
Purdue University
Purdue e-Pubs
International High Performance Buildings
Conference School of Mechanical Engineering

2014

Thermal Performance and Moisture Accumulation
of Mechanical Pipe Insulation Systems Operating
at Below Ambient Temperature in Wet Conditions
with Moisture Ingress
Weiwei Zhu
Oklahoma State University, United States of America, weiwei.zhu@okstate.edu

Shanshan Cai
Oklahoma State University, United States of America, shanshc@okstate.edu

Lorenzo Cremaschi
Oklahoma State University, United States of America, cremasc@okstate.edu

Follow this and additional works at: http://docs.lib.purdue.edu/ihpbc

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/
Herrick/Events/orderlit.html

Zhu, Weiwei; Cai, Shanshan; and Cremaschi, Lorenzo, "Thermal Performance and Moisture Accumulation of Mechanical Pipe
Insulation Systems Operating at Below Ambient Temperature in Wet Conditions with Moisture Ingress" (2014). International High
Performance Buildings Conference. Paper 106.
http://docs.lib.purdue.edu/ihpbc/106

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/77942126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fihpbc%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ihpbc?utm_source=docs.lib.purdue.edu%2Fihpbc%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ihpbc?utm_source=docs.lib.purdue.edu%2Fihpbc%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Fihpbc%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ihpbc?utm_source=docs.lib.purdue.edu%2Fihpbc%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engineering.purdue.edu/Herrick/Events/orderlit.html
https://engineering.purdue.edu/Herrick/Events/orderlit.html


3183, Page 1 
 

3rd International High Performance Buildings Conference at Purdue, July 14-17, 2014 

Thermal Performance and Moisture Accumulation of Mechanical Pipe Insulation Systems 

Operating at Below Ambient Temperature in Wet Conditions with Moisture Ingress 

Weiwei Zhu1*, Shanshan Cai1, Lorenzo Cremaschi1 

Oklahoma State University, School of Mechanical and Aerospace Engineering 

Stillwater, OK, USA 
*Corresponding Author: phone: (405)744-0389; email: weiwei.zhu@okstate.edu 

ABSTRACT 

When pipes are used for chilled water, glycol brines, refrigerants, and other chilled fluids, energy must be spent 

to compensate for heat gains through the wall of the pipes. Higher fluid temperature at the point of use decreases the 

efficiency of the end-use heat exchangers and increases the parasitic energy consumption. Mechanical pipe 

insulation systems are often used to limit the heat gains and save energy in commercial buildings. Pipe insulation 

systems play an important role for the health of the occupied space. When a chilled pipe is uninsulated or 

inadequately insulated, condensation might occur and water will drip onto other building surfaces possibly causing 

mold growth. The critical issue with cold pipes is that the temperature difference between the pipe and its 

surrounding ambient air drives water vapor in to the insulation system and condensation commonly occurs when the 

water vapor comes in contact with the chilled pipe surface. This paper experimentally studies this issue for pipe 

insulation systems operating at below ambient temperature. The moisture content and the associated thermal 

conductivity of several pipe insulation systems were measured at various wet condensing conditions with moisture 

ingress. Accelerated type tests in laboratory showed the propensity of moisture accumulation in several insulation 

systems due to the cylindrical configuration, split joints, and micro-imperfections in the jacketing system. The data 

in the present work showed that the thermal conductivity increased systematically when water vapor entered the 

pipe insulation system.  

1. INTRODUCTION 

Chiller pipes are often used in space conditioning systems for large commercial building applications and 

mechanical pipe insulation systems are commonly installed around cold pipelines to limit the heat gain. When the 

surface temperature of these pipes is below the dew point temperature of the surrounding ambient, water vapor 

condensation might occur. Insulation jackets, vapor retarders, and vapor sealing of the joints and fittings are usually 

installed to limit moisture ingress into the permeable pipe insulation. When a cold pipe is not adequately insulated, 

water vapor might enter into the insulation system and it might condense on the pipe surface. If this event occurs, 

the effective thermal conductivity of the insulation system is affected by the moisture that accumulates in the 

insulation material and by the water that is trapped on the small gaps between the exterior surface of the pipe and the 

interior surface of the pipe insulation system. Water might also start to drip from the chiller pipelines onto the 

building surfaces, possibly causing mold growth and bacteria growth in the occupied zones. The water condensate 

on the exterior of the pipe surface might also cause corrosion of the pipelines and of the joints.  

