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ABSTRACT 
 
In the context of indoor building temperature regulation, a controller calculates the inputs for the HVAC system that 
result in appropriate thermal comfort conditions. Additionally, if electricity prices are time dependent, these control 
actions will also impact economic expenditures. To improve economic performance, Thermal Energy Storage (TES) 
is typically used in conjunction with HVAC to time-shift chiller cooling loads to times of low energy price. The 
method of Economic Model Predictive Control (EMPC) has been demonstrated to effectively reduce expenditures. 
Since TES and chiller sizes have a direct impact on achievable operational savings, an economic analysis 
considering the investment costs associated with these equipments is necessary. This work presents a novel 
algorithm intended to optimally select equipment sizes based on Net Present Value analysis and utilizing the 
recently developed methods of Economic Linear Optimal Control (ELOC) and constrained ELOC. Implementation 
of the numeric optimization is illustrated with a case study.  
 

1. BACKGROUND 
 
Typical smart grid policies provide economic incentives as well as surcharges aimed to regulate electricity 
consumption (Farhangi, 2010; Ipakchi and Albuyeh, 2009). Common policies that exemplify this behavior are real 
time pricing (RTP) and Time of Use (TOU) scenarios (Walawalkar et al., 2010). When electricity demand is 
dominant, prices tend to increase and when supply is abundant, to decrease. A direct effect of these methodologies 
on building thermal comfort regulation is that operating costs from HVAC equipment tend to be higher at the hottest 
times of a day. This is because in summertime weather conditions, electricity demand and electricity costs exhibit 
strong correlations (Ercot, 2012; NCDC, 2012). To de-correlate time of electricity consumption from weather 
conditions, Thermal Energy Storage (TES) can be utilized (Henze et al., 2003). TES typically relies on a cooling 
media. Ice, chilled water and phase change materials (PCM) are common examples. The energy stored, using TES at 
times low electricity prices, can then be recovered when electricity prices are at their peak. However, this additional 
equipment has an associated investment, maintenance and operational costs (Chen et al., 2009). Hence, the question 
that comes to mind is: “Does the reduction in expenditure offset the cost of additional hardware?” Consequently, 
adequate quantitative methods for equipment sizing and optimization are required. Despite this evident need, 
optimization based equipment sizing methods appear to be lacking in the literature, especially when compared to the 
wealth of propositions available for equipment control. Thus, this work is specifically devoted to the development of 
an algorithm to optimally select equipment sizes based on Net Present Value analysis and in the closed-loop context 
of Economic Model Predictive Control (EMPC).  
 
1.1 Case Study Description 
Figure 1 (left) depicts the thermal interactions between a typical building, chiller and the active TES unit. The TES 
unit adds a degree of freedom by allowing for independent manipulation of heat flow to the chiller, Qc, and heat 
flow from the room, Qr. Energy in the TES unit, Es, is the time integral of storage heat flow, Qs. Figure 1 (right) 
depicts the basic building configuration to be used. The state space model is: GpBmAss ++=& , mDsDq ux += , 
where s is the state vector, m is the vector of manipulated variables, p is the disturbance and q indicates the point-
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wise-in-time restrictions: , where  maxmin )( qtqq ≤≤ [ ]TsETTTTs 2112110= [ ]TeCTp 3= [ ]Tcs QQm =  

 and [ ]Tcrs QQETq 0= [ ]TcQ max
rQ max

sETq maxmax
0

max = [ ]Tc
min

rs QQ minminETq min
0

min = . Further 
details on the building model can be found in Mendoza-Serrano (2013) and Mendoza-Serrano and Chmielewski 
(2012a, 2012b and 2014).  
 

