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ABSTRACT 

 
Capacity control of a chiller with multiple variable-speed centrifugal compressors running in parallel between a 

common evaporator and condenser under reduced load conditions can be achieved by speed variation and/or 

adjusting the number of compressors in operation.  Quite often there is not a unique solution for a specific part-load 

condition in terms of the number of compressors required and the speed of each of these compressors.  These 

different capacity control schemes can result in substantial differences in chiller performance under part-load 

conditions.  The decision in selecting the optimum number of operational compressors to reach a desired part-load 

capacity depends not only on the required partial load but also on the required pressure ratio at that part-load 

condition.  To illustrate the control dilemma, the paper will start with an example that shows the need for a different 

control strategy for two different chiller pressure ratios at equal part-load capacity.  This difference in partial load 

control can be planned by observing the location of the efficiency islands on the variable-speed centrifugal 

compressor map. For a given refrigerant the efficiency of a compressor is a function of only two process variables: 

head (isentropic enthalpy rise) and volumetric flow rate.  With that information a multiple compressor control 

algorithm has been developed that can estimate optimum chiller performance for any head/flow combination the 

chiller with multiple compressors might encounter. The improvement in chiller part-load performance using this 

algorithm can be substantial as will be illustrated in the paper for a two compressor chiller configuration.      

 

1. INTRODUCTION 

 
Oil management issues have limited in the past the use of multiple conventional centrifugal compressors on chillers 

sharing a common evaporator and condenser, despite the potential of those chillers for part-load performance 

improvement and cooling redundancy (limited cooling still available in case of one compressor failure).  Variable-

speed oil-free centrifugal compression technology has resulted in a proliferation of chillers with multiple 

compressors.  The master controller of such chillers has to prescribe the required capacity of the individual 

compressors, but it also has to decide when to add or remove a second or third compressor.  That decision is not 

obvious as will be shown for a two-compressor chiller.  Figure 1 shows a simplified schematic of such a chiller with 

two compressors operating in parallel sharing a common evaporator and condenser.  The two compressors, when 

both running, experience the same suction and discharge pressures dictated by the saturation temperatures of the 

common condenser and evaporator.  When the capacity of the chiller can also be met by a single compressor it will 

again encounter the same suction and discharge pressures.   Two temperature conditions (corresponding to high- and 

low-head compressor operation) are shown in this figure.  Note that most of the temperature change when going 

from low to high head occurs in the condenser and that the evaporator temperatures are hardly affected.  This is a 

reflection of the fact that leaving chilled water temperature always has to stay the same for building 
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dehumidification or process cooling purposes while the condenser entering water temperature coming from the 

cooling tower changes with ambient conditions.   

 

 
 

Figure 1: Two compressor chiller schematic with temperature in red showing the high lift condition and 

temperatures in green the low lift condition 

 
What should be the control strategy when the chiller requires only half the capacity it can deliver with its two 

compressors: 

1. Should both compressors run at 50% load at reduced speed? 

2. Should one compressor be shut down and the other one run at full-load capacity? 

In order to answer this question we have to compare the efficiency of the single compressor at 100% capacity 

against the compressor performance of two compressors running at 50% capacity.  Centrifugal compressor 

efficiency is often given as a function of volumetric flow rate and head (isentropic enthalpy rise).  The head   

defined as the isentropic enthalpy rise can be determined from the evaporator and condenser saturation 

temperatures    (           )                  . 

 

 
 

Figure 2:  The non-dimensional aerodynamic performance map of a variable speed centrifugal compressor 
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Compressor capacity is controlled by the volumetric flow rate V which follows from a refrigeration cycle analysis.  

