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Geothermal ORC Systems using Large Screw Expanders 

Tim BIEDERMAN Joost J. Brasz

      Cyrq Energy       Syracuse Turbomachinery 
  Salt Lake City, UT          Syracuse, NY  

  tim.biederman@cyrqenergy.com   syracuseturbomachinery@gmail.com 

ABSTRACT 

This paper describes an air-cooled low-temperature Organic Rankine Cycle (ORC) Power Recovery system with a 

screw expander as its power unit. The screw expander is specifically designed for ORC expansion and has a unique 

rotor profile.  Manufacturing the screw expanders at a plant which already produces screw compressor hardware has 

resulted in reduced development time and lower development cost. Low screw expander cost has been realized by 

assembling the screw expanders in parallel with the higher volume screw compressors.  The net electrical output 

power of the system's ORC screw expander varies from 5kW to 950 kWel which is an order of magnitude larger than

the output power of currently available ORC screw expanders. Following the development of a 300 kWel prototype 

unit and its installation and successful operation at Chena Hot Springs near Fairbanks, AK, four commercial 

production units were developed for geothermal power production at Lightning Dock in New Mexico. All units use 

R245fa as refrigerant.  Initial operating experience with these ORC systems will be presented.  

1. INTRODUCTION

Turbo expanders have been used commercially for low temperature waste heat power recovery ORC systems in 

capacities varying from 50 kWel up to multi-MWel electrical output power.  Commercially available ORC screw 

expander power output has up until now been limited to values below 100 kWel.   

A screw compressor company in Shanghai, China, produces a family of large capacity R134a screw

compressors used on water- and air-cooled chillers. It has developed R245fa screw expanders for ORC duty in 

addition to these large capacity R134a screw compressors.  This reduced the expander development time 

dramatically.  A similar approach was followed for the heat exchanger components:  the preheater module and the 

air-cooled condenser share a lot of communality with existing HVAC equipment.  This paper will describe the 

procurement, field installation, start-up and system optimization of one of the four 1 MW screw expander based 

ORC systems.    

The pure size of a 1 MW air-cooled ORC system eliminates the possibility of a factory assembled unit that could be 

tested and optimized before shipment to the final site.  Shipment of the various modules in separate containers is 

required to be followed by field erection of the complete unit system.  Chapter 2 describes and illustrates the various 

components that make up a complete ORC system such as expander, air-cooled condenser, preheater, boiler, 

refrigerant pump, connecting piping, oil separator, oil pump module, power generator and synchronizing equipment. 

Chapter 3 shows the plant layout of the four 1 MWel units with respect to the geothermal production well and the 

reinjection well with the temperatures of the entering and returning heat source temperatures.  Contrary to packaged 

equipment that is optimized at the factory, field erected equipment has to be optimized on site.  Chapter 4 describes 

system optimization with respect to condenser fan power and working fluid charge, focusing on its liquid level in the 

evaporator.  After these system optimizations evaporator pressure was increased to reach the design capacity of 1 

MWel as described in Chapter 5.  The initial shortfall in net output power was attributed to the presence of non-

condensables which manifested itself by a pressure in excess of the expected saturation pressure.  The 1 MWel net 

power was achieved after removal of the non-condensables with a purge unit as described in Chapter 6.  The main 

conclusions are listed in Chapter 7. 

mailto:tim.biederman@cyrqenergy.com
mailto:syracuseturbomachinery@gmail.com


 1470, Page 2 

22
nd

 International Compressor Engineering Conference at Purdue, July 14-17, 2014 

2. COMPONENTS, PROCUREMENT AND FIELD ERECTION

Figure 1 shows a picture of the final factory assembly of the screw expander: 

. 

Figure 1 Screw expander assembly 

The air-cooled condensers were procured from the factory in Anji, China.  Forty air-cooled condenser modules were 

required for the four 1MWel ORC units.  Figure 2 shows a completed air-cooled condenser module.   

Figure 2. Condenser Module Assembly: 

In the third and largest factory in Quzhou, China, the pre-heater module, evaporator module, oil separator module, 

and oil pump module were fabricated and assembled.  The pre-heater module consists of two pairs of parallel 

refrigerant pumps, four motors, a liquid filter, and four heat exchanger tubes.  One of the completed preheater 

modules can be seen in Figure 3. 

