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ABSTRACT 

 

This paper presents a computational approach to forecast photovoltaic (PV) power in kW based on a neural network 

linkage of publicly available cloud cover data and on-site solar irradiance sensor data. We also describe a control 

approach to utilize rooftop air conditioning units (RTUs) to support renewable integration. The PV forecasting 

method is validated using data from a rooftop PV panel installed on the Distributed Energy, Communications, and 

Controls (DECC) laboratory at Oak Ridge National Laboratory. The validation occurs in mult iple phases to ensure 

that each component of the approach is the best representation of the actual expected output. The control of the RTU 

is based on model predictive methods.  

 

1. INTRODUCTION 
 

As the United States witnesses continued expansion of photovoltaic (PV) and other distributed generation 

technologies into the electric power grid and the retirement of traditional fossil fuel generation assets, there is an 

increased need to find approaches to mitigate integration challenges. The integration challenges vary by type of 

renewable resource but overall require more flexib ility and support from other resources . These resources are 

appearing in the form of load side management, fast responding generation (natural gas) assets, and energy storage 

technologies [1].   

 

One challenge for renewable integration is the potential for reverse power flow into the distribution system, or the 

condition when the generation resource output power exceeds the load. This condition is not of significant concern 

for low penetrations of PV, but could lead to issues with high penetration. Reverse power flow has the potential to 

not only cause electric power system issues (over voltage on distribution feeders, increases in dangerous short circuit 

currents, and desensitization of protection leading to potential breaches of protection coordination , and incorrect 

operation of equipment [2]) but also lead to additional cost to the utility through the net-metering init iatives [3]. Net-

metering currently provides an economic incentive for customers to sell power back to utilit ies at greater rate than 

the avoided variable costs.  Furthermore, s tudies examining this incentive and expected growth in  Californ ia have 

found that the net load (difference between forecasted load and variable generation resources) could alter entirely 

from conventional load shapes into what is known as the ‘Duck Curve.’ With high penetrations of PV, the net-load 

curve could have the appearance of a ‘belly’ during mid-afternoon with a high arch at the end of the day 

representing the neck of a duck. This initiates a new challenge for conventional generation, as higher ramping rates 

will be needed to overcome the reduced PV output during late afternoon –early evening hours [4].  This challenge is 

likely to lead to further hikes in overall electricity cost as power system operators will have to deal with these short 

steep ramp rates, over-generation risks, and decreased frequency respons e.  

 

One method for reducing this reverse power flow and the impact of the potential ‘Duck Curve’ is to utilize the 

power generation locally in the commercial build ing even when the load usage may not be optimum. As an example, 

heating ventilation and air conditioning (HVAC) systems could store thermal energy by pre-heating or pre-cooling a 

building during high PV production to reduce the chance and impact of reverse power flow. This method could also 

be supplemented to reduce potential peak demand charges by considering the PV and managing the available 

‘behind the meter’ assets.  However, in order to maximize the linkage between the load and renewable production, a 

method for forecasting the amount of renewable resource and optimizing available assets  for resource utilization is 

needed. In this paper, a  method for forecasting PV output is developed as a supplement for load control  of a rooftop 



 

 3623 Page 2 
 

3
rd

 International High Performance Buildings Conference at Purdue, July 14-17, 2014 

air conditioner unit (RTU) using publicly available data. The forecasting method uses an approach to estimate solar 

irradiance and applies the irradiance into a PV model for output in kW. A model for pred ictive control approach is 

discussed to provide the appropriate control for peak management through the RTU while considering PV.  Future 

work discussing the integration of this control and prediction onto a real test-bed is discussed. 

 

2. PHOTOVOLTAIC GRID INTEGRATION USING LOAD AS A RESOURCE 

 
2.1 PV Prediction 
 

The overall approach utilized in this paper for forecasting the power output from a PV array is shown in Figure 1. 

The key elements to this approach are establishing the solar irradiance and the actual produced kilowatts (KW) from 

the PV panel. This is not a trivial solution, as the solar irradiance is governed by many factors including cloud cover, 

sun angle, and PV panel tilt. From the solar irradiance, the actual output power production is dependent on the 

specific PV panel manufacturer along with design and interface specification of power electronics (usually a 

standard inverter that converts the DC output generated by PV to AC).  In this study, the objective is to forecast an 

hourly power production and utilize the energy as available from PV with future work looking  into more dynamic 

control and use as shorter time interval forecasting is needed and requires further development.  A Matlab based 

program has been created to collect the data and perform the necessary computation. 

