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ABSTRACT 
 

Model predictive control (MPC) in building HVAC systems incorporates predictions of weather and occupancy to 

determine the optimal operating setpoints. However, application of MPC strategies to large buildings might not be 

feasible in real time due to the large number of degrees of freedom in the underlying optimization problem. 

Decomposing the problem into several smaller sub-problems to be solved in parallel is one way to circumvent the 

high computational requirements. Such an approach, termed Distributed MPC, requires certain approximations 

about the underlying sub-problems to converge to a consistent solution thus leading to a trade-off between 

computational load and optimality. In this paper, we present a simulation-based evaluation for a Distributed MPC 

formulation for a case study based on a medium-sized commercial building. Results indicate that distributed MPC 

can offer near-optimal control at a fraction of the computational time that centralized MPC requires while 

maintaining occupant comfort.  

 

1. INTRODUCTION 
 

Optimal control of building heating, ventilation and air-conditioning (HVAC) systems has been receiving increased 

attention in the wake of climate change and soaring energy prices. However, operating building HVAC systems in 

an “optimal” way can be infeasible in real time, primarily due to the large number of decision variables to be 

controlled and the nonlinear models involved.   

 

Model predictive control (MPC) has long been viewed as a practical solution for complex control problems 

involving nonlinear dynamics and general cost functions. Efforts have been made to formulate and solve the optimal 

HVAC operation problems in an MPC framework(Ma et al., 2010; Oldewurtel et al., 2010; Putta et al., 2013; 

Wallace et al., 2011). MPC-based approaches also have the benefit of being capable of incorporating weather 

forecasts, utility pricing and occupancy profiles into the optimization.  However, the large number of decision 

variables involved can make such approaches prohibitively slow for implementation in largebuildings.  

 

In this paper, we approach the problem of optimal HVAC control from a distributed MPCperspective. Such an 

approach enables us to decompose the original problem with a large number of decision variables into smaller 

optimization problems that can be solved simultaneously. The resulting solutions can be aggregated to obtain the 

solution of the original problem. Previous works in this direction include (Koehler & Borrelli, 2013; Ma et al., 2011; 

Moroşan et al., 2010; Putta et al., 2012). Utilizing a multi-zone building case study, we conduct a simulation-based 

evaluation of a distributed MPC formulation and discuss the various features in comparison with the conventional 

MPC implementation. 

 

The paper is organized as follows. In Section 2, we discuss the building and HVAC system models considered for 

the case study. The optimal control problem is formulated in a MPC framework in Section 3. This formulation is 

subsequently extended to a distributedoptimization-based formulation in Section 4. Section 5 presents the results of 
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thesimulation-based evaluation of the proposed formulation. Conclusions are drawn and future directions are given 

in Section 6. 

 

2. CASE STUDY 
 

2.1 Envelope Model 
A state space model of the north wing of the Building 101 (B101) situated at the Navy Yard of Philadelphia will be 

presented in this section as our case study. This building is typical of a medium-sized commercial building. The 

north wing comprises of 20 separate occupant spaces which are served by 9 VAV boxes fed by a single Air 

Handling Unit (AHU) and Direct Expansion (DX) unit. For the purpose of this study, we demarcate 9 control zones 

served by the individual VAV boxes. Utilizing energy balance at discrete nodes in the walls and air, we obtained a 

forward state space model that describes the building envelope dynamics. The obtained model has a high dimension 

that makes it impractical for control purposes. We utilize model order reduction, described in(Kim & Braun, 2012), 

to reduce the number of states to facilitate control design. After model order reduction and discretization, the 

dynamics can be written as 
 

 

��� + 1� = ����� + 	
��� + ����� 


���� = ����� 
(1) 

where�, 	, � and � represent the system matrices of reduced dimension obtained via model order reduction and � 

denotes the discrete time instant. The state vector ��⋅� represents a transformed vector containing information about 

the temperatures of the wall and air nodes. Physical significance of each component of the state vector is not explicit 

due to the transformation. The vector ��⋅� represents the input vector comprising of controllable inputs that act 

directly on the internal temperatures (rate of energy added by AHU, internal gains) and the matrix 	 encapsulates 

the effect of these inputs on the system.  Vector ��⋅� denotes the exogenous (uncontrollable) inputs acting on the 

envelope (solar radiation, internal gains). The relation between the zone temperature 
��⋅� and the state vector ��⋅� 

is modeled by the output matrix � . For the model at hand, the state space had a dimension of 586 while the 

controllable inputs 
��� ≔ �
����, 
����, … , 
������ has a dimension of 9 corresponding to the sensible cooling 

provided by the VAV boxes. The output vector contains the temperatures of the 9 control zones. 

