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ABSTRACT 
 

It is well known that residential and commercial buildings account for about 40% of the overall energy consumed in 

the United States, and about the same percentage of CO2 emissions.  Retrofitting existing old buildings, which 

account for 99% of the building stock, represents the best opportunity of achieving challenging energy and emission 

reduction targets. 

 

United Technologies Research Center (UTRC) has developed a methodology and tool that provides computational 

support for analysis and decision-making for building retrofits. The tool is based on simplified physics-based models 

and incorporates intelligent defaulting capability, automatic model calibration and package selection, as well as 

uncertainty quantification and sensitivity analysis (UQ/SA) on both predicted energy consumption and potential 

savings. UQ/SA is used to better inform decision makers on the quality of the data used for analysis and direct them 

in the overall process to achieve the required accuracy in the analysis. 

 

This paper addresses the validation of the simplified physics-based models. The validation is performed using a 

three-tiered approach: a) validation against ASHRAE 140 BESTEST Cases; b) inter-model comparison of results 

obtained by other more complex tools using more detailed models than in those required by ASHRAE 140 Standard 

and c) comparison to real building measured utility data. 

 

Findings and conclusions from each one of the three validation approaches are presented, as well as a discussion on 

model complexity vs. results accuracy based on lessons learned during the reported study.  

 

1. INTRODUCTION 
 

Retrofitting existing buildings represents the fastest way to reduce energy consumption for the United States 

building stock. The current building energy audit and retrofit assessment as defined by ASHRAE Energy Audit 

guideline (Deru et al. 2011) comprises three levels: 

 Level 1 energy audits are based on walk-through data collection (surveys) and usually result in expert-

based recommendations of low-cost/no-cost energy measures. The recommendations are given based on the 

observed state of the building assets and prior experience of the person doing the analysis. Thus, the 

recommendations could be limited in scope and driven by subjective evaluations of energy benefits.     

 Level 2 energy audits are more extensive energy conservation measure analysis and involve dedicated 

measurements in the building. Analysis of the whole building energy measures are primarily performed 

using a simulation tool and is usually limited to a small set of the measures. Creating a model of a baseline 

and adjusting the model to account for energy performance with different energy saving measures is time 

consuming, because currently available tools are not specifically tailored for use in retrofit process. As a 

result, this stage can take up to a few weeks to complete.  

 Level 3 energy audits (investment-grade analysis) considers in detail measures identified in the level 2 

audit. It involves more specific models that facilitate comprehensive techno-economic analysis of few 

selected energy conservation measures and usually do not consider the whole building, but rather the part 

of its system that is directly impacted by the retrofit.  
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The current approach to the retrofit analysis requires an effort that, if fully followed, is labor intensive, focuses on a 

single building or small group of buildings, prioritizes equipment selection based on initial cost, and results in 

10-30% energy use reduction through conventional energy conservation measures that are component- or sub-

system-based, such as lighting system and central cooling/heating plant upgrades. The retrofit decision process and 

design tools to select and analyze energy efficiency measures are not amenable to integrated system solutions that 

have the potential for substantially reducing building energy use (namely, by 50% or more relative to existing 

levels). Furthermore, cost effective implementation of such deep retrofit solutions requires knowledge of historical 

energy consumption in existing buildings, from which the underlying retrofit system options and facilities, with the 

greatest potential benefits, can be identified. This current process requires a significant amount of data gathering via 

detailed audits, and time consuming modeling. 

 

For deep retrofit projects, “investment-grade” level 3 ASHRAE audits may be required when pursuing significant 

system upgrades since those upgrades would require significant investment of capital, personnel, and other limited 

resources. Such audits involve sub-metering of electricity and other utilities such as natural gas and steam over the 

course of weeks or months. Building energy simulations are then calibrated against the actual energy consumption 

measurements at the building level. Accurate estimation of the building energy performance improvements due to 

major HVAC retrofits or architectural modifications to walls, windows, and roof is then performed. Consequently, 

the current approach is cost-prohibitive for analysis of big building portfolios and also limited in the number of 

system configurations that can be considered. 