 

 

 

Figure 1: Overall approach to forecast PV output 

 

Forecasting the solar irradiance collected by the PV panel requires data from a number of sources . Historical solar 

irradiance measurements , cloud patterns, and solar angles provide an important element to the ability to fo recast the 

expected irradiance in  an hourly t ime-scale. Figure 2 shows an example cloud cover for December 10
th

, 2013 for the 

eastern U.S as provided by the Government of Canada for astronomical purposes [5]. The ‘+’ marks the approximate 

location of Knoxville/Oak Ridge, Tennessee where the PV array at  the DECC lab is located and data is available for 

a forecast as far out as 48 hours. Other resources such as NOAA also provide data on cloud cover including the 

different cloud layers.  
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Figure 2: Example cloud cover for eastern U.S. 

 

The cloud cover is identified by the color of the pixel on the map and can be found in a legend with the image 

source. During each hour, satellite forecast imagery is collected, the color for that coordinate ext racted and the 

percent cloud cover determined as shown in Figure 2. Th is percent cloud cover is then inserted into a neural network 

algorithm along with zenith angle  to find the relat ionship between the input data and measured solar irradiance. The 

zenith angle is determined using a separate Matlab code developed by Roy that utilizes the current time and GPS 

location of the which is available for download online [6-7]. For validating the results, the PV panel on the rooftop 

of the Distributed Energy, Communications, and Control (DECC) facility at  Oak Ridge Nat ional Laboratory and the 

measured solar irradiance at this location are used. A picture of the installed PV is provided in Figure 3. 

 

 
 

Figure 3: Picture of DECC laboratory and rooftop PV. 
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78.75% 98.75%
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Significant literature is available on the modeling of PV cells and arrays. Many of these sources provide similar 

methods in modeling and capturing the PV characteristics. In this paper, the models developed by Villalva [8-9] are 

utilized in constructing the model due to the amount of required input details and the components considered. This 

model utilizes an input of solar irradiance and module temperature to estimate the output power based on an 

interconnected voltage.  

 

In this method, the PV model is represented by a dependent current source with parallel diode, parallel resistance, 

and series resistance as shown in Figure 4. The output current of the PV module is a function of the current source 

minus the diode current and current passing through the parallel resistance Rp : 

 

        [ 
(
(     )

   
)
  ]  

(     )

  
     (1) 

 

where I is the output current of the module, Ipv is the photovoltaic current, Io is the diode saturation current, Vt is the 

thermal voltage, V the module voltage, Rs the series resistance, Rp the parallel resistance, a is the diode constant 

(typically in the range of 1 to 1.5).  

 

 

Figure 4: PV circuit representation  

The thermal voltage is a characteristic given to diodes and can be calculated with  

 

               (2) 

 

where Ns is the number of cells connected in series to produce the specific PV module, k  is the Boltzmann constant, 

q is the electron charge and T is the temperature at the p-n junction or module temperature.  

 

The photovoltaic current, or current source in Figure 4, is related to the collected solar irradiance and module 

temperature and is given by 

 

    (       (    )
 

  
     (3) 

 

where Ipvn is the light generated current at nominal conditions (which are specified by the manufacturer), KI  is the 

coefficient of the current in relation to temperature change, T-Tn is the difference in temperature from the measured 

and nominal temperature, G is the measured solar irradiance in W/m
2
, and Gn is the solar irradiance at nominal 

conditions, usually 1000W/m
2
.   

 

The diode saturation current is also impacted by temperature and is given as  

 

   
       (    )

 
(
(       (    )

   
)
  

      (4) 

 

where Iscn is the short circuit current of the PV panel at nominal conditions, Vocn is the open circuit voltage at 

nominal conditions, and Kv is the coefficient of the voltage in relation to the temperature change.  
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The resistance values Rp and Rs are calcu lated iteratively through the method described in [8-9] and are specific to a 

PV module and configuration. Equations 1-4 are applied along with the circuit model illustrated in Figure  4 to create 

the relationship between the output voltage and current, module temperature, and solar irradiance. The PV module 

model is incremented from 0 to the characteristic open circuit  voltage of the PV system to create the current and 

power curves for the PV panel. At DECC, one of the strings of PV panels connected is composed of 12 modules in 

series and 2 sets in parallel. The resulting PV characteristic curves relat ing the developed voltage-current and power-

voltage relationships are shown in Figure 5.   