The matrix � is not sparse leading to coupling among the states. This makes the problem of long horizon optimal 

control more complicated due to the necessity of considering the interactions among the states. 

 

2.2 Equipment Model 
The DX unit supplying the north-wingwas modeled using input-output measurements obtained on site and 

information of the equipment. The obtained gray box model generates the total power consumption � 

(fan+compressor)as a function of the sensible cooling (
�supplied by the DX unit, the supply temperature of the 

air(
��, ambient wet-bulb temperature 
��� , mixed  temperature
� ! and  mixed humidity "� !: 

 � = #�
, 
�; 
%&', 
� ! , "&(��, (2) 

Figure 1 summarizes the notation and the schematic of the case study. Each VAV box is associated with an air 

volume flow rate )*  determined by its damper setting and supplied cool air at temperature
�. The sensible heat 

extraction rate at each zone can therefore be written as  


 ��� = )+* ���,�-.
���� − 
����0, 
where, is the density of air and �- the specific heat constant. 

The total sensible cooling
 is determined by the sum of the individual zone sensible coolingswhich along with 
�are 

the available degrees of freedom.: 


��� = 
��⋅ �� + 
���� + ⋯ + 
����. 
The totalpower consumption of the DX unit is highly nonlinear making it difficult to find a single functional 

representation to approximate it. Hence to minimize computational burden during optimization, we approximate the 

power consumption with a family of quadratic functions as follows: 

 � ≈  
5
66
6
7
�

�
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Here,<(respectively, � %>? =)  belongs to a family of symmetric 

scalar) parameterized by the ambient 

through regression. By gridding the parameter space (

unit power consumption (from the gray

representations of the power over the whole parameter space. 

incurred a mean RMSE of 4% compared to the gray

parameter space.   

 

 

 

During the modeling phase, it was observed that the DX unit was most optimal operating at its highest possible 

supply temperature for any given sensible load. Further investigation revealed that the compressor power 

consumption outweighed the fan power consumption almost all the time leading to the above scenario

behavior, optimizing one degree of freedom (supply temperature) becomes trivial when the other controlled 

variables are set. We will revisit this f

study. 

 

The next section describes the formulation of the problem in the MPC framework. We define the objective function 

and explore the need for efficient MPC

 

3.MODEL PREDICTIVE CONTROL FORMULATION

 
Model predictive control anticipates

decide upon the optimal action. The optimality of the decision is highly sensitive to the accuracy of the model 

for the forecast. Receding horizon control, where the

control more robust with respect to prediction inaccuracies.

 

In applications to building supervisory control

factors such asvariations in the occupancy, utility rates 

strategy. Throughout the study, we assume 

horizon @- . We use the inherent robustness of the receding horizon controller to handle inaccura

forecasts.The state space model given by (1) serves as the prediction model for the system as follows

 

��� + A + 1|�
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belongs to a family of symmetric 10 D 10 matrices (respectively, 

parameterized by the ambient temperature and mixed conditions. The values 

By gridding the parameter space (
��� , 
� ! , "� !� over suitable ranges

unit power consumption (from the gray-box model) at various values of 
and 
E, we were able to obtain quadratic 

presentations of the power over the whole parameter space. For this case study, the quadratic representations 

incurred a mean RMSE of 4% compared to the gray-box model(assumed to be the ground truth) over the whole 

Figure 1: Schematic of the B101 north wing 

During the modeling phase, it was observed that the DX unit was most optimal operating at its highest possible 

for any given sensible load. Further investigation revealed that the compressor power 

ption outweighed the fan power consumption almost all the time leading to the above scenario

behavior, optimizing one degree of freedom (supply temperature) becomes trivial when the other controlled 

. We will revisit this fact later when formulating a distributed optimization approach for this case 

The next section describes the formulation of the problem in the MPC framework. We define the objective function 

and explore the need for efficient MPC solutions. 

