polytropic models, an energy balance approach exhibited better correlation with experimental mea-
surements. The energy balance approach was improved when an empirical heat loss term was added. A study was
conducted to determine the relationship between the accuracy of the model and the number of experimental points
used to produce the model. Lastly, the model was expanded to include vapor-injected, economizer cycles.
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