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ABSTRACT 
 

This paper presents the implementation and experimental demonstration results of a practically effective and 

computationally efficient model predictive control (MPC) algorithm used to optimize the energy use of the heating, 

ventilation, and air-conditioning (HVAC) system in a multi-zone medium-sized commercial building. Advanced 

building control technologies are key enablers for intelligent operations of future buildings, however, adopting these 

technologies are quite difficult in practice mainly due to the cost-sensitive nature of the building industry. This paper 

presents the results of implementing optimization-based control algorithm and demonstrates the effectiveness of its 

energy-saving feature and improved thermal comfort along with lessons-learned. The performance of the 

implemented MPC algorithm was estimated relative to baseline days (heuristic-based control) with similar outdoor 

air temperature patterns during the cooling and shoulder seasons (September to November, 2013), and it was 

concluded that MPC reduced the total electrical energy consumption by more than 20% on average while improving 

thermal comfort in terms of temperature and maintaining similar zone CO2 levels. 

Keywords: Model Predictive Control, Energy Efficient Buildings, Experimental Demonstration    

 

1. INTRODUCTION 
 

Commercial and residential buildings together account for 40 quads (41%) of primary energy consumption in the 

United States (DOE 2010). Improved building energy efficiency can directly result in significant reduction of energy 

consumption, carbon emission, and utility expenses. Among the efforts to address this issue, advanced building 

control has shown efficiency improvements through better coordination of various HVAC components, adaption to 

environmental changes and elimination of human errors. Current building controls are typically based on a 

decentralized architecture.  For example, the air handling unit (AHU) has its own control mission to satisfy supply 

air temperature setpoint and variable air volume (VAV) units are controlled to meet their flow setpoints to maintain 

zone temperature. Advanced building controls such as optimization-based control, however, tends to bridge the 

subsystem operation together and leverage the trade-offs between HVAC components (Brambley et al., 2005, 

Katipamula et al., 2012).  

 

One candidate of advanced control methodologies is Model Predictive Control (MPC). Since its inception, MPC has 

been deeply rooted in control practices and has borne fruit in areas such as process control, motion control and many 

more. For a detailed survey one is referred to Qin and Badgwell (2003). Thanks to its proven benefits such as 

prediction and constraint management, MPC has been studied by the HVAC community with a number of 

experimental results including optimizing building operation with a large water storage tank (Ma et al. 2009), 

optimizing low-lift chiller for thermo-active building systems (Gayeski, 2010), optimizing building heating systems 

(Siroký et al., 2011), optimization of conventional HVAC systems in a full-scale building (Narayanan, 2011; 

Bengea et al., 2014),  multi-objective optimization scheme for commercial offices (West et al., 2014), and radiant 

cooled building (May-Ostendorp et al. 2013).  
 

This work focused on demonstrating control strategy development, model calibration & validation, algorithm 

deployment, and benefit analysis. Building on the simulation work (Li et al., 2012) published previously, this work 

demonstrates MPC performance in a real-life medium-sized commercial building. The MPC algorithm is also 

tailored to accommodate some practical considerations.   

mailto:lip1@utrc.utc.com
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The paper is organized as follows. Part 2 will introduce the demonstration building at Philadelphia Navy Shipyard. 

The implementation details of MPC algorithm will be presented in Part 3 and followed by MPC performance 

evaluation against baseline in Part 4.  

2. BUILDING 101 AT PHILADELPHIA NAVY YARD 

The demonstration building is a medium-sized commercial building (Building 101) located at the Philadelphia Navy 

Shipyard. The gross area of the building is 75,156 ft
2
 with 65,214 ft

2
 of conditioned space. Its HVAC system 

consists of three air handling units (AHUs) with each one connected to multiple VAV boxes (w. reheat coils). The 

building has been post retrofitted since the beginning of 2013 with a new building management system (BMS) from 

Automated Logic (ALC) and can be monitored remotely through its WebCTRL interface. Each AHU’s cooling is 

provided by a direct expansion (DX) system with an outdoor condensing unit. This work focuses on the optimal 

control of AHU3 and its associated VAV boxes. AHU3 serves the north wing of the building which includes 10 

zones (10 VAVs) spanning three floors.  

  

Figure 1: WebCTRL view of Building 101 zones 

 

To facilitate the control override implementation, we modified the WebCTRL interface to allow for real-time 

monitoring and contingency human intervention should zone comfort violations or out-of-range operating points 

occur. As shown in Figure 2, the MPC algorithm is implemented in AMPL with an interface to the optimization 

solver IPOPT. MATLAB is used as an interface tool connecting AMPL, IPOPT and WebCTRL. The algorithm is 

implemented and executed remotely. It acquires real-time sensor readings and historical data points and, after 

computing optimal control inputs, writes the control setpoints back to WebCTRL, which in turn drives the 

corresponding equipment towards the desired setpoints.  