 

L PREDICTIVE CONTROL FORMULATION

s the behavior of the system over a prediction horizonand uses this information to 

decide upon the optimal action. The optimality of the decision is highly sensitive to the accuracy of the model 

forecast. Receding horizon control, where the prediction is updated every time instant

prediction inaccuracies. 

applications to building supervisory control, model predictive control allows us to incorporate the uncontrollable 

factors such asvariations in the occupancy, utility rates and weather conditions in determining optimal control 

out the study, we assume availability of forecasts for all the exogenous inputs over the prediction 

. We use the inherent robustness of the receding horizon controller to handle inaccura

The state space model given by (1) serves as the prediction model for the system as follows

�� = ���� + A|�� + 	
�� + A|�� + ���� + A|�� 
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respectively, 10 D 1 vector and 

values of <, �, =  are determined 

over suitable ranges and obtaining the DX 

, we were able to obtain quadratic 

For this case study, the quadratic representations 

box model(assumed to be the ground truth) over the whole 

 

During the modeling phase, it was observed that the DX unit was most optimal operating at its highest possible 

for any given sensible load. Further investigation revealed that the compressor power 

ption outweighed the fan power consumption almost all the time leading to the above scenario. Utilizing this 

behavior, optimizing one degree of freedom (supply temperature) becomes trivial when the other controlled 

act later when formulating a distributed optimization approach for this case 

The next section describes the formulation of the problem in the MPC framework. We define the objective function 

L PREDICTIVE CONTROL FORMULATION 

and uses this information to 

decide upon the optimal action. The optimality of the decision is highly sensitive to the accuracy of the model used 

is updated every time instant makes the predictive 

odel predictive control allows us to incorporate the uncontrollable 

in determining optimal control 

forecasts for all the exogenous inputs over the prediction 

. We use the inherent robustness of the receding horizon controller to handle inaccuracies in the 

The state space model given by (1) serves as the prediction model for the system as follows 

� (4) 
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��� + A|�� = ���� + A|��. 

 

Here, the index � + A|� is used to represent the predicted value of the corresponding vector at time � + A given the 

information at time �. Using the predicted dynamics, we can write an MPC optimal control problem for minimizing 

electrical power consumption as   

&(> F ��� + A|��ΔA
HIJ�

KLM
 (5) 

subject to   


 �� + A|�� ≤ )* ,��!,�-�
�, �� + A|�� − 
��� + A|���, A = 0, … , @- (5b) 

 


��� + A|�� ∈ P
�,� Q,  
�,��!R, A = 0, … , @-. 
 

(5c) 

The term��� + A|�� represents the predicted power consumption of the DX unit at time � + A based on information 

at time instant �. Occupant comfort is maintained by constraint (5a) on the zone temperatures in zone (. Constraints 

(5b) and (5c) reflect the equipment constraints in terms of maximum damper settings (air flow) and compressor 

limits. The integral nature of energy costsis reflected in the summation over a look ahead horizon of@-. The cost 

function is to be minimized subject to the dynamics given in equation (4) over the space of all admissible inputs 


, 
�that do not violate the imposed constraints.At time � + A the optimal control trajectoriesof sensible cooling 

�
 �� + A|��, A = 0,1, … , @-�and the supply temperature (
��A|�), A = 0,1, … , @-) are determined with only the first 

inputs of the sequences
 ��|��, 
���|��applied to the corresponding system. At time � + A + 1 the cost function 

and forecasts are updated to reflect the information available and the process is repeated. The prediction horizon 

@-is chosen to be large enough to sufficiently capture the behavior (such as periodicity) of the exogenous factors. 

We also presuppose knowledge of the state vectors ���� through the use of, e.g., Kalman filters. 

 

The optimization problem (5) can be solved, with sufficient computational power, in real time to optimize all the 

degrees of freedom (sensible cooling and supply temperatures) simultaneously. This optimization strategy is termed 

Centralized MPC as it requires a central processing unit which has access to all the information about the model. 

However, as the number of controllable variables increasesas a result of increasing look aheadhorizon or larger 

number of zones, the computational complexity of such centralized approaches increases exponentially making the 

problem infeasible to solve in real time. Hence alternative methods for optimization are necessary. If the coupling 

among zonesis small enough, each zone is effectively independent of the other and the optimization can be 

performed individually for each zone. However, for the case study proposed, the power cost is a 

coupled(quadratic)function of all the degrees of freedoms available making individual optimization suboptimal.  We 

describe a distributed optimizationbased algorithm that uses information exchange to decouple the cost function and 

takes into account the interaction among zones in the following section. 