Data of overall thermal conductivity of mechanical pipe insulation systems when these systems are exposed to 

operating conditions of below ambient air temperature in chilled water applications support the design, installation, 

service, and maintenance of mechanical pipe insulation systems. A standard method of test for the overall thermal 

conductivity of pipe insulation systems exists but it is based on a hot pipe test method, that is, the heat flow is 

outward. This method is used for pipe insulation systems in rigid, flexible, and loose fill types. This technique, 

which is summarized by the standard ASTM C335/C335M (2011), allows obtaining an estimated value for the pipe 
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insulation system thermal conductivity in dry non-condensing conditions under two assumptions: (i) the pipe 

insulation has linear characteristic of thermal resistance or conductance; (ii) the thermal conductivity of the pipe 

insulation does not depend on the direction of the radial heat flux. Unfortunately this standard might be inadequate 

for pipe insulation system operating at below ambient temperature. The critical issue with cold pipes is that the 

temperature difference between the pipe and its surrounding ambient air drives water vapor into the insulation 

system and condensation commonly occurs when the water vapor comes in contact with the chilled pipe surface. 

This condensation increases the overall thermal conductivity of the pipe insulation systems. This phenomenon 

inevitably leads to degradation of thermal performance and service life of the insulation. It affects the economics of 

performance, promotes corrosion of piping and leads to system failure and downtime. A standard method for testing 

pipe insulation thermal conductivity at below ambient temperature in wet conditions with moisture ingress is 

missing in the open domain literature. An ASTM International task group focused on the issue and recognized that 

this issue has been hindered by a lack of experimental facilities capable of measuring the thermal conductivity of 

pipe insulation systems in wet conditions. For this reason, a pipe insulation test apparatus, referred in this paper as 

Pipe Insulation Tester or PIT, was designed, constructed, and calibrated and the details can be found in authors’ 

previous work Cremaschi, Cai et al. (2012b). 

To date, there are limited experimental data of thermal conductivity of pipe insulation systems operating at 

below ambient temperature in wet condensing conditions and the estimation of the thermal conductivity is often 

extrapolated from experimental data obtained from the same type of insulation material but in flat slab 

configurations. However, a paper from Wilkes et al. (2002) observed that the thermal conductivity of pipe insulation 

systems might be different from that obtained by extrapolation of the data of the same insulation material in flat slab 

configuration. This is due to the radial configuration and the presence of split joints in pipe insulation systems, 

which are necessary for the installation of these insulation systems around pre-existing pipelines. Several techniques  

for measuring the pipe insulation thermal conductivity at below ambient temperature under dry non-condensing 

conditions and various methods for measuring pipe insulation thermal conductivity and moisture ingress under wet 

condensing conditions were summarized in authors’ review paper (Cai, Cremaschi et al. 2014). The present paper 

provides new data of pipe insulation thermal conductivity at below ambient temperatures in wet condensing 

conditions and advances the understanding of moisture transfer in mechanical pipe insulation systems. The PIT was 

used in the present study to measure the thermal conductivity of the pipe insulation systems summarized in Table 1 

below in both dry and wet conditions at below ambient temperature. 

Table 1: Pipe insulation systems tested under dry and wet-condensing conditions in the present paper 

Test Samples 

(Ref. Name) 

Thickness 

in (mm) 

Longitudinal 

Joint Sealant 

Radial Cross 

Section End Seal 

Vapor Retarder / 

Insulation Jacketing 

Fiberglass (P2-FG1) 2 (50.8) N/A Chil-Perm CP-30* N/A 

Fiberglass (P2-FG2) 1.5 (38.1) N/A Foster 90-66* ASJ vapor retarder 

Fiberglass (P2-FG3) 1.5 (38.1) N/A Chil-Perm CP-30* ASJ vapor retarder 

Cellular Glass (P2-CG) 1.5 (38.1) Boss 368* Boss 368* N/A 

Polyisocyanurate (P2-PIR) 1 (25.4) Chil-Joint CP-70* Chil-Joint CP-70* PVDC 

*: This designation is common in the pipe insulation industry to characterize commonly used joint sealants. 