AHU3 AHU3
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Figure 2: Framework of advanced building control architecture design and implementation 

 

The energy-consuming components considered are the condensing unit (dual compressors with up to 6 stages total) 

in the DX system and the AHU supply fan. The implemented MPC algorithm uses weather forecast, predictions of 

zone temperature, and energy models to minimize energy consumption for AHU3 while maintaining occupants’ 

comfort. There was no heating request during our demonstration period given the current building operating 

conditions and thus VAV reheat coils remained off. 

3. MPC ALGORITHM DEVELOPMENT AND IMPLEMENTATION 

In this section, we present details of the MPC algorithm development and implementation in Building 101. The 

details about model identification and calibration, algorithm architecture and implementation will be given as 

follows. 

a. Building Thermal Zone and HVAC Models 
To enable MPC design we first developed control-oriented mathematical models that could capture building zone 

temperature dynamics (comfort), heat transfer, and the power consumption of HVAC equipment (energy). For 

building supervisory control it is well established that a clear time-scale separation exists: while the time constants 

of the zone temperatures range from ~15 minutes to 1 hour (mainly depending on the size of the zone) due to the 

nature of underlying physical processes (convection, mixing), temperature changes are much faster inside DX coils, 

heating coils, and electric fans. Therefore, we can adopt quasi-steady-state modeling approach to describe most 

HVAC equipment like DX coils, heating coils, mixing boxes, and electric fans and use dynamic models to capture 

the dominating zone temperature transients. The following two subsections are devoted to describing dynamic zone 

and steady-state HVAC equipment models respectively.  

 

i. System Identification of Models of Thermal Zones 

In this section we present identification of linear parametric models for thermal zones of Building 101. System 

identification is a commonly used systematic procedure to build mathematical models of dynamic systems from 

experimental input-output data. A complete procedure involves identification experiments (functional tests), data 

pre-processing, selection of the model structure and estimation of model parameters, and validation of the model 

predictions on a different data set. The above three parts will be elaborated respectively. 

 Functional test: The purpose of the functional test is to inject excitation signals into the system and collect the 

resulting output signals, which reveal the key dynamical properties of the system. In our test, for each VAV 

box, we applied Pseudo Random Binary Sequence (PRBS) signals for VAV flow setpoints to excite the zone 

thermal dynamics.  

 Data pre-processing: Data is smoothed out using low-pass filter to eliminate high-frequency noise.    

 Model structure and parameter identification: 

Among several candidates for the zone thermal dynamics such as ARX (Autoregressive model with eXogenous 

input), ARMAX (Autoregressive–moving-average model with eXogenous inputs), BJ (Box-Jenkins), OE 

(Output-Error), and state-space models (Ljung, 1999) we choose the following state-space model form (Li et 

al., 2013): 

 (   )    ( )    ( )      ( )                    (1)  

                                                                     

        ( )    ( )    ( )                                                                     (2) 
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where k is the current time step,  ̂  is the state vector,  ( )  (    ( )
 ̇  ( )

)   is the input vector; 

    and   ̇    represent VAV supply air temperature and supply air flow rate respectively;    is the zone 

temperature;  A, B, C, D are system matrices. The convective coupling between zones was not considered in the 

current state-space models i.e. each zone is treated as an individual entity. We assume the disturbance term   is 

from the outdoor air temperature (   ) only for simplicity.  

 

The chosen model and the collected data were then used by the subspace identification algorithm to obtain system 

matrices. MATLAB system identification toolbox (Juditsky, 2007) was chosen as the main computational platform. 

The models were validated against the operational data as shown in Figure 3. One can clearly observe that the model 

agrees with the data well in the context of predictive controller design for temperature control in office buildings. 

  
(a) Model validation results of zone 5                          (b) Model validation results of zone 6 

Figure 3: Selected zone model validation results 

3.1.2 HVAC Equipment Models: 

Table 1 summarizes the HVAC equipment models used in the MPC algorithm. For simplicity and computational 

efficiency, a polynomial model was developed to capture the compressors’ power consumption of the direct 

expansion (DX) system. The limitation of our current DX energy prediction model lies in the fact that mixing 

humidity (inlet to AHU’s evaporator coil) is not explicitly considered but is indirectly incorporated into the model 

coefficients. This modeling approach will not be valid if the AHU mixing humidity ratio changes significantly, 

which is not the case for the operation of this building. Future work is underway to address humidity (latent heat 

transfer) explicitly in our control-oriented model. Details about model calibration and validation for each component 

are omitted due to space limitations. 