 

 

4. DISTRIBUTED MPC FORMULATION 

 
Distributed optimization approaches have proved to be successful in large scale optimization problems. Recently, 

researchers have tried to apply distributed approaches to optimizing building system operation(Koehler & Borrelli, 

2013; Ma et al., 2011; Moroşan et al., 2010; Putta et al., 2012).Distributed approaches reduce computational 

complexity by decomposing the centralized problem into sub-problems and solving them in parallel.  

 

Noting that the cost function in (5) is coupled in terms of the degrees of freedom (quadratic with cross terms), 

parallel solution would require decomposition into separable costs. The intuitive splitting here occurs at the zone 

level with the objective of optimizing each zone’s sensible cooling 
  independently. To do this, we collect the cost 

function term containing 
  from equation (3) 


� Q�� + A� ≤ 
�, �� + A|�� ≤ 
��!�� + A�, A = 0, … , @- (5a) 
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� = 
 �S

For any given values of TU, TV, … T
Hence WX would represent a cost function corresponding to zone 

TY and the supply temperature fixed. 

yield the optimal TX directly.  However, since the optimal values of the other controllable inputs are not available

one has to resort to starting with an initial guess for 

choices are available. This implies multiple iterations of optimizing 

Performing parallel optimization of the integral cost over a look ahead horizon is complicated by the fact that the 

state trajectories are coupled as well. Optimizing 

temperature constraints requires know

are updated at every iteration, we need a mechanism of state information exchange among zones. Updating the zone 

level cost function � �⋅ |�� is followed by updating predict

The newly found optimal 
  trajectory is passed to the other zones which update their state trajectories and

their cost functions. The whole process is terminated after a sufficient n

temperature 
�  is trivial due to the fact that the DX unit is most efficient at the maximum possible supply 

temperature. Hence after each round of updates 

the current choices of ∑
 . By constraint (5b) this is equivalent to checking at least one VAV has its damper fully 

open. Figure 2 depicts the various steps of the algorithm.
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S  +  
 F S [
[
[L�…�

[\ 

 + S ,�M 
 
� + # 
 + =  

T], ^_ the summation of WX yields the total instantaneous power 

would represent a cost function corresponding to zone X if all other zones Y ` X 

and the supply temperature fixed.  In fact, if TY and ^_ are assumed to be optimal, then minimizing 

directly.  However, since the optimal values of the other controllable inputs are not available

one has to resort to starting with an initial guess for TY, Y ` X and ^_ and updating the cost function 

multiple iterations of optimizing WX in parallel with some convergence checks.

rallel optimization of the integral cost over a look ahead horizon is complicated by the fact that the 

state trajectories are coupled as well. Optimizing 
 �� + A|�� over the look ahead horizon while maintaining the 

temperature constraints requires knowledge of 
[�� + A|�� and complete state information at all zones. Since these 

are updated at every iteration, we need a mechanism of state information exchange among zones. Updating the zone 

is followed by updating predicted state trajectories followed by optimization

trajectory is passed to the other zones which update their state trajectories and

cost functions. The whole process is terminated after a sufficient number of iterations.  Updating the supply 

is trivial due to the fact that the DX unit is most efficient at the maximum possible supply 

temperature. Hence after each round of updates 
� trajectory can be chosen to be the maximum possible 

By constraint (5b) this is equivalent to checking at least one VAV has its damper fully 

Figure 2 depicts the various steps of the algorithm. 

Figure 2: Distributed MPC algorithm 
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(6) 

yields the total instantaneous power consumption W. 

 had their sensible cooling 

then minimizing WX would 

directly.  However, since the optimal values of the other controllable inputs are not available, 

and updating the cost function WX when better 

in parallel with some convergence checks. 

rallel optimization of the integral cost over a look ahead horizon is complicated by the fact that the 

over the look ahead horizon while maintaining the 

and complete state information at all zones. Since these 

are updated at every iteration, we need a mechanism of state information exchange among zones. Updating the zone 

ed state trajectories followed by optimizationfor 
 �⋅ |��. 

trajectory is passed to the other zones which update their state trajectories and optimize 

umber of iterations.  Updating the supply 

is trivial due to the fact that the DX unit is most efficient at the maximum possible supply 

trajectory can be chosen to be the maximum possible based upon 

By constraint (5b) this is equivalent to checking at least one VAV has its damper fully 
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The multiple iteration scheme presented here suffers from the lack of a theoretical convergence result. It is not 

possible to guess beforehand the number of iterations required for the optimal inputs 
  (and therefore 
E�  to 

converge. The convergence issue is amplified by the fact that we are dealing with whole trajectories. A heuristic 

would be to consider only those updates that present a decrease to the total cost function. This would require 

synchronous updates which would require the presence of a centralized manager dedicated to handling the updates.  
 