  
Figure 1: Left: Process diagram for HVAC system with TES. Right: Description of building zones 

 

 
Figure 2: Outside temperature and electricity prices for July 2012 in Houston, TX (Ercot, 2012; NCDC, 2012) 

 
1.2 Economic MPC for Building HVAC with TES 
To implement a predictive type controller, the continuous-time model must be first converted to the following 
discrete-time predictive form (sample period Δts = 1 hour). The time index i represents actual time and k is 
predictive time.  
 ikdiksiksik pGmBsAs ++=+1  (1) 

 ikuikxik mDsDq +=  (2) 

 maxmin qqq ik ≤≤  (3)  

The historic data of Figure 2 is used for the outside temperature, T3, and electricity price, Ce. As expected the cost of 
electricity has a clear correlation with outside temperature, due to the increases in power demand during the hottest 
hours of a summer day. The cost of operating the chiller at time i is given by sicie tPC Δ,, , where is the electric 
power to the chiller and 

icP ,

icic QP ,, η= ,  Te MWMW /3.0=η . Thus, the EMPC problem to be solved at each time i is: 
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 (4) 

 
Then, given the solution to problem (4) the actual manipulation sent to the process is first value of the predicted 
manipulation: mi = mi|i. Figure 3 illustrates the closed-loop implementation of EMPC with three TES size 
assumptions. In the case of no TES the cost of operation for the 28 days is $759. If given a storage unit with a 
capacity of 3.0 MWThr, the operating cost is reduced by 39% to $464. If the capacity is 1.5 MWThr, then the 
operating cost is $521, a reduction of only 31%. The left plot of Figure 3 clearly illustrates the time-shift in that heat 
to the chiller (proportional to power consumption) is greatest when outside temperature and electricity prices are 
low. The controller of the right plot attempts to do the same, but is frustrated by the smaller size of the TES. 
Specifically, when the storage limits are encountered the chiller must go back to operation similar to the no TES 
case. It is finally noted that there appears to be a nonlinear relationship between TES size and operating cost savings.  
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Figure 3: Closed-loop EMPC simulations. Dashed – no TES, Solid left – 3.0MWThr of TES, Solid right – 

1.5MWThr of TES. All with an EMPC prediction horizon of 24hrs 
 

1.3 Equipment Sizing Framework and Challenges 
The goal of the sizing algorithm is to maximize net present value  
 
 NPV = - PVf R - CapCosts (5) 
 
In this work, we assume the capital cost of a chiller, with maximum power capacity of Pc

max, is ccPc
max. Similarly, 

the purchase cost of a TES unit with maximum storage capacity of Es
min, is assumed to be csEs

min (where cs < 0 due 
to the sign convention of Es

min < 0). As in earlier sections, the instantaneous expenditure (in $/hr) is given by R = 
CePc. Thus, the average expenditure (also in $/hr) is  

 ∑
=

≈=
M

i
iciece PC

M
PCER

0
,,

1][  (6) 

where M is the total number of periods in the evaluation. For example, if the evaluation is over one month, then M = 
24x28. It is also noted that are the actual or realization values of the evaluation, which are different than 
the predicted values of (4) used to solve the EMPC problem. Finally, the present value factor is defined as (where ri 
is the annual interest rate and n is the project horizon in years): 

icie PC ,,  and 
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One approach to the equipment sizing problem is to run several EMPC simulations with various equipment sizes and 
manually select those with the largest NPV. Similarly, one could use the EMPC simulations within a simple gradient 
search algorithm (see Figure 4, left). Specifically, a simulation will be run using EMPC in closed-loop and based on 
the chiller and TES sizes provided by the gradient search block. The resulting evaluation of average expenditure is 
then sent to the gradient search algorithm, which decides on a new set of equipment sizes to evaluate until no more 
improvements to NPV can be found.  
 