2. TEST APPARATUS 

The experimental test apparatus consisted of three parts: the pipe insulation tester (PIT), a refrigeration system 

and a psychrometric chamber as shown in Figure 1. Details of the experimental set ups and test procedures can be 

found in authors’ previous paper Cremaschi, Cai et al. (2012b). Two samples were installed on the two identical 

PITs, and they were exposed to the same temperature and humidity boundary conditions with similar radial inward 

heat flux. One sample was used to measure the overall thermal conductivity with moisture ingress (installed on the 
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1st PIT), while the other sample was used to measure the moisture accumulation rate at different time intervals 

during the wet test period. The test insulation specimen dedicated to the moisture data was installed on the 2nd PIT.   

 

Figure 1: Photo of two PITs: the first PIT is used to measure the thermal conductivity of the insulation test 

specimen and the second PIT is used to measure the moisture content of the insulation test specimen 

3. MOISTURE TEST RESULTS AND DISCUSSION 

3.1 Moisture Test Results of System P2-FG1 in medium humidity environment (R.H. = 55%) 

In this wet condensing test, the 50.8mm (2 inches) nominal wall thickness fiber glass pipe insulation system P2-

FG1 was tested at the 25.6°C (78.1°F), 54.8% R.H. condition for 55 days. Photos of wet regions during the tests are 

shown in Figure 2(a).  By the end of the moisture test period, only two small wet regions were observed on the 

exterior surface of the bottom shell and next to the insulation ends of the test sample. The wet regions, showed 

inside the red dashed circles in the photo, were observed during the fifth day of the moisture test, and the wet 

regions remained almost the same size for the remaining period of the test. The figure also shows that a large 

amount of water was trapped on the exterior layer of the fiberglass pipe insulation system due to possible 

preferential paths for water vapor ingress near to the insulation end cross sections. Figure 2 (a) shows the interior 

surface of the fiberglass insulation that was wrapped around the Aluminum pipe. The interior surface of the top shell 

was basically dry, with only few water droplets on the surface layer of the fibers. On the bottom shell, larger wet 

regions were present next to the insulation end cross sections. This observation supported the hypothesis that 

preferential paths for moisture ingress were established at the end cross sections of the pipe insulation test specimen. 

The experimental results on the system thermal conductivity and moisture content are shown in Figure 2(b) and (c). 

By the end of the moisture test, the system thermal conductivity in wet condition was 1.5 times higher than the 

thermal conductivity in dry condition at the same temperature. The maximum moisture content was about 1.7 

percent by volume. From Figure 2(b), it is observed that the system thermal conductivity followed a two-step 

variation with time. This trend was observed in authors’ previous work (Cai 2013) and it was due to transitory 

phases of water vapor redistribution within the insulation system. The system thermal conductivity ratio increased to 

1.5 with the moisture content less than 0.3 percent by volume at the beginning of the test. Then the thermal 

conductivity ratio was 1.5 for a long period during which the moisture content increased from 0.3 to 1.7 percent by 
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volume. Both the top and bottom shells of this insulation system had similar moisture content. It should be noted 

that the uncertainty was above 20 percent when the moisture content was below 2 percent by volume. The authors 

concluded that the moisture content was very small in this case and speculate that gravity had minor impact on the 

water redistribution between the top and bottom shells when the total amount of moisture content in the fiberglass 

insulation system was below 2 percent. 