Figure 3. Preheater assembly 
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        Figure 4: Evaporator Module Assembly     Figure 5: Generator and Synchronizing Equipment 

The evaporator module consists of an evaporator, expander, vapor filter, synchronous generator, and an oil recovery 

system designed to skim any oil that might collect in the evaporator.  This module also houses the synchronization 

equipment and controllers.  Figure 4 and Figure 5 are pictures of an evaporator module. 

The oil separator skid consists of two large oil recovery tanks.  These tanks have a grid filtration system in them that 

helps separate the oil from the refrigerant.  Figure 6 shows an oil separator module under assembly.  The last module 

required in the unit is the oil pump skid.  This is the smallest module consisting only of the oil pump, oil pump 

motor, and an oil filtration system.  Four of these modules are shown in Figure 7.   

       Figure 6: Oil Separator Skid         Figure 7: Oil Pump Module Assembly 

In addition to the modules, the screw compressor company also produced piping for four condenser collection 
systems, four VFD cabinets for the refrigerant pumps, 40 VFD cabinets for the air cooled condensers, and four 

resistor cabinets used for unit start up.  The last shipment of equipment left Shanghai on October 3rd, 2013.  The 

equipment spent two weeks traveling by boat from Shanghai to Long Beach, CA.  Once in Long Beach the 

equipment had to be offloaded and go through U.S. Customs.  This took from a few hours to several days per 

container.  After clearing Customs, the equipment was trucked to the power plant site in Animas, New Mexico.  The 

total shipment included 45 containers of equipment and took about 16-20 days to be delivered from Shanghai to the 

construction site in New Mexico. The geothermal plant construction took two months.  This included assembly of the 

well field piping that would carry the geothermal water to and from the units, the piping between the modules, plant 

grading, four blow down ponds for system evacuation, the electrical connection for the units, and the connection to 

the grid.  There were 61 piping connections per unit, 20 well field piping connections, hundreds of feet of cable, and 

thousands of terminations to complete the units and connect them
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to the grid.  The construction was done on a unit-by-unit basis and was approached in a systematic and efficient way.  

First the units were completed mechanically.  The units had all of their piping and field welds complete.  All of the 

modules were mounted on their skids and buttoned up. Electricians began wiring the refrigerant pumps, oil pump, 

condenser fans, and communications sensors. Simultaneously, leak and vacuum tests were performed on each 

mechanically complete unit.    The leak tests were conducted by pressurizing the unit up to 80psi and holding the 

pressure for 24 hrs.  After the leak test, the unit was placed under vacuum and held for another 24hrs.  Upon 

completion of the electrical connections and mechanical testing, site personnel performed instrument installation and 

testing.  This process included testing valves, checking rotational direction of pumps and fans, and verifying sensor 

values.  The first unit was completed and commissioned on December 4th 2013.  The fourth unit was completed on 

December 24th 2013. Design, manufacturing, construction, and onsite testing for all four of the 1MW units were 

completed in less than four months.   

3. PLANT LAYOUT

The layout of the plant is very simple.  Currently there is only one production well and one injection well.  The 

production well sits in the aquifer that has the 315 
0
F geothermal water that is the fuel source for the plant.  This 

well sits approximately 150 ft away from the units and can flow up to 1300 gpm.  The injection well is the well that 

the geothermal water goes down after the units have finished extracting heat from it.  It is important that each well 

can handle the amount of flow that the units will take.  If either well cannot give or receive the correct volume of 

water the units become limited in how much power they can produce.  After coming out of the production well, the 

water flows to the units.  The units feed off the geothermal water line in series.  The flow is controlled by a valve on 

the injection side of the unit.  The flow through the units must be maintained such that the injection temperature 

remains above 150
0
F.  Minerals begin to drop out when the temperature is below 150 

0
F.  This will cause scaling in 

the system and reduce the plants power output.  Figure 8 is a simple diagram of the plant layout. 

Figure 8: Lightning Dock Site Layout 

4. SYSTEM OPTIMIZATION

The units have a variety of controls and set points that must work in unison for the power plant to operate at peak 

efficiency.  For example, for a unit to perform at its peak power output, the system’s differential pressure, maximum 

evaporator temperature, and power output set points must be aligned so that any one of them does not restrict the 

other two.  A restriction in any one of these set points will cause to unit to fall short of its optimal efficiency and 

peak output.  Once the set points are balanced, the unit’s output can be further optimized by adjusting the air cooled 

condenser fan frequency and the refrigerant liquid level in the evaporator.  

