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ABSTRACT 
 

The paper presents a control-oriented modeling approach for multi-zone buildings with mixed-mode (MM) cooling 

that incorporates their mode switching behavior. A forward state-space representation with time-varying system 

matrices is presented and used for establishing a detailed prediction model of a multi-zone MM building. The linear 

time-variant state-space (LTV-SS) model, which is considered as a true representation of the building, is used for 

developing data-driven linear time-invariant state-space models based on the subspace identification algorithm. The 

simplified black-box model can successfully capture the switching behavior of the MM building with the RMSE of 

0.64 ºC.  

 

1. INTRODUCTION 
 

Mixed-mode (MM) cooling is a hybrid approach for space conditioning which employs free cooling (using natural 

ventilation) and mechanical systems to minimize building energy use and maintain occupant thermal comfort 

(Brager et al., 2007). However, to fully exploit the benefits of this hybrid system, the switching between modes 

should be intelligent and optimized. Hence, advanced control strategies, such as model predictive control (MPC), are 

required. MPC is particularly suitable for slow response dynamic systems and requires real-time solution and 

implementation of optimal control sequences, within a future time horizon, with the most up-to-date information on 

inputs and environmental disturbances for the dynamic system model. Thus, obtaining a model that provides reliable 

predictions and can be implemented in real controllers is crucial for achieving robust performance. 

 

Modeling complexity is a major challenge for multi-zone MM buildings due to the coupling between thermal and 

airflow dynamics. (Hu and Karava, 2014a). Also, MM buildings typically confront abrupt changes of system 

dynamics due to the mode switch between natural ventilation and mechanical cooling. Thus, the models usually 

inherit the nonlinearity of natural ventilation and they should be able to capture the system switching behavior. The 

most sophisticated available models can be found in whole-building energy and air flow simulation tools such as 

EnergyPlus (May-Ostendorp et al., 2011; Tanner and Henze, 2014). These tools provide detailed modeling of a wide 

range of building features including mixed-mode cooling and can also integrate different system simulations. 

However, it is rather difficult to directly use these models for predictive control strategies as they are far too 

complex and their execution times can become intolerable (Hu and Karava, 2014a). Also, such models do not offer 

flexibility in the management of uncertainty as they require the solution of stochastic differential equations for 

description of a system to be identified (Brohus et al., 2012). This problem can be alleviated by developing 

simplified models that maintain the important dynamics which are relevant for control purposes. Although a number 

of examples of MPC using simplified building or plant models exist in the literature (Ma et al., 2009; Gyalistras and 

Gwerder, 2010; Gwerder et al., 2013), such approaches may not be appropriate for any building system.  

 
To address this challenge, the research presented in this paper aims to develop a control-oriented modeling approach 

for model-predictive control of multi-zone buildings with mixed-mode cooling. Methodologically, the present study 

extends previous work on MPC for MM buildings based on (a) physical (white-box) (Hu and Karava, 2014a; May-
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Ostendorp et al., 2011; Coffey, 2011) models by establishing a linear state-space representation with varying 

coefficient matrices enabling the formulation of forward models; (b) data-driven models based on gray-box 

approach that require an airflow network (Hu and Karava, 2014b) by formulating single and hybrid linear time-

invariant state-space models based on subspace identification (4SID) algorithm. Rather than using multiple models 

for different operation modes, thus requiring extra computation resource for model selection (Spindler, 2004), the 

simplified model presented in this study can capture the relevant system dynamics with the building operating in 

different modes. Furthermore, this modeling approach is more adaptive as it can be fine-tuned efficiently during the 

actual operation. 

 

2. FORWARD MODELING APPROACH FOR MIXED-MODE BUILDINGS 
 

2.1 Linear Time-Variant State-Space Model 
The thermal dynamics of interior building zones are typically predicted by applying the heat balance method 

(Pederson et al., 1998) which explicitly models the heat transfer rate to the interior and exterior surfaces and to the 

zone air based on energy conservation. The conventional thermal network approach discretizes the building into 

zones, which are modeled using a network of nodes with interconnecting paths through which heat flows by 

convection, conduction and radiation. Heat gains due to solar radiation and internal sources are lumped in the 

thermal nodes while heat storages in thermal mass are represented by capacitances. A heat balance is performed at 

each node to determine the node temperature and heat flow between connected nodes. This results into a set of 

coupled ordinary differential and algebraic equations that can be solved simultaneously: 

 

                                                          ,

1
,

n k i ii
i gain aux IHG ijk

k i

T TdT
C Q Q Q Q

dt R


                   (1) 

 

where, R is the resistance associated with convection, conduction, and radiation, C is the thermal capacitance of the 

structure and air, Qgain is the solar heat gain for the surfaces heat balance, Qaux is the auxiliary heat supply for the air 

heat balance. The internal heat gain QIHG is split into a radiative and convective part (ASHRAE, 2009) included in 

the energy balance for the surface and air