 
(a) 

 
                 (b) 

 
           (c) 

Figure 2: Test results on system P2-FG1: (a) moisture absorption on the bottom shell (b) thermal conductivity 

ratio with time and (c) thermal conductivity ratio with moisture content 

3.2 Moisture Test Results of System P2-FG1 in high humidity environment (R.H. = 84%) 

This fiber glass pipe insulation system P2-FG1 was tested under severe conditions with a high temperature of 

32.3°C (90.1°F) and a high relative humidity of 84% for 53 days. In these conditions, the dew point temperature was 

29.2°C (84.6°F), and the insulation surface temperature of the P2-FG1 system ranged from 31.2°C (88.2°F) to 

31.6°C (88.9°F). The nominal wall thickness was 50.8mm (2 inches). Only one small wet region was observed on 

the exterior surface of the bottom shell, and the wet region remained almost of the same size for the remaining 

period of the test. One possible reason for the formation of the wet region might be the effect of sealing of the end 

joint, that is, the radial cross sections at the end of the pipe insulation test section. These end joints affected the 

water vapor distribution in the longitudinal direction of the insulation system. Another possibility might be the 

denser insulation near the surface for this particular system, which might have limited water moisture diffusion on 

the exterior surface. The experimental results on the system thermal conductivity and moisture content are plotted in 

Figure 3(b) and (c). After 53 days of wet test, the system thermal conductivity ratio, defined as wet over dry thermal 

conductivity at the same temperature, increased up to 3.5 with the total moisture content of about 15 percent by 

volume. Figure 3(a) shows the interior surface of both top and bottom shells of the fiberglass test sample in this 

system P2-FG1. There were not any visible water marks on the top shell, and the water droplets only coating along 

the surface of the fibers. For the bottom shell, a large region of water marks was observed at the location indicated 

inside the dashed red line circles in the Figure 3 (a). This location might be a less dense region for the insulation 
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material and water ingress was locally promoted. The performance on the system thermal conductivity was similar 

to the results observed in medium humidity environment, and showed a two-step variation process. The system 

thermal conductivity changed almost simultaneously with the ambient condition at the beginning of the moisture test. 

The thermal conductivity ratio increased to 2.5 during the first several hours and then gradually increased to 3.5 

during the remaining of the wet test period.   

 
(a) 

 
                 (b) 

 
                 (c) 

Figure 3: Test results on system P2-FG1: (a) photos of moisture absorption in the bottom shell; (b) thermal 

conductivity ratio with time; and (c) moisture content with time 

3.3 Moisture Test Results of P2-FG2 in high humidity environment (R.H. = 83%) 

Different from the previous fiberglass systems, this system P2-FG2 was tested with a water vapor retarder 

jacket on the exterior surface of the fiberglass pipe insulation. This system had a nominal wall thickness of 38.1mm 

(1.5 inches) and was tested at 32.3°C (90.1°F), 83% R.H. for 66 days. The dew point temperature of the ambient air 

was 29.0°C (84.2°F) and the pipe insulation surface temperatures ranged from 30°C (86°F) to 31.4°C (88.5°F). It 

can be observed from Figure 4(b) and (c), that at day 66 the thermal conductivity increased by about 7 percent. The 

final moisture content of the test specimen on the 2nd PIT was about 0.2 percent by volume. During the moisture test, 

wet regions and some water droplets were observed on the exterior surface of the ASJ vapor retarder, specifically on 

the bottom C-shell near the end sections as shown in Figure 4(a). The formation of these condensation regions were 

due to lower local temperature of the joints, in which joint sealant was used to fill the micro gaps along the radial 

cross sections of two adjacent joints, with respect to the average surface temperature of the insulation system. As 

moisture accumulated on the exterior surface of the ASJ vapor retarder, the jacketing material became gradually wet 

and it darkened with time. A hypothesis is that, water condensation around the insulation joints might have entered 

the system through the micro-gaps of the ASJ butt joint strips. The water vapor trapped inside the insulation system 

during the installation stage could also contribute to the increase of the system thermal conductivity. It should be 

noted that due to the low moisture content, the uncertainty was very high, and there was no specific correlation 

between the moisture content and thermal conductivity variation on the 1st PIT. 
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Figure 4: Test results on system P2-FG2: (a) development of condensation on the bottom shell on the ASJ vapor 

retarder surface, (b) thermal conductivity ratio with time, and (c) thermal conductivity with moisture content. 