Optimization of the air cooled condenser fans was done by testing various fan frequencies at a given ambient.  Since 

the ambient temperature is the cold side of the system, it has tremendous effect on the condensers.  In all heat 

exchangers, the rate of exchange is defined by the temperatures of the hot and cold sides as well as the mass flow 

rates of both sides.  Increasing the fan frequency does not reduce the temperature of the air crossing the condensers, 

but does increase the mass flow.  In order to determine which fan frequency provided the optimal mass flow, a 
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number of frequencies were tested with an ambient temperature of 62
0
F.  The frequency range tested was from 25-

40Hz and the optimum was found to be 30Hz.  Figure 9 is a plot with the results of the testing. 

Figure 9: Condenser Fan Frequency Optimization 

The optimization of the evaporator level was a more lengthy process that required several iterations.  The evaporator 

level controls the temperature and pressure of the refrigerant as it goes into the expander.  The screw expander runs 

optimally right on the saturation line.  To optimize this, the evaporator level was varied by controlling the refrigerant 

pumps.  The was done over a 24 hour period and the results showed peak evaporator pressures and temperatures 

around a 575 mm evaporator level.  The results of the test are plotted in Figure 10 and Figure 11. 

Figure 10: Evaporator Pressure Change with Evaporator Level 
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Figure 11: Evaporator Temperature Change with Evaporator Level 

5. FULL-LOAD POWER CONDITIONS

Once the optimization for the units had been completed, the units were ramped up in power.  Due to the current 

production well pump not having enough capacity to provide water to run all four units at maximum power, one unit 

had to be shut down and two others had to have their set points restricted to force more water through one unit for 

testing.  Although the target flow rate was not reached by this method, it was close enough that a 1MW output can 

be reached.  The ramp up process is shown in Figures 12, 13, and 14. 

      Figure 12: Power Ramp Up  Figure 13: Ramp Up Effect on Evaporator Pressure 

Figure 14: Ramp Up Effect on Condenser Pressure 
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6. PURGING OF NON-CONDENSABLES

Another factor hindering power production was non-condensables in the system.  It is clearly seen in Figure 15 that 

there are some gasses in the condensing side of the unit.  Upon further investigation, it was discovered that the 

condenser was approximately 8psig over the saturation curve.  A high condenser pressure lowers the systems 

differential pressure and can cause a significant drop in output. 

Figure 15: Original Condenser Curve 

To fix this problem, a makeshift purging system was installed.  This purge system pulls vapor from the top of the 

liquid collection tank immediately after the condenser modules.  From looking at pressures across the unit, it was 

determined that the non-condensables were getting dragged through the system and caught in this tank.  The gasses 

caught in this tank must collect at the top because the lower part of the tank is all liquid and the vapor cannot pass 

through to move on to the next step in the system.  A line was connected to the top of the collector tank and the 

vapor was pumped into the vapor side of a liquid/vapor separating bottle.  The liquid side of the bottle had another 

hose running to a point just before the condenser modules where it is evaporated and recycled through the system.  

Using a pressure gauge on the vapor side of the bottle, the pressure can be measured to determine if non-

condensables are collected in the tank.  When enough non-condensables collect in the bottle they are vented to the 

atmosphere.  The following plot in Figure 16 shows the unit after the purge system was installed. 

Figure 16: Unit Condenser Curve After Purging 

The removal of the non-condensables in the system increased output by approximately 30-40kW.  This brought the 

unit up to its 1MW capacity. 
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7. CONCLUSIONS

A total of four large capacity  air-cooled ORC systems using 1 MWel screw expander units have been installed and 

brought on-line successfully at the Lightning Dock geothermal power plant.   

The size of the ORC unit prevents the use of packaged equipment and necessitates field assembly of the complete 

ORC system from a large number modules containing the various system components.   

System optimization in terms of working fluid charge adjustment and purging of non-condensables had to occur to 

reach the ORC design capacity. 

Based on the positive experience, Lightning Dock’s screw expander ORC capacity is expected to reach 7-8MW by 

2015. 
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