Variable speed centrifugal compressor performance maps show graphically compressor efficiency as a function of 

volume flow as the variable on the horizontal axis and head on the vertical axis.  Efficiency islands are obtained by 

connecting the head/flow points of equal efficiency. Figure 2 shows relative efficiencies as a function of flow 

fraction and head fraction.  The meaning of the points A, B, C and D will be explained below. The variables on the 

compressor map (head, flow and efficiency) are displayed as percentages or fractions of the values at the full-load 

design point. The saturation temperatures shown in Figure 1 for high and low lift conditions result for an R134a 

compressor in isentropic enthalpy rises of 19.56 and 10.42 kJ/kg or normalized head fractions (HF) of 1.00 and 0.53, 

respectively.  Under the simplifying assumption that chiller capacity is proportional to compressor  normalized 

volumetric flow fraction (FF) and that motor and inverter efficiency are constant, the flow fraction/head fraction 

coordinates of the one compressor operating at high lift at 50% chiller duty (point A) are FF=1.0, HF=1.0.  The map 

coordinates of both compressor operating at high lift at 50% chiller duty (point B) are FF=0.5, HF=1.0.  Similarly, 

the flow fraction/head fraction coordinates of the one compressor operating at low lift at 50% chiller duty (point C) 

are FF=1.0, HF=0.53  The map coordinates of both compressor operating at high lift at 50% chiller duty (point D) 

are FF=0.5, HF=0.53%.  Reading off the efficiencies at these four points it becomes clear that the high lift condition 

requires single compressor operation at 50% capacity while the low lift requirement requires dual compressor 

operation at reduced speed as shown in Figure 3 which contains the aerodynamic efficiency of a dual compressor 

system.  By overlaying the compressor map of a single compressor with that of two compressors running in parallel 

and always selecting the higher efficiency option for given head and flow conditions a new compressor map can be 

constructed which contains a much larger area of high compression efficiency than can be obtained with a single 

compressor.  This new map shows the advantage of multiple compressor chiller operation.  

 

 
 

Figure 3: Aerodynamic efficiency islands of a two-compressor system 

 
In order to generalize the example presented above by including the motor and drive efficiencies and allowing the 

combination of compressors of different capacities, it is necessary to expand compressor aero performance into 

chiller performance. For a multiple compressor chiller, this can be achieved by taking a look at the performance of 

each of the compressors and combining them into a single expression that can accurately depict chiller performance.  

This paper is organized as follows. In section 2 we observe how compressor and chiller performance can be modeled 

as well as the algorithm developed using a constrained minimization approach, which will estimate the optimum 

chiller performance for any head/flow combination. Section 3 will present the results of some sample cases in order 

to show the algorithm’s dynamics as well as other relevant results. We conclude in section 4 where key points and 

an outline of the future work are presented aiming to improve the algorithm’s capability to stage more than two 

compressors.   
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2. CHILLER PERFORMANCE AND MATHEMATICAL MODEL 

 
Chiller performance depends highly on compressor efficiency, which is a function of two process variables: head 

(isentropic enthalpy rise) and volumetric flow rate as shown on the compressor map. For a constant pressure ratio, 

set by the operating temperatures (suction and discharge), the compressor’s performance becomes a function of 

volumetric flow rate only, which better describes a real word scenario where the thermal load and ambient 

temperature remain fairly constant over significant periods of time. Isentropic efficiencies obtained from the maps 

can be further related to chiller performance [kW/ton], representing the amount of electric power a chiller requires 

per ton of refrigeration. Figure 4 shows chiller performance as a function of thermal load (proportional to volumetric 

flow rate) of a given compressor for different heads (variable condenser water temperature and constant evaporator 

water temperature). The information extracted from figure 4 can be used to calculate the total chiller performance 

when operating multiple compressors, provided that similar data is available for each compressor.    

 

 
 

Figure 4: Chiller performance as a function of thermal load at different 

heads for a single compressor (overall chiller performance vs chiller flow fraction) 

 
2.1 Chiller Performance Mathematical Characterization  
As presented above, for a single compressor chiller and for constant head, the performance in [kW/ton] will be 

dependent on the load experienced by the compressor. This dependence takes into account motor and inverter 

efficiencies, something the aero map presented in figure 2 disregards. These curves can be accurately fitted using 

polynomials, and it was found that second order polynomials are sufficient to fit the curves with negligible error. 