 

  
 

Figure 5: Characteristics for single PV array on DECC @25C 

The circu it model and current source are controlled based on typical PV parameters that often can be located in a PV 

vendor datasheet. In this case, the module parameters for a 280W Hanwha Solar PV are used and are the same 

modules interconnected at the DECC facility. These are provided in Table 1. 

 

Table 1: HSL72 Hanwha Solar PV Module Parameters  [10] 

Information Number 

Maximum Power (Pmax) 280 W 

Voltage at MP (Vmp) 35.7 V 

Current at MP ( Imp) 7.84 A 

Voltage Open Circuit (Voc) 44.6 V 

Current at Short Circuit (Isc) 8.43 A 

Ki 0.005058  A/K 

Kv -0.14718 V/K 

Ns 72 

 

In order to utilize the PV model developed by Villalva, the PV module temperature is a necessary component. The 

temperature on  the module changes significantly during the day due to solar irradiance and outside temperatures. 

Jones provides a thermal module  for a PV module that was developed to account for the increase and decrease in 

temperature of the modules [11]. The change in module temperature can be found by: 

 

       
  

  
                        (5) 

 

where Cmodule is the heat capacity of the module, qlw is the long wave radiat ion heat transfer, qsw is the short wave 

heat transfer, qconv is the convection heat transfer, and Pout is the power generated by the module. The heat capacity 

of the module can be calculated with the basic information of the module: 
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∑              (6) 

 

where A  is the area of the module, dm is the depth of a specific layer, pm is the density of the layer, and cm is the 

specific heat of the layer. The equations for the short wave, long wave, convection heat transfer can be found in 

[11]. 

 

Today, in many cases, the interconnected PV inverter controls the PV DC link voltage such that the output of the PV 

is the maximum achievable power based on the solar irrad iance (often ter med  maximum power point tracking-

MPPT.)  The PV curve developed based on measured solar irradiance at the given time is developed and the 

maximum power is extracted and assumed to be produced by the PV panel. This power is also reduced by a 

particular factor, which is associated with the efficiency of the interconnected inverter. In many cases, the efficiency 

performance in relationship to output power of the inverter is available from the manufacturer.   

 

2.2 PV Model Validation Results 
 

In order to validate the modeling and forecasting approach, validation is conducted at different steps of the 

development of the PV power output. First, the real irrad iance measurement on the PV panels , archived on a 15 

minute average through the PV monitoring system, is compared with the estimated irradiance from the model. In 

this example case, the week of 4/6/2014 - 4/12/2014 is examined utilizing train ing from the previous 3 months . 

Figure 6 shows the direct comparison comparison. The results demonstrate that the measured versus solar irradiance 

overall consistently match the measured irradiance. The only outlier is the 6
th

 day. This is believed to be a result of a 

mis-forecast on cloud cover. As seen in Figure 7, there is predicted to be a high percentage of cloud cover fo r the 6
th

 

day, however the measured irradiance appears to see no difference compared to the previous clear day.  

 

 
Figure 6: Comparison of estimated irradiance and real irradiance measurements  

 

 



 

 3623 Page 7 
 

3
rd

 International High Performance Buildings Conference at Purdue, July 14-17, 2014 

 

Figure 7: Estimated cloud cover from image analysis  

A second component to the validation involved the modeling of the temperature rise of the PV panel. As previously 

mentioned, the temperature is impacted by both the heating from solar irradiance and the outside ambient 

temperature. These measured inputs along with the kW from the PV panel are inserted into the model and the output 

of the module temperature is recorded. The results from this comparison can be seen in Figure 8. This test was 

constructed to run all seven days consecutively and as a result error can propagate as shown. Even with seven 

consecutive days, only a 10K d ifference in temperature is seen during peak hours. This will lead to a s mall 

percentage of overall erro r in the full model. Furthermore, the parameters for the PV thermal model could be better 

tuned to specifically match this PV panel. 

 

Figure 8: Comparison of calculated PV module temperatures and measured module temperatures  

The third step in validation involved the PV model with inputs of solar irradiance and module temperature and 

output of power. Here the measured quantities of solar irradiance and module temperature are inserted as inputs and 

used to compare the measured and actual power output of the PV considering MPPT. The results from this 

comparison can be seen in Figure 9. As seen the output measured PV power and modeled PV power are h ighly 

correlated. 
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Figure 9: Comparison of modeled power output utilizing real module temperatures and measured irradiance 

measurements  

 

The fourth and final validation involved interlinking all of the calculat ion components and performing a full forecast 

while using no measured data. The results from this analysis is shown in Figure 10. In Figure 10, the forecasted 

output PV power and measured power are compared. The root mean square (RMS) range fo r the period considering 

each day separately is 368 to 1538W with an average RMS error of 813W. The average error range for the power 

per day range is -31W to  -837W  with a total average -164W for the week. The solar irrad iance error range in RMS 

is 65.96W/m
2
 to 229W/m

2
 with an average of RMS error of 132W/m

2
.  