3.4 Moisture Test Results of System P2-FG3 in medium humidity environment (R.H. = 55%) 

The fiberglass pipe insulation system P2-FG3 was operated in a wet condensing environment and it had a 

nominal wall thickness of 38.1mm (1.5 inches). It was tested at 25.6°C (78.1°F), 55% R.H. for 55 days. The 

temperature and humidity of the surrounding air were lower than the ones used for other wet tests because these 

conditions purposely simulated more closely the actual temperature and humidity of indoor spaces for mechanical 

insulation systems in commercial buildings. For this fiberglass system, both the 1st PIT and the 2nd PIT were used to 

measure the thermal conductivity of the fiber glass pipe insulation systems in order to confirm the repeatability of 

the data and to estimate the error due to operator installation. Only the initial and final moisture content were 

measured for both PITs. There were not any wet regions observed during the 55 days of wet test period and the 

insulation interior surfaces appeared to be completely dry after taking out the samples from the PITs. It can be 

observed from Figure 5(b), that the thermal conductivity ratio increased slightly during the beginning of the 

moisture test, and then it gradually decreased back to 1. Both systems P2-FG3 had moisture content lower than 0.3 

percent by total volume and they showed identical behavior, confirming the repeatability of the measurements with 

the newly developed test apparatus. In this system, the water vapor that was trapped in the system during the 

installation phase might have condensed in the low temperature regions and formed the moisture beads at the contact 

points of the fibers. The presence of vapor barrier decreased the rate of moisture ingress. Therefore, less preferential 

paths were formed during the first stage of the wet test period and the system thermal conductivity increased only by 

a few percentages. In the second stage of the wet test period, instead of coating the fibers and filling in the voids, the 

small amount of moisture might have redistributed throughout in the insulation system. Some of the moisture beads 

were shifted from the contact points of the fibers. This moisture redistribution affected the heat flow paths and 

resulted in a reduced overall thermal conductivity of the insulation system (Cai 2013). 

 
(a) 

 

 
                   (b) 

                  (c) 
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(a) 

 
(b) 

Figure 5: Test results on system P2-FG3: (a) thermal conductivity ration with time, (b) comparison of the 

interior surface of pipe insulation systems P2-FG1in medium humidity environment and P2-FG3 

3.5 Moisture Test Results of System P2-PIR in high humidity environment (R.H. = 83%) 

Polyisocyanurate (PIR) pipe insulation is closed cell insulation for mechanical pipe insulation system 

applications. The PIR pipe insulation system P2-PIR had a nominal wall thickness of 25.4mm (1 inch). A polymer 

polyvinylidene chloride (PVDC) vapor retarder jacket was used with PIR and it consisted of a film of barrier PVDC 

coextruded with other polymers that provided strength and support. Figure 6(a) shows the installation details of the 

PIR test specimen with the PVDC vapor retarder. Figure 6(b) is an overview of the PIR insulation systems around 

the first PIT and the second PIT. The thermal conductivity was measured from the first PIT and the moisture content 

was measured from the six small sections installed on the second PIT. It should be noted that Foster 90-66 vapor 

sealant was not used on the cross section areas of the six 6-inch sections. This is because each 6-inch section had to 

be taken out at regular intervals during the wet test period but without damaging the adjacent sections. Unfortunately 

Foster 90-66 was an adhesive vapor sealant compound and it was not possible to remove each section without 

damaging the adjacent ones when this adhesive sealant was used.  