Two functions can then be derived (1) and (2) corresponding to the efficiency of each of the compressors operating 

on a two compressor chiller. If the compressors operating on the chiller have the same design load, then equations 

(1) and (2) will be exactly the same. Sample cases with two identical compressors will be discussed in section 3. 
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2.2 Total Chiller Performance Characterization 
When two compressors are present, total chiller efficiency becomes a function of each of the compressor’s 

individual efficiency curves (Figure 4). A single third order multivariable function is created by combing functions 

(1) and (2) corresponding to the total chiller efficiency, the independent variables in this function are the part-loads 

for each compressor. Functions (3) and (4) show the function that characterizes chiller efficiency operating with two 

different compressors, while expression (5) is the criteria that the sum of each of the compressor’s load will add up 

to the total chiller demand, criteria which needs to be met at all times.  
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2.3 Constrained Optimization 
If function (4) were to be visualized, a three dimensional surface would be observed on a 3D coordinate system, 

with the load of each compressor on two perpendicular axes and with the total chiller performance on the third axis. 

Function (3) or (4) can be optimized using conventional calculus methods; however the restriction imposed by (5) 

impedes us from using simple partial derivatives. A constrained optimization approach using a Lagrangian operator 

is used that takes into account the limitation (5). This method introduces a new independent variable   and a new 

function   as shown by expression (6).   

 

                                                                                     

 

By combining expressions (4) and (6), we obtain a general expression for the total chiller performance as a function 

of both capacities, including the constraint that the loads should add up to the total thermal load  .  

 

           
   

     
     

 
 

   
     

     

 
                                   

 

Optimizing function   will yield values for           that will minimize the power usage.  

 
  

   

 
  

 
  

  
  

 
   

 

 
                                                                      

 
  

   

 
  

 
  

  
  

 
   

 

 
                                                                      

 
  

  
                                                                                        

 

Combining expressions (8) through (10) yields: 

 

      

 
  

  
          

 
   

              

 
                                     

 

This quadratic expression can be solved to obtain the local minimum for function L; however equation (11) will not 

necessarily yield the absolute minimum. Equation (11) is of parabolic type and its local minimum will be absolute if 

and only if its second derivative is positive (concave up parabola), otherwise the parabola will be concave down and 

its absolute minimum will be at one of the boundaries. If the operating compressors are identical i.e.         

and     equation (11) will be linear, simplifying the calculations to find           . 

Taking the second derivative of equations (8) and (9) with respect to              respectively yields: 
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When expressions (12) and (13) are positive as shown below, equation (11) will yield an absolute minimum; if they 

are negative the absolute minimum will be located at one the boundaries.  

 
  

 
   

  

 
                                                                                         

 

  

 
   

  

 
                                                                                        

 

Manipulating these expressions and using the constraint imposed by (5), the values in which a local minimum 

corresponds to an absolute minimum can be found through (16) and (17) shown below.   
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3. RESULTS 

 
3.1 Sample Cases 
In order to test the validity of this method and the accuracy of chiller performance by means of equation (4), two 

different cases were calculated, and their corresponding efficiencies were compared against those obtained from the 

centrifugal refrigeration compressor rating method (CPR) described in [Brasz, 2010]. The first case consists of two 

compressors with identical design loads as outlined in table 1 and a total chiller demand of 700 tons. Case 1 will 

illustrate the staging of both compressors, i.e. how much load will be allocated to each compressor running under the 

operating conditions of table 1. Following the same operating conditions as table 1, case 2 illustrates how the 

algorithm behaves at smaller loads.   

 
Table 1: Chiller operating conditions 

 

Tsat,evap 5.56 
o
C 

Tsat,cond 36.1 
o
C (High Head) 

Refrigerant R134a 

Suction Superheat 3.6 
o
C 

Condenser Subcooling 3.6 
o
C 

Refrigerant R134a 

VTT1200 Design Load 350 tons 

VTT1200 limits in tons            

 
The results of both cases are presented in table 2. The load allocation in case 1 was determined using equation (11). 