Table 1: HVAC Equipment Models 

 

HVAC Subsystems Assumptions & Notations Equations 

Outdoor air fraction 

and mixed-air 

temperature 

Steady-state model as a function of outdoor 

air damper 

   : outdoor damper position 

    : mixed air temperature 

   : outdoor temperature 

   : return air temperature 

       : model coefficients 

                    

            (     )    

DX system model 

(compressor power) 

Steady-state model as a function of air mass 

flow rate, mixed air and discharge air 

temperatures 

   : power consumption 

   : discharge air temperature 

           : model coefficients 

                   

              
    ̇   

            

AHU supply air flow 

rate 

Steady-state model of air flow leakage in the 

supply ducts to zone VAVs 

 ̇   
   ̇VAVi air  mass flow 

 ̇    ∑   ̇   
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      Number of VAV boxes 

     model coefficients 

Electrical power of 

supply fan 

Steady-state model as a function of supplied 

air flow 

    : AHU fan power consumption 

           : model coefficients 

         ̇  
     ̇  

      ̇  

    
 

Thermal power of 

VAV reheat coils 

Steady-state model as a function of mass air 

flow rate, inlet and discharge air temperatures 

   
   : AHU discharge air temperature 

        : outlet air temperature 

     : dry air specific heat 

   : specific heat of water 

 ̇  
   supply air mass flow of i

th
 VAV box  

   : VAV reheat coil inlet water temperature 

       
   thermal power of i

th
 VAV reheat coil 

        : model coefficients 

            
    

         

    ̇  
   

    
   

       
    ̇  

    (   
     

   ) 

 

 

3.2 State Estimation: Kalman Filter  
 

At each time step of the MPC algorithm, a state estimation algorithm is needed to obtain an initial estimation of zone 

temperature prior to predictions over a fixed time horizon. Following the simulation-based MPC study conducted 

previously in Li et al. (2013), a Luenberger observer was initially adopted for this purpose. However, it has been 

observed from operational data that the Luenberger observer tends to over-estimate, hence it often leads to false 

“comfort violation” prediction when the zone temperature is very close to the upper bound but still inside the 

comfort band. To account for this, a Kalman filter is adopted for more accurate state estimation.   

 

The Kalman Filter is implemented following its standard form (Kailath, 2000): 

 

1. A-priori state estimate :   ̂         ̂             

2. A-priori error covariance :          (   )  +Q 

3. A-priori output estimation error:    ̃( )    ( )     ̂      

4. Residual covariance:             
     

5. Optimal Kalman gain:           
   

   

6. A-posteriori  state estimation:    ̂( )   ̂          ̃ ( ) 

7. A-posteriori  estimation error covariance :  ( )  (     )       

The state estimation  ̂( ) is used in MPC algorithm.  

 

3.3 MPC Problem Formulation  

Figure 4 shows the block diagram for the signal flows among major components of the BMS interface, Kalman 

Filter state estimator, and MPC controller.   ( )  and  ̂ ( ) stand for the real-time and estimated temperature 

measurement for each zone, respectively.  ̂( ) stands for the state-estimation obtained from Kalman Filter, which 

has been introduced above. The MPC algorithm calculates the optimal control input vector   ( ) as control 

setpoins. The control setpoints are updated every three minutes and the prediction horizon is set to two hours. 

Building 101

BMS
Kalman Filter MPC

( )zT k ˆ( )x k z z
ˆ ˆ( ) ... ( 1)T k T k N 

*( )u k

 
Figure 4: Schematic of MPC controller interacted with building BMS via state estimation 
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In this section we describe the MPC algorithm implemented as shown in Figure 5. In particular, we present the 

details of the constraints on decision variables and the optimality criterion (the cost).  

 
Figure 5: Schematic of interactions of AHU, VAVs, zones with the proposed MPC controller 

 

The following presents the problem formulation of our proposed MPC algorithm. At each discrete time step  , the 

following constrained finite-time  -step optimal control problem is solved:    

         
 
∑   

   
   ( ̂         

          )                                               (3) 

 

          ̂(   )    ̂( )    ( )      ( )     (4) 

 

  ( )    ̂( )    ( )                   (5) 

 

(     
     )                                                                        (6) 

where Equation (4-6) represent the extended version of the system of equations for all zones and bold symbols 

represent the corresponding vector and system matrices. The stage cost   ( ) in equation (3) consists of three 

components: 

 

  ( ̂          
          )    

   
(          

     )    
      (     

 )    
 (         

 )                 (7) 

 

The first term   

   (          
) reflects the primary objective of the control algorithm to minimize the overall power 

consumption needed for cooling the air in the thermal zones, which contains the supply fan power, the compressor 

power from DX unit, and VAV reheat coil heat transfer rate. This cost function term is scaled to represent primary 

energy source consumption. The control input rate is penalized by: 

 

    
 (         

 )   ∑ |               |
 
                                               (8) 

 

where     
  (               ) and the weighting factor     can be adjusted as needed. 