 
(a) 

 
(b) 

 
       (c) 

 
    (d) 

Figure 6: Installation details and test results of system P2-PIR: (a, b) installation pictures and schematic on the 

1st and 2nd PITs, (c) thermal conductivity ratio with time, and (d) moisture content with time 
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To predict the moisture ingress on the long insulation test specimen installed on the 1st PIT, where only the 

initial and final values of the moisture content were measured, the intermediate moisture content data measured from 

the pipe insulation system installed on the 2nd PIT were used. The data were curve fit to generate a function of 

moisture content with time. For the 6 samples on the 2nd PIT, only the second and third sample showed total 

moisture content of 0.14 and 0.13 percent by total volume, while the other four samples showed basically 0 percent 

moisture content.  This was due to the limitation of the sensitivity of the scale used for measuring the weight of the 

wet samples. It appeared that the moisture content inside the test specimen was sometimes below the sensitivity of 

the scale and thus it was defined to be 0 percent. At the 65th day of the wet test period, the moisture content on the 1st 

PIT was measured and resulted of about 0.1 percent by total volume. In this case, because the moisture content on 

the 2nd PIT was quite small and practically constant during the entire wet test period, we assumed that the moisture 

content in the PIR insulation on the 1st PIT was also small and practically constant throughout the wet test period. It 

should be also noted that, during the wet test period, condensation droplets were observed on the exterior surface of 

the jacket. The dew point temperature of the ambient was 28.9°C (84.0°F) and the pipe insulation surface 

temperature ranged from 30.5°C (86.9°F) to 30.7°C (87.3°F). However, as shown in Figure 7 (b), the presence of 

joint sealant decreased the local surface temperature by about 1°C with respect to the average exterior surface 

temperature of the pipe insulation system in areas clear of joints. This yielded to visible condensation regions 

covering exactly the joint lines of the pipe insulation system. It was possible that the condensation droplets on the 

exterior surface of the PVDC vapor retarder jacket entered the test specimen through micro-cracks and unsealed 

gaps in the jacket, causing the thermal conductivity of the test specimen on the 1st PIT to slightly increase with time. 

It was also postulated that the water vapor could have entered into the system during the installation phase. Once the 

vapor retarder jacket was wrapped around the pipe insulation system, then the water vapor remained trapped inside. 

These are the two possible reasons for the insulation thermal conductivity on the 1st PIT to gradually increase by 4 

percent, as can be seen from Figure 6(c). It was finally observed that while the thickness of the pipe insulation 

system was purposely selected to avoid condensation on the exterior surface, the presence of joints and joint sealant 

caused significant water droplet condensation at the joints. Thus, the thickness of the pipe insulation system should 

be selected based on the lowest temperature on the insulation exterior surface in order to completely avoid 

condensation on the exterior surface of mechanical insulation systems when they are operating at below ambient 

temperature in high humidity environments. 

 
(a) 

 
(b) 

Figure 7: (a) condensation following precisely the joint sealant areas on the pipe insulation system, (b) infrared 

image showing the temperature difference between the region near the sealed joints and rest of the insulation 

3.6 Moisture Test Results of System P2-CG in high humidity environment (R.H. = 83%) 

Cellular glass insulation is a light weight, rigid insulating material containing millions of completely sealed 

glass cells. Because of the low permeability of cellular glass insulation, the thermal conductivity during the moisture 

test increased only by about 5 percent at day 63, as shown in Figure 8(b). The moisture content on the 1st PIT at day 

63 was measured to be 0.3 percent. For the moisture measurements, due to the small amount of water measured 
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from the insulation test specimens, the uncertainty in the moisture content was over 15 percent. Because of the low 

moisture accumulation amount, both the top and bottom C-shell sections had practically same moisture content. It 

should also be noted that similar to what occurred to system P2-PIR, water condensation was observed on both the 

longitudinal and cross sectional joints with joint sealant of the cellular glass pipe insulation system. Water droplets 

ran down visibly along the joints lines as illustrated in Figure 8(a) (see red solid circles).  