 

In order to facilitate analysis of building energy retrofit solutions, an easy to use, reliable and accurate computational 

support is required. DoD ESTCP program funded the research project within UTRC that resulted in DeepRetro, the 

tool that is introduced in this paper. Section 2 describes the tool’s capabilities, Section 3 focuses on three approaches 

used to validate the tool, and Section 4 discusses the balance between available data and expected accuracy for 

predicting the energy use of a specific building. 

 

2. DEEPRETRO TOOL DESCRIPTION AND CAPABILITIES 
 

The Deep Energy Efficiency Retrofit Analysis Tool (DeepRetro) developed at UTRC aims at providing the 

capability to perform energy audits within one building and also to rapidly evaluate energy retrofit opportunities for 

portfolios of buildings. 

 

In particular, DeepRetro provides deep analysis of individual buildings (when data is available) by: 

1. achieving 10× time reduction in creating and calibrating building models, compared with state of the art 

tools: from weeks to perform level I and level II energy audits to about a calendar day to provide level I and 

an intermediate level II audit (Deru et al., 2011); and 

2. providing an accuracy within 15% of measured or reported annual building energy consumption, broken 

down by major energy sources. 

With the state of the art methodologies incorporated, validated models and clear analysis process, DeepRetro 

enables much faster evaluation of the retrofit solutions for: 

 Detailed single building analysis (very few parameters filled in by default values); 

 Small portfolios (some defaulting capability exercised); 

 Large portfolios (full use of the intelligent defaulting capability). 

 To accommodate the above, the tool interface includes a hierarchy of required inputsFully defaulted (for 

large portfolio analyses); 

 Qualitative description of the building and its systems; 

 Quantitative specification of all (or most relevant) building parameters. 

 

The methodology and software tool developed to support the energy efficiency retrofit analysis is based on building 

and systems models and tools supporting parameter calibration, uncertainty analysis, and ECM package selection. 

Oggianu (2013) presents a full description of DeepRetro’s capabilities. 

 

In this paper we focus our discussion on building modeling resolution with respect to its applicability to energy 

retrofit analysis tools. Broad energy retrofit analysis represents a particular application for the building modeling 

that comes with specific requirements among which we list the following: 
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 Model generation based on small number of easily obtainable inputs (the project aimed at analyzing 

250,000 buildings); 

 Easy model calibration to the metered/utility data, if available; 

 Quick model-based evaluation or wide range of retrofit options; 

 High accuracy for specified key performance indicators (KPIs). The requested KPI is identified to be 

annual building energy consumption. The accuracy is required to be within 15% by energy type and 10% 

for total annual site energy, compared to metered data. 

In the following section we explain the modeling assumptions in DeepRetro that are meant to address the above 

listed requirements. 

 

2.1 Building Demand Modeling 
The model is easily created and rapidly executed, with building and system attribute inputs that are easily accessible, 

and is capable of providing accurate and quick building energy performance estimates. The characteristics of the 

current model are: 

 The building is represented by a single, well mixed zone (i.e., single inside-air temperature node). Besides,  

the single-zone modeling assumption was extended with  to a multi-zone modelsto allow for better 

differentiation of core and envelope loads. 

 The tool now supports two methods for well-known heat transfer calculation:  

o ASHRAE Radiant Time Series (RTS) method: The sol-air temperature method allows wall and 

roof conduction processes to be modeled using the ASHRAE Radiant Time Series (RTS) method, 

which accounts for the thermal resistance and capacitance effects of exterior surfaces. Different 

RTS are assigned for relevant radiant heat gains (i.e. solar, lighting, equipment). 

o Conduction transfer function (CTF): This algorithm relies on more detailed description of the 

construction and can only be used in cases where such details are available. The calculation is 

based on (Seem, 1987). The dynamics of each wall construction is explicitly taken into account 

(based on exact thermo-physical properties of the walls) and does not rely on availability of 

additional data as done in RTS method.   

 The thermal capacitance of building structure and furnishings can be represented by: 

o a single lumped mass; 

o explicit definition of floor and internal wall constructions using the CTF method. 