As each degree of freedom is optimized simultaneously (synchronously or asynchronously), the total time taken 

would remain the same irrespective of the number of zones (allowing for the time taken to exchange the required 

information). This makes it an attractive approach for large buildings with many zones unlike centralized MPC. 

 

 

5.SIMULATION RESULTS 
 

To compare distributed MPC to centralized MPC, both approaches weresimulated over a 1-month period in 

MATLAB on the multi-zoneB101 case study from Section 2. The discretization time step is chosen to be 1 

hour.Lack of onsite measurements required approximating the internal gainsusing a  schedule presented in Figure 3. 

These gains were split into the various zones in proportion to the floor area of the zones.Existing weather data 

(TMY2) from May  was used to calculate the solar inputs. A discretization time step of 1 hour was chosen and a 12-

day warm up period was chosen to build thermal storage in the building mass. Zone temperatures were constrained 

within 23c C and25c�  during the occupied hours (8am to 8pm) for occupant comfort. Updates were handled 

synchronously with each cost function being updated only when all the zones were able to optimize their respective 

cost functions. A maximum of 5 rounds of updates were utilized with the best result at the end of five rounds 

selected as the final solution. A fixed supply temperature (
E = 14.2�strategy with constrained zone temperatures 

was also evaluated to emulate the conventional control policy utilized in B101. All the simulations were performed 

on a 2.8 GHz quad core Intel Xeon workstation. 

 

Figure 3: Typical internal gain schedule of the case study 

 

 

 

Figures 3 and 4 present the main results for two days of the simulation. As observed before the DX unit is most 

efficient at higher supply temperatures for a given load. We observe that the centralized MPC consistently led to 

higher supply temperatures during occupied hours compared to the distributed MPC. This can be attributed to the 

premature truncation of the distributed MPC iteration leading to suboptimal results. Additionally the lower supply 

temperature of the distributed approach does not correspond to a higher load profile implying inefficient damper 

settings in the VAV boxes. Since synchronous updates were used the supply temperature was supposed to be at the 

maximum permissible level. This is not the case however due to the different distribution of loads amongst the 

zones. All these factors lead to a performance deficit of 7 percentage pointswith distributed MPC as compared to 

centralized MPC in terms of energy consumption as seen in Table 1. However, the computational time of the 
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distributed MPC is less than half of that of the centralized MPC for the same case study. It must be noted that both 

the MPC strategies still resulted in savings (10.8% for centralized and 4% for distributed MPC) when compared to 

the conventional fixed supply temperature strategy used in the building.The magnitude of savings is expected to 

grow in larger buildings with more degrees of freedom making MPC strategies attractive. Even though in the current 

case study there is a significantperformance loss, distributed MPC is still a worthwhile approach for larger buildings 

where centralized MPC might not be even feasible in real time. 

 

 

 
 

Figure 3: Comparison of centralized and distributed MPC approaches- Supply temperature profile 

 
Figure 4: Comparison of centralized and distributed MPC approaches- Cooling load profile 
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Control Strategy 
30 day energy 

consumption 

Computational time 

per decision 
Savings 

Centralized MPC 10183 kWh 20 sec average 10.8 % 

Distributed MPC 10972 kWh 8 sec average 3.9 % 

Conventional Fixed 

Supply temperature 

control 

11428 kWh Realtime Baseline 

 

Table 1: Comparison of centralized and distributed MPC approaches 

 

 

6. CONCLUSIONS 

 
A distributed approach to optimal HVAC operation is presented. By exchanging information between independent 

model predictive controllers, a computationally complex problem can be solved simultaneously in real-time. 

Distributed MPC is particularly attractive in large buildings where centralized approaches are limited by 

computational time. Future directions include alternate formulations to decrease the performance lossincurred and 

applying distributed MPC in a multi-agent system framework. 
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