 
                                        (a) 

 
            (b) 

   
               (c) 

Figure 8: Test results on system P2-CG: (a) condensation along the joint sealant on the cellular glass test 

specimen, (b) thermal conductivity ratio with time, and (c) moisture content with time 

4. SUMMARY OF THERMAL CONDUCTIVITY IN DRY AND WET CONDITIONS 

For each pipe insulation system investigated in the present work, Table 2 shows the measured ratio of thermal 

conductivity in wet conditions over the corresponding value of thermal conductivity in dry non-condensing 

condition at the same average insulation temperature. The maximum moisture contents measured for each system 

are also reported in Table 2.  In addition, Table 2 includes the results from the dry non-condensing tests. In the 

temperature range from 12.8°C (55°F) to 40.6°C (105°F), the overall thermal conductivity of fiberglass pipe 

insulation systems (FG1 to FG3) increased linearly with the test insulation mean temperature. The coefficients of the 

linear functions are summarized in Table 2. For the same temperature range, the thermal conductivity of cellular 

glass (CG) and polyisocyanurate (PIR) pipe insulation systems was practically constant.  

5. CONCLUSIONS 

Six mechanical pipe insulation systems were tested at below ambient temperature in wet-condensing conditions 

with moisture ingress. The thermal conductivity increased with time when water vapor entered the insulation system 

and the ratio of the thermal conductivity in wet conditions over the thermal conductivity in dry conditions ranged 

from 1.04 to 3.51. The moisture content measured in the pipe insulation systems ranged from 0.1 percent by volume, 

which was the case of no moisture ingress and impermeable vapor retarder system, to 15 percent by volume. It was 
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evident that proper installation of a vapor retarder jacket played a key factor in limiting the rate of vapor ingress into 

the fiberglass insulation system. Cellular glass had low water vapor ingress and its thermal conductivity during the 

wet test increased by 5 percent compared with its thermal conductivity in dry conditions. PIR pipe insulation system 

was tested with a water vapor retarder jacket, and the moisture content was less than 0.1 percent. The PIR system 

thermal conductivity increased by less than 5 percent. For both cellular glass and PIR pipe insulation systems, water 

droplets were observed on the exterior surface of the pipe insulation system, resulting from vapor condensation near 

the joints. Infrared thermal images confirmed that the regions on the exterior pipe insulation surface near the joints 

had about 1°C lower temperature with respect to the average pipe insulation surface temperature. Thus, it was 

concluded that the presence of joints and joint sealant was a factor that should be considered when designing a 

mechanical pipe insulation system that aims to avoid condensation on its exterior surfaces.  

Table 2: Summary of the experimental results on the pipe insulation systems under dry and wet conditions 

System 

Dry Tests Conditions and Results Wet Tests Conditions and Results 
kpipe,insulation =  a T  +  b 

W/m-K 

(Btu-in/hr- ft2-F) 

a                         b 

Amb.Temp. 

range 

°C (°F) 

Temp. 

°C (°F) 

R.H. 

[%] 

 

Max. Thermal 

Conductivity 

Ratio[-] 

Max. 

Moisture 

Content 

[%] 

Test 

length 

[day] 

P2-FG1 
0.00016  

(0.0006) 

0.0359 

(0.2294) 

24.9~38.8 

(76.9~101.8) 

25.6 

(78.1) 
55 1.48 1.7 55 

P2-FG1 
0.00016 

(0.0006) 

0.0359 

(0.2294) 

24.9~38.6 

(76.9~101.5) 

32.3 

(90.1) 
84 3.51 15.1 53 

P2-FG2 
0.00036 

(0.0014) 

0.0325 

(0.1809) 

25.1~41.8 

(77.1~107.2) 

32.3 

(90.1) 
83 1.07 0.2 66 

P2-FG3 
0.00014 

(0.0006)   

0.0345 

(0.2212) 

25.0~38.6 

(77.0~101.5) 

25.6 

(78.1) 
55 1.04 0.3 55 

P2-PIR 
-0.000086 

(-0.0003) 

0.0384 

(0.2660) 

25.1~41.9 

(77.1~107.5) 

32.2 

(90.0) 
83 1.04 0.1 65 

P2-CG 
-0.000057 

(-0.0004) 

0.0518 

(0.3795) 

25~38.9 

(77.0~102.2) 

32.1 

(89.8) 
83 1.05 0.3 63 
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