 Wall surface temperatures are assumed to be uniform, and therefore heat transfer processes are 1-D. The 

building heating/cooling load can be calculated from a quasi-steady energy balance on the zone air node. 

 

2.2 HVAC and Central Plant Model 
HVAC system and central plant performance are calculated using hourly load data to drive the system response. The 

building load is passed to the system module. The coupling is sequential, without feedback from the system back to 

the load calculation. This assumes that the capacity of the system is always sufficient to meet the building load and 

that desired temperature set points will always be maintained. The air loop system component models are defined 

based on heat and mass balance equations, while the primary system components are defined based on the 

performance curves and/or constant COPs/efficiencies. 

 

For single zone representation, the air side of the primary HVAC system was modeled as a single loop serving the 

single building thermal zone.  

The robustness and range of validity of the single-loop model were verified and refined as appropriate in 

combination with the building load model described in the previous paragraph. The list of systems supported by the 

tool was primarily based on that by Griffith et al. (2008). 

 

 

2.3 Energy Conservation Measures, Models and Packages 
A list of various low-energy design principles, or energy conservation measures (ECMs) are modeled in DeepRetro. 

These measures are categorized based on how they affect the building: Lighting and equipment, envelope, HVAC 

terminal side and HVAC supply side. . One unique aspect of our approach is that, while modeling each ECM, the 

interaction of that ECM with the others is captured to the level of detail which is consistent with the fidelity of 

energy performance and HVAC model described in the previous sections. Models for each ECM are described by 

Oggianu (2013).  
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2.4 Greenhouse Gas Estimation 
Currently, the percent energy savings is provided based on site energy. The tool includes the capability to convert 

site energy into source energy. Thus, savings based on source energy provides insights on which ECMs are more 

appropriate per building type and climatic zone to provide energy savings and reduction in greenhouse gas 

emissions. 

 

Furthermore, the tool provides additional calculation of reduction of greenhouse gases (CO2 in particular). The 

calculation is based on the assumptions on the emission of greenhouse gases outlines from http://www.eia.gov. 

 

2.5 Analysis Capabilities in DeepRetro 
The analysis capabilities within DeepRetro include: 

 uncertainty quantification (UQ) and sensitivity analysis (SA); 

 model calibration, and 

 package selection optimization (PSO). 

These analysis capabilities have been developed around the design principles of simplicity and speed on which 

DeepRetro is predicated. Specifically the methods for UQ/SA/Calibration/PSO have been chosen to tradeoff 

computational speed with solution accuracy, and so that they are simple to use (without requiring specialized 

training) with appropriate user knobs (to provide user transparency). 

 

UQ is based on engineering assumptions on how much parameters can change. More details on PSO are described 

by Ahuja and Peles, (2013) and Oggianu  (2013). 

 

2.6 Tool User Interface  
A graphical user interface (GUI) and a relational database provide an ease-of-use tool, enabling part of the building 

energy-audit speedup, and ensuring the robust management and reuse of large volumes of building-audit and 

energy- and cost-analysis data.  The GUI was developed using a data-driven approach, so that the tool functionality 

can be extended simply by modifying data in the database, with the GUI reflecting these modifications without any 

change to the GUI code itself. 

  

2.7 Portfolio Analysis  
The core engine of DeepRetro was utilized to analyze and study a large portfolio building database, such as the 

DOD Real Property Database (RPAD). We use the RPAD as the test case to demonstrate the efficiency and 

accuracy of the tool, as well as its ability to provide insight for making recommendations and deriving policies.   

The task objective is a statistical analysis of the technical suitability and potential of DOD RPAD buildings for deep 

energy efficiency retrofits.  

 

3. BUILDING RETROFIT ANALYSIS MODEL VALIDATION  
 

Quality assurance of building simulation models is an important part of model development, and has the main 

purpose to build credibility of the model and understanding of its applicability range. This section presents three 

different approaches we used to validate modeling assumption relative to identified KPIs for energy retrofit analysis: 

standard envelope and system model validation, comparisons with calibrated eQuest models, and field tests. 