 

The second term of the stage cost   
      ( ) is a penalty term for the violation of bounds on zone temperature (  ). 

Instead of strictly enforcing a constraint such as       
      

    , we introduce a “slack” variable    (  
   ) and 

the following constraints were formulated:  

     
         

                                                            (10) 

AHU

VAVi

ZONEi

MPC 

(AHU+VAVs)
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Violations of constraints on the    are penalized by augmenting the stage cost with a quadratic term:  

  
        

 
                                                                           (11) 

where   > 0 is a tuning parameter. The convex set      is determined by the operating range of temperature and air 

flow rate. Note that the VAV reheat coils were not turned on during the demonstration period given the current 

building operation conditions which leads to        
 . 

 

4. EXPERIMENT RESULT AND PRELIMINARY PERFORMANCE ANALYSIS 

 
The MPC testing period was conducted from September through November 2013. The algorithm was executed 

alternately with the baseline algorithm (currently implemented as part of the BMS) in order to generate sufficient 

data for performance comparison. This demonstration plan was chosen to mitigate the lack of sufficient baseline 

data caused by the AHU’s DX coil operation with an inadequate refrigerant level until June 2013.  

 

To evaluate the performance of the implemented MPC algorithm, preliminary analysis and comparison were 

conducted based on identifying similar outdoor air temperature (OAT) profile patterns between a selected MPC day 

and available baseline days. Ideally, more consideration such as outdoor air relative humidity (RH) and internal load 

should be given when selecting similar days to compare. However, due to limited number of available baselines due 

to the challenges mentioned above we decided to use outdoor temperature as the only selection criteria. Future work 

will be conducted to include other factors when more baseline data could be collected.  Further work will also 

investigate the use of statistical comparisons with larger data-sets. 

 

Figure 6 shows an example MPC day versus baseline day selected based on the similarity of OAT pattern 

(comparing computed correlation coefficient and mean temperature differences). 

 
Figure 6: Comparison of outdoor air temperature pattern between baseline and MPC day 

 

Figure 7 shows the comparisons of zone temperature between an example MPC day (09/13/2013) and the 

corresponding heuristic-based baseline day (06/13/2013). It can be observed that MPC controlled the temperature of 

all zones tightly around the upper comfort bound (75ºF) and thus yielded better thermal comfort relative to the post-

BMS-retrofit heuristic-based control baseline. 
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Figure 7: Comparisons of zone temperature between an example MPC day and heuristic-based baseline day. 

 
As can be seen from Figure 8, MPC algorithm consumed less compressor power as a result of commanding a higher 

average supply air temperature setpoint. However, to maintain the zone temperature around the upper comfort 

bound, some zones require higher flow setpoints and thus resulted in overall higher average fan power.  

09:00 12:00 15:00

70

72

74

76

78
Zone Temp. (Heuristic-Based Baseline)

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

09:00 12:00 15:00

70

72

74

76

78 Zone Temp. (MPC)

Time (occupied hours)

ºF
ºF

Cooling Setpoint

Heating Setpoint

Heating Setpoint

Cooling Setpoint



 

3617, Page 9 
 

3
rd

 International High Performance Buildings Conference at Purdue, July 14-17, 2014 

 
Figure 8: Comparisons of DX compressor power, fan power and total power between an example MPC day and 

heuristic-based baseline day. 

 

 
Figure 9: Energy savings obtained from 20 MPC test days (OAT-based comparison) 

 

Figure 9 shows the MPC perfromance evaluation (energy consumption reductions) over 20 MPC test days by 

comparing each MPC test day with a correponsding baseline day selected based on similar OAT patterns.  For the 

20 MPC test days executed the average HVAC energy savings was 33% with 75% of test days exceeding energy 

savings of 20%. 
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5. CONCLUSIONS 

In this study, functional tests were performed on AHU and VAV multi-zone system for system identification to 

extract control-oriented dynamic zone models and HVAC equipment models. In particular, low-order state-space 

models were identified from the designed input-output responses of thermal zones with disturbances from outdoor 

air conditions. The HVAC models were treated as quasi-steady-state with coefficients extracted from functional test 

data. A receding-horizon scheme was then designed and utilized the identified state-space models to predict the zone 

temperature responses and optimize a nonlinear energy and comfort based cost function to maintain the temperature 

of each zone within prescribed comfort bound and to simultaneously reduce the overall AHU’s energy consumption 

based on HVAC models. The performance of the implemented MPC algorithm was estimated relative to baseline 

days (heuristic-based control) with similar outdoor air temperature patterns during the cooling and shoulder seasons 

and it was observed that MPC reduced the total electrical energy consumption by more than 20% on average while 

improving thermal comfort in terms of zone temperature and maintaining similar zone CO2 levels. Future work is 

suggested for statistics-based performance evaluation.  
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