For the second case, the total thermal load did not meet the criteria set by (14) and (15) and the boundaries needed to 

be tested. The boundary points correspond to the compressors’ limits as shown in table 1. Case 1 splits off chiller 
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demand of 700 tons in half, allocating 350 tons to each compressor in order to optimize chiller performance. In case 

2, due to the smaller demand, one of the compressors remains off while the other compressor takes the entire load.  

 
Table 2: Cases results 

 

Compressor  Compressor 1 Compressor 2 

Case 1: 700 tons 350 350 

Case 2: 300 tons 300 OFF 

 
3.2 Effects of Head 
Section 2.1 states that the error introduced by fitting the curves from figure 4 using a second order polynomial is 

sufficiently small. In order to better quantify this error, a sample case of a chiller operating with a 350 ton and a 110 

ton compressor was analyzed (VTT1200 and TT350). Table 3 shows the divergence of using a simple quadratic vs. 

a 4
th

 order polynomial to fit the curve and how heads affects this divergence. The first two rows show a chiller with 

a demand of 400 tons at high head (Tsat,cond = 36.1 
o
C) and how this load is split between the two compressors, third 

and fourth rows show the same arrangement at a lower head (Tsat,cond = 25 
o
C). At lower heads the difference 

between the errors using a 4
th

 order polynomial versus a simple quadratic function increases, however not by much, 

still making the use of a second order polynomial valid and accurate enough. The results are also compared to those 

obtained through the CPR method. 

 
Table 3: Second order vs. 4

th
 order regression 

 

Compressor 

Simple 

quadratic 

[tons]   

4
th

 order 

polynomial 

[tons] 

CPR 

results 

[tons] 

Difference 

[tons] 

Efficiency 

[kW/ton] 

VTT1200 300 302 302 1.5 
0.597 

TT350 100 98 98 1.6 

VTT1200 301 299 299 2.1 
0.377 

TT350 99 101 101 2.1 

 
For a given demand, the split point that decides whether a chiller uses one or two compressor changes with head. 

Figure 5 shows the split point on a chiller operating with the same two 350-ton compressors shown in cases 1 and 2. 

For example, from case 1 we know that each 350-ton compressor takes 350 tons of the total 700 ton demand, this is 

because at 36.1 
o
C or HF =1 the split point occurs roughly at FF =0.56 which corresponds to 410 tons, any total 

demand above this point would split the load and use both compressors, any load below this point would only be 

allocated to one 350-ton compressor. At lower heads however, the split point occurs at lower tonnage, for example a 

total load of 350 tons (FF = 0.50) at a Tsat,cond of 21.1 
o
C (HF = 0.53) will be more efficiently handled by two 

compressors than one, while at an Tsat,cond of 36.1 
o
C (HF =1), one compressor can optimally take all the load. 
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Figure 5: Two compressor chiller split point 

 

4. CONCLUSIONS 

 
 Multiple centrifugal compressor chiller operation has the potential of dramatically increasing centrifugal 

chiller performance.  

  A single function to characterize multiple compressors chiller performance can be derived from each of the 

compressors efficiency maps.  

 Optimum efficiency can be estimated for any head/flow combination a multiple compressor chiller may 

encounter. 

 There is a clear relationship between the compressor’s saturated discharge temperature (head) and the way 

the total thermal load is split between two compressors for a giver demand. 

 This algorithm can be used as the basis of a control scheme in order to lower power consumption.  

 The results presented can be generalized for more than two compressors.  
 

NOMENCLATURE 

 
Q Total Chiller Refrigeration Demand    (ton)  

A-F Polynomial coefficients  (-)  

  Individual compressor load  (ton)  

 

Subscript 

1, 2 compressor 1, 2   
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