 

3.1 Standard quality assurance for building envelope 
Buildings consist of numerous dynamically interacting components that exhibit nonlinear and transient behavior and 

dynamically interact with other building components. So far, many mathematical methods exist to capture this 

complexity (Clarke, 2001; ASHRAE, 2009). The most popular models are:  

1. numerical methods for approximate solution of differential equations in time domain, such as finite 

difference (as implemented in ESP-r); 

2. solutions of time differential equations in frequency domain, such as conduction transfer function (CTF) (as 

one of the options in EnergyPlus), and 

3. a simplified method, based on pre-computed time series that are applied to the radiant portion of the 

building load, thus delaying its impact in time. This method is known as the radiant time series (RTS) 
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procedure (Spitler et al., 1997). Radiant time series for specific constructions are available in the literature 

(ASHRAE, 2009). 

Even though they are most straightforward, numerical methods in the time domain can be more computationally 

expensive than CTF. The CTF method requires time to compute transfer function coefficients at the beginning of the 

simulation, but does not require extensive numerical computations throughout the simulation period. However, both 

numerical methods and CTF require thermo-physical properties of every layer in the building construction. For 

existing buildings, this can be very difficult to obtain. 

 

The most efficient method is RTS, with time series inherited from the known sources (ASHRAE, 2009). Since the 

series are given for a specific construction, far fewer inputs are required than in other two approaches. However, the 

variety of construction materials for which RTS are available is limited, and might not be able to capture vast range 

of existing building constructions present in the buildings. We will look at three levels of validation for the models 

used in the tool and later discuss required level of modeling complexity based on the presented cases. 

 

Based on ASHRAE Standard 140 (IEA BESTEST procedure), inter-model comparison has been performed to 

validate procedures for thermal transfer through envelope simulation. The results are shown in Figure 1. 
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Figure 1: Results obtained by using alternative envelop algorithms compared to ASHRAE Standard 140, cases 600, 

620, 900, 920. 

 

The original algorithm implemented in the model was partial Radiant Time Series (RTS):  RTS excluding RTS for 

radiant solar gains. The results obtained by applying RTS w/o RTS solar gains are not valid for all types of 

buildings. For example, for heavyweight buildings the accumulation of heat received by radiation onto internal 

surfaces by transmitted solar radiation becomes relevant. Thus, the case with higher amount of transmitted solar 

radiation (building with windows oriented South) and heavyweight walls show significant discrepancies with 

reference data. The accuracy has been improved by developing additional algorithms: 

1. RTS for solar radiant gains, 

2. Incident angle dependent solar radiation upon windows, and 

3. Conduction Transfer Function (CTF). 

The improved results are also shown in Figure 1.  

3.2 Standard quality assurance for system simulation  
Both Volume 1 and Volume 2 HVAC BESTEST set of tests were exercised. Due to the simplicity of the tool, only a 

subset of the tests could be modeled. 

 

Volume 1 set of test cases contains tests with constant boundary conditions: all transient phenomena are ignored. 

For example, the corresponding weather file is artificial, with all weather variables kept constant throughout the 

year. These tests are used to verify system models in steady state settings.  

The building envelope model contains no windows and has near-adiabatic envelope. The internal gains are 

controlled. Here, we report on the results from four tested cases from Volume 1. The test cases are summarized in 

table in Figure 2. 



 

 3263, Page 6 
 

3
rd

 International High Performance Buildings Conference at Purdue, July 14-17, 2014 

 

The simulation results for these cases are shown in Figure 2. DeepRetro produced results comparable to the other 

tools used to define the accepted accuracy range in the procedure.  

 

0

500

1000

1500

2000

E100 E110 E190 E195

HVAC BESTEST Vol1: One MonthSpace Cooling Electricity 
Consumption (kWh/month)

min ASHRAE Allowed max ASHRAE Allowed Deep Retro
 

Case  
Coil 

condition  

Indoor 

temp.  

Outdoor  

temp.  

E100 dry low high 

E110 dry low low 

E190 wet loSHR low low 

E195 wet loSHR low high 
 

Figure 2: Simulation results for HVAC BESTEST Volume 1 test cases. 

  

The difference in Volume 2 is that the transient phenomena are included in the model. This is extension of the 

previous tests and is used to test system response to transient boundary conditions.  The test cases for Volume 2 are 

summarized in table in Figure 3.  