  

 

Figure 10: Comparison of modeled power output utilizing predictions against the measured power output 

 

2.3 Optimization and Objective 
 

In related work [12], we have proposed a model predicative control that seeks to maintain satisfactory comfort for 

the building occupants while reducing peak power consumption by the air conditioning units. This is accomplished 

by simultaneously operating no more than   air condit ioning units when a total of     units are availab le. The 

assumption is that each air conditioning unit is responsible for heating and cooling a part icular space, or zone, within 
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the building, and for this purpose each air conditioning unit   is connected to a thermostat that measures the air 

temperature   , has a reference temperature       , and has dead bands       and      . 

The model predicat ive control divides time into control periods of   minutes, and at the beginning of each period it 

selects which units to operate. The selection process has two phases. In the first phase, the control decides which 

units are eligible for activation. A unit is eligib le to cool if the temperature                 and to heat if 

               . In the second phase, the control selects which eligible units to activate. This selection 

comprises at most   of the elig ible units picked  such that the largest number of temperatures    will be within  their 

desired range at the end of the control period. This is accomplished with a model that pred icts the temperature   
  at 

the end of the control period and choosing the fewest eligible units    that minimize the expression 

   ∑     {  
  (            )  }      {(            )    

   }    (7) 

 

Given informat ion about the availability o f PV power over the next control period, this control can be augmented so 

that it prefers to operate the air conditioning units when PV power is available. Given the power consumption   of 

an HVAC unit and the forecasted power       , the amount of power that must be drawn from the grid (rather than 

the PV) is given by 

      {            }      (8) 

 

The terms    and    are weighted according to the preference for controlling temperature versus using electrical 

power from the solar panel to obtain an objective function  

   
     

        (9) 

Table 1 demonstrates the trade between the error in the temperature control and the mean  rate of power drawn from 

the electrical grid as the weights    and         are varied. The data in Table 1 is notional, being based on a 

simulation study of a four zone building similar to the one described in [12] with the individual zones and solar 

irradiance modeled  as described in  [13], but it  illustrates how an effect ive PV forecast can be used to reduce energy 

consumption with a modest reduction in the ability to regulate temperature. The table shows mean values of    and 

   over five simulated days assuming an idealized forecast for        over the next control period. The outdoor air 

temperature was selected to mimic a spring day in Knoxville, TN and ranged from a n ighttime low of 15 deg. C and 

daytime high of 30 deg. C. The temperature band for the control was from 24 to 25 deg. C. 

Table 1: Control error versus power consumption. 

   Mean    (kW) Mean    (deg. C) 

1 0.537 0.0652 

0.95 0.0839 0.158 

0.9 0.0286 0.174 

0.85 0.0237 0.175 

0.8 0.0133 0.182 

0.75 0.00929 0.184 

0.7 0.00515 0.187 

0.65 0.00212 0.189 

0.6 0.00171 0.190 

 

3. CONCLUSIONS AND FUTURE WORK 

 
This paper discusses a computational approach to forecast PV power in kW , 24 hours ahead, based on a neural 

network linkage of publicly available cloud cover snapshots and collected solar irradiance data and PV models and 

mentions a control approach to utilize rooftop air conditioning units (RTUs) to support renewable integration. The 

PV forecasting method is validated through examining a rooftop PV panel installed on the Distributed Energy, 



 

 3623 Page 10 
 

3
rd

 International High Performance Buildings Conference at Purdue, July 14-17, 2014 

Communicat ions, and Controls laboratory at Oak Ridge National Laboratory. The validation occurs in multi -phases 

to ensure that each component of the approach is the best representation of the actual expected output. The control 

of the RTU is based on model predictive methods.  

 

Future work will continue to consider and adapt the PV forecasting to consider more data and potentially shorter 

time-window forecasts as other methods are included. Resolution of the cloud cover from the snapshots is very low 

and often captures the general cloud behaviors but does not provide accuracy on when cloud cover transients will 

occur. Future updates will be incorporated to improve this resolution. The control will also be implemented into 

RTUs located at the flexib le research platforms at ORNL. This will provide real data on control development and 

testing of the RTUs in respect to PV output power.  
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