Despite the intuitive nature of this approach, several issues are clearly evident. The first issue is the selection of 
initial point for the gradient search. The second is issue is the lack of a guarantee of global optimality for such an 
algorithm. The third concerns the scenario of a postulated equipment size being such that cooling needs of the 
building cannot be satisfied (or EMPC is not successful in satisfying those needs). Finally, there is the concern of 
each EMPC based evaluation of average expenditure requiring too much computational effort. To the last point it is 
noted that computation time of the 28 day simulations of the previous sub-section took approximately 1.4 hours 
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each. One approach to reduce computational effort is to reduce the EMPC prediction horizon. For example, 
changing the horizon from 24 hrs to 3 hrs, will bring the 28 day simulation time down to just 6.7 seconds. However, 
much of the operating cost savings will be lost (for the 1.5 MWThr case the savings drops from 31% to only 14%). 
This lack of performance is denoted as inventory creep (Lima et al., 2011) as illustrated in the right plot of Figure 4. 
Specifically, the short horizon of EMPC causes it to use up all stored energy for short term gain as it is not aware of 
the value of storing energy for future use. It thinks there is no future beyond its prediction horizon. Mitigation (or 
avoidance) of these issues will be facilitated by the newly developed method of Economic Linear Optimal Control 
(ELOC) described next.   
 

        
Figure 4: Left – Illustration of the gradient search algorithm. Right – Illustration of inventory creep. 

 
 

       
Figure 5: Left – Application of ELOC (solid) and EMPC (dashed) policies. Right – Application of Constrained 

ELOC (solid) and EMPC (dashed) policies, both with a 24 hour prediction horizon.   
 
 

2. ECONOMIC LINEAR OPTIMAL CONTROL 
 
The objective of Economic Linear Optimal Control (ELOC) is to develop a linear controller that approximates the 
economic motives of a large horizon EMPC. For background information regarding the development of this 
methodology, the reader is encouraged to review Peng et al. (2005), Mendoza-Serrano and Chmielewski (2012b), 
and Omell and Chmielewski (2013 and 2014). For the sake of brevity, only the general aspects and results are 
presented in this work. As such, we begin by discussing the main differences between EMPC and ELOC. First, 
ELOC is such that inequality constraints are enforced statistically. This means that the control limits can be violated 
as long as each variable of interest remains within the probabilistic allowances given in the formulation. 
Additionally, ELOC incorporates the disturbance model as part of the formulation. This provides it with knowledge 
of the oscillating nature of the disturbance variables, which is essential for making control decisions. The result of 
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applying ELOC to the HVAC building example are given in Figure 5 (left), where the electricity price is assumed to 
have a variance ΣCe = (7.175 $/MWhr)2 and eC  = 24.8 $/MWhr. Clearly, the actions of the ELOC are similar to 
those of EMPC. It is additionally noted that the optimization problem used to determine the ELOC policy, while not 
convex is easily solved to its global optimum. This particular feature will be exploited when we return to the 
equipment sizing problem.  
 
Of course, the ELOC policy cannot be implemented due to its inability to enforce point-wise-in-time constraints. 
Toward the enforcement of these point-wise-in-time constraints the linear feedback from the ELOC is converted to 
the form of a predictive controller by implementing inverse optimality (Chmielewski and Manthanwar, 2004). Once 
in predictive form, one can simply impose point-wise-in-time constraints to the predicted trajectories (Mendoza-
Serrano and Chmielewski, 2012b; Mendoza-Serrano, 2013). Figure 5 (right) compares the Constrained ELOC 
trajectory with that of the EMPC and illustrates the enforcement of point-wise-in-time constraints. It is additionally 
noted that the plots of Figure 5 were made under the assumption of Zero Future Information (ZFI) with regard to 
disturbance measurements and relied heavily upon the disturbance model for disturbance forecasting. This is in 
contrast to the plots of Figures 3 and 4 that assumed Full Future Information (FFI) with regard to the disturbances. 
For details concerning disturbance models and the impact of forecasting methods, please see Mendoza-Serrano 
(2013) and Mendoza-Serrano and Chmielewski (2014). The primary advantage of the Constrained ELOC policy 
stems from its virtual insensitivity to horizon size. Table 1 illustrates that Constrained ELOC with a horizon of 2 
yields a massive reduction in computational effort with only a minor sacrifice in economic performance as 
compared to the ZFI EMPC.  
 