 

 

0
10000
20000
30000
40000
50000
60000
70000

E300 E310 E360

HVAC BESTEST Vol2: Annual Space Cooling Electricity 
Consumption (kWh/month)

max ASHRAE Allowed min ASHRAE Allowed Deep Retro
 

Case Load 

E300 
Dynamics included 

low latent load 

E310 
Dynamics included 

high latent load 

E360 
Dynamics included 

undersized system 
 

Figure 3: Simulation results for HVAC BESTEST Volume 2 test cases. 

 

Note that the case E360 tests the system response to loads which are higher than the installed system capacity. 

Originally, DeepRetro was not designed to deal with undersized systems. The results for the case E360 illustrate the 

results when the tool is used outside of its applicability range. For all other tested cases, the tool produces results 

comparable to the other tools used to define the accepted accuracy range in the procedure. 

 

3.3 Dedicated inter-model comparison tests based on real building models in eQuest 
A retrocommissioning project ongoing at Ft. Bragg was leveraged. In that project, eQuest models had been 

developed and calibrated based on a short metering period for eight buildings representative of the scope of that 

project. The eQuest models for those buildings were provided to UTRC for inter-model validation, in which the 

output from eQuest is used as virtual metered data. 

 

Table 1 shows eight buildings included in the inter-model validation, comparing DeepRetro results with well eQuest 

results. eQuest models were provided for each building. These models were run and checked against the Ft. Bragg 

retrocommissioning report. In the case of the dining facility (A3556), the model output did not match the report. 

However, we used the model output as effective metered data. Note also that for buildings in which one form of 

energy dominates, like building A4148, the calibration procedure focused on the dominant form for matching total 

annual consumption. This means that, in such cases, it is not easy to control the relative error by energy type for the 

non-dominant energy type. 

 

In Figure 4, we demonstrate the accuracy achieved for this set of buildings after using DeepRetro’s automatic 

calibration procedure. The model in DeepRetro is based on RTS procedure and single zone model assumption is 

used. The accuracy, resulting to 15% by energy type and 10% for total annual site energy, is highlighted. As noted 
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earlier, the natural gas consumption of building A4148 is more than twenty times less than electric consumption, and 

therefore any relative error is exaggerated even though the building total energy consumption is very well modeled. 

 

  

Table 1: List of Ft. Bragg buildings for which eQuest models were provided and annual electric and gas 

consumption from the models. 

Building Sq. ft. Floors Type/Purpose 
Energy 

Sources 

Annual 

electricity 

[kWh] 

Annual Natural 

Gas [kWh] 

A2356 11,664 1 
In-processing 

facility 

Electricity, 

Natural 

Gas 

157,150 86,292 

A2444 20,096 2 COF 174,430 112,510 

A2547 45,600 1 COF 555,040 380,523 

A2649 37,904 4 Barracks 216,880 370,106 

A3162 24,768 4 Barracks 217,410 304,120 

A3351 52,624 4 Barracks 783,520 416,307 

A3556* 29,247 1 Dining facility 1,189,400 545,604 

A4148 17,128 2 COF 773,210 28,828 

Total 239,031   
  

 

 

  

 
Figure 4: Relative error in annual site energy by energy type (left) and in total (right) for Ft. Bragg buildings. The 

lines mark the ±15% (resp. ±10%) relative error limits for energy use by energy type (resp. total energy). 
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Figure 5: Comparison of monthly electricity and gas predictions from DeepRetro and provided eQuest model for 

building A2356 (In-processing facility). 

 

Figure 5 shows a sample comparison of monthly predictions from DeepRetro and from the provided eQuest model 

for building A2356, after using DeepRetro’s automatic calibration procedure. This example demonstrates how not 

only the annual values, but also the monthly trend is matched. 

 

3.4 Field Tests 
DeepRetro was field-tested on 25 buildings at Joint Base San Antonio (JBSA), comprised of Ft. Sam Houston, 

Randolph Air Force Base, and Lackland Air Force Base. The models were built based on building walk-throughs by 

Building Intelligence Group (BIG) and UTRC. Also used, where available, were utility data, and additional details 

were supplemented with as-built drawings and mechanical schedules. 

  

Even though 25 buildings were assessed in the field test (Oggianu, 2013), we focus here on the seven buildings 

where the most reliable metered data was available, and where buildings were isolated, so the metered data referred 

to each modeled building alone. An exception is a pair of large buildings that share a central plant (2840 and 2841 in 

Ft. Sam Houston): these two were modeled as a single, larger building in DeepRetro. In all cases we used the RTS 

method and single-zone model. Note that most buildings at JBSA have relatively low fenestration, indicating that 

separating peripheral and core zones would not be necessary. 

 

For each model with good quality metered data, we deployed DeepRetro’s automatic calibration capabilities. Figure 

6 shows the resulting relative error for these six buildings after calibration. For most of them, the annual 

consumption results are within 15% per energy type, and within 10% in total.  

-20% -10% 0% 10% 20%

FSH 247 Admin

FSH 2745 Rocco Dining Hall

FSH 2840 Aabel Hall/2841 Willis Hall

FSH 4196 502nd CES

FSH 902 Wagner Hall

Randolph 111 VOQ

Annual energy relative error

Gas Electricity

-20% -10% 0% 10% 20%

FSH 247 Admin

FSH 2745 Rocco Dining Hall

FSH 2840 Aabel Hall/2841 Willis Hall

FSH 4196 502nd CES

FSH 902 Wagner Hall

Randolph 111 VOQ

Total annual energy relative error

 
Figure 6: Relative error in annual site energy by energy type (left) and in total site energy (right) for JBSA 

buildings. The lines mark the ±15% (resp. ±10%) relative error limits for energy use by energy type (resp. total 

energy). 
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4. DISCUSSION OF THE REQUIRED MODELING COMPLEXITY 
 

Even though the standardized diagnostic procedure for quality assurance for algorithms used in building heat 

transfer models required high modeling resolution based on CTF and all inputs associated with it, RTS procedure 

used for inter-model comparison with full-size building model and field tests met required accuracy of identified 

KPIs for energy analysis. 

 

In general, heat transfer through the envelope in the building reported in this paper constitutes only a portion of the 

overall building load, and thus the investigated KPIs are not sensitive to small inaccuracies introduced by the 

simplified (but efficient) heat transfer calculation procedure. 

 

For the reported cases, single-zone modeling assumption seems to provide required prediction accuracy for KPIs. 

However, even though the buildings reported in this paper are all in warmer parts of the United States, higher 

accuracy with multi-zone model has been observed for buildings in colder climates with lower levels of insolation 

and higher percentages of window area. 

 

Here we illustrate findings from an office building (the building was not part of the project presented in this paper) 

where multi-zone approach significantly improved accuracy of the building. Comparison is shown in Figure 7. The 

implementation of multi-zone model significantly improved accuracy in prediction of natural gas consumption.   

 

 
Figure 7: Comparison of results between single-zone and multi-zone model for an office building 

 

5. CONCLUSIONS 
 

The paper presented a modeling approach used for quick and accurate energy retrofit analysis in DeepRetro. We 

presented results from an extensive validation procedure. Even though the standard set of tests required a more 

detailed heat transfer model, field tests were less sensitive to these phenomena, and a simpler modeling approach 

was successfully applied. The simplified modeling approach also speeds-up the time required for automatic 

calibration, because of the fewer number of parameters involved. 

 

Overall, the approach has so far been applied to facilitate energy retrofit analysis in more than 50 individual 

buildings, as well as a portfolio analysis of 250,000 buildings from the DoD domestic building stock. The evaluation 

of the baseline energy performance of an individual building can be achieved in less than one minute and a complete 

retrofit analysis can be achieved in about half hour of computational time (on individual PC, performance can be 

significantly improved if super computers are used) with minimum human intervention. While the tool only requires 

eleven basic input building characteristics, results significantly improve when building parameters, systems, and 

schedules are well known. An accuracy of 10% was achieved when comparing tool results against known and 

reliable annual energy consumption in a building.  
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