Table 1: Computational Efficiency of Constrained ELOC   
 Computational 

Time (sec) 
Computational 
Reduction (%) 

 Expenditure 
($/28days) 

Expenditure 
Reduction (%) 

EMPC  FFI with No TES - -  759 - 
EMPC  FFI with N=24 hrs 13,321 -  521 31.4% 
EMPC  ZFI with N=24 hrs - -  556 26.7% 
EMPC  ZFI with N=2 hrs 6 99.95%  674 11.2% 
Constrained ELOC  ZFI N=2 hrs 4 99.97%  562 26.0% 

 
 

 
Figure 6: Proposed solution method for equipment sizing problem. 

 
 

3. EQUIPMENT SIZING IMPLEMENTATION 
 
Returning to the equipment sizing problem, the computationally burdensome EMPC policy can now be replace by 
one of two possible surrogate policies – the ELOC and the Constrained ELOC. As we will see, the computational 
efficiency of each of these surrogates will enable a computationally tractable search over the equipment size 
variables. Figure 6 depicts the proposed procedure. The first step extends the ELOC optimization problem to one in 
which the ELOC policy and equipment size parameters are determined simultaneously. Then, this initial guess with 
regard to equipment size parameters is refined in the context of point-wise-in-time constraints using a gradient 
search based on the Constrained ELOC policy.  
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A central component of ELOC design problem is the constraint on the statistics of the process. In the HVAC 
problem these will manifest as the closed-loop standard deviation of power to the chiller must be less than one half 
of the maximum (or rated) power to the chiller: . Similarly, operation of the storage would have a 

constraint such as: . It is then easily concluded that converting and from parameters 
to variables of the ELOC optimization problem will add virtually nothing to the computational complexity of the 
problem since each appears only linearly within the constraints. To complete the extension, the ELOC objective 
function will need to be replaced by one similar to Equation 5, where 

2/max
cP P

c
<σ

2/min
SE E

S
−<σ max

cP min
SE

R is the original ELOC objective function and 
the capital cost terms will need to be functions of and . In the current work, it is assumed that these 
functions are simple proportionality relations. In this case, computational complexity of the extended ELOC 
optimization will not be impacted. However, if the capital cost expressions are non-convex (which is expected to be 
the case in reality) then an efficient global search procedure will be required. One such approach can be found in 
Omell (2013).  

max
cP SE min

 
To illustrate the ELOC based equipment sizing method assume the parameters of Equation 7 are ri = 7% and n = 30 
yrs. In addition, assume the capital costs are , where maxmin

ccSS PcEc + =cc $500/kWe and -$28.4/kWThr. In 
this case, the ELOC based method determines that the optimal configuration is one without any TES, and as 
indicated in the left plot of Figure 7, selects an ELOC policy that runs the system as such. If the cost of storage is 
reduced to -$14.2/kWThr, then it concludes that the optimal storage unit size is -604.7 kWThr and the chiller 
size can be reduced a bit to 38.7 kWe. The center plot of Figure 7 indicates the closed-loop behavior under the 
corresponding ELOC policy. If the cost of storage is drastically reduced to 

=Sc

=Sc

=Sc -$2.8/kWThr, then the ELOC based 
search concludes that the storage unit should be used compensate for changes in outside temperature while the 
chiller is run virtually at steady-state. It should be noted that in all three cases the resulting ELOC policy does not 
attempt to use the TES to time shift energy purchases. For this to be the case, either the chiller capital costs would 
need to be much lower or the expected variability in electricity price would need to be much higher. See Mendoza-
Serrano and Chmielewski (2012a) for additional details.  
 

 
Figure 7: Closed-loop ELOC trajectories and equipment sizes resulting from the ELOC based search.  

Left – -$28.4/kWThr. Center –=Sc =Sc -$14.2/kWThr. Right – =Sc -$2.8/kWThr. 
 
From the plots of Figure 7 it is clear that the point-wise-in-time constraints are not being observed. Thus, the second 
step of the procedure of Figure 6 is to perform a gradient search based on the Constrained ELOC, which will enforce 
these point-wise-in-time constraints. Given the solution determined by the ELOC based search, this gradient search 
will have a reasonable starting point with regard to the equipment sizes as well as have the ELOC parameters 
required to construct the Constrained ELOC policy. Furthermore, due to the computational speed of the Constrained 
ELOC this gradient search will be computationally tractable. It should be emphasized that we make no claim of a 
global solution resulting from this gradient search. We do, however, note that global solution resulting from the 
ELOC based search (which is flawed in the sense that point-wise-in-time constraints are not enforced) increases the 
likelihood of having a starting point close to the true global solution.  
 
As an illustration, consider the case of =Sc -$14.2/kWThr, which provided a solution of Es

min = -604.7 kWThr and 
Pc

max = 38.7 kWe. Using the ELOC feedback of that solution the constrained ELOC was constructed, and as an aid to 
the reader the contour plot of Figure 8 (left) was constructed by calculating the NPV at each point of the search 
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space. Then using the equipment sizes determined from the ELOC based search as a starting point, the gradient 
search was implemented as illustrated in the right plot of Figure 8.  
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Figure 8: Illustration of the Constrained ELOC based gradient search  

 
The one remaining computational issue concerns the proper evaluation of NPV when the postulated equipment sizes 
cannot meet the process constraints. In the HVAC context, the problem is most likely to occur when the chiller is 
under sized. In this case, there may be as set of weather conditions such that the cooling load is sufficiently large and 
the system is unable to satisfy the comfort constraints, specifically room temperature less than 25C. If this is the 
case, then that particular chiller size should be deemed infeasible. The difficulty stems from the fact that the 
boundary between feasibility and infeasibility can only be determined numerically and in the HVAC case will also 
be a function of postulated TES size. One way to look at this question of infeasibility is to set the NPV of such a 
point equal to infinity, which would bar that point from being a solution. However, in the context of a gradient 
search algorithm, such an approach will leave the algorithm at a loss for the next search point, since no gradient will 
exist at that point. An alternative is to reformulate the Constrained ELOC problem using soft constraints (Zheng and 
Morari, 1995). This will allow for violations of the comfort constraints, but only when the policy has no other 
alternative. Then, during the Constrained ELOC simulations, one could keep track of the size and duration of the 
constraint violations. In the results to follow we computed the integral of the violations to determine an area 
associated with the violations. Then, this area was multiplied by a penalization factor, p, and then added to the NPV 
calculated by the simulation.  
 

 
Figure 9: Cross sectional view of Pc

max with penalization factors. 
 

Table 2: Equipment sizing gradient search trajectory 
Penalty Es

min  (kWThr) Pc
max  (kWe) 

 -604.7 38.7 
1 -845.0 25.6 
1e1 -1105.1 48.9 
1e2 -1295.9 46.8 
1e3 -1098.5 49.9 
1e4 -1098.5 49.9 

 
The plots of Figure 8 actually used this approach with a penalization factor p = 1. The left plot of Figure 9 shows a 
slice of the contour plot through the fifth point of Figure 8, indicated by the star at Pc

max = 25.6 kWe. Then, the entire 
gradient search is repeated, using this point and the initial, but with p = 10. The result is a new solution at the point 
Pc

max = 48.9 kWe. Further increases of the penalization factor are depicted in the right plot of Figure 9. Notice that for 
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large penalization factors the NPV quickly approaches infinity for Pc
max values smaller than 49.9 kWe. If one were to 

have started the gradient search with these large penalization factors, then the gradient search would certainly have 
found it difficult to converge. Table 2 indicates the progression of the gradient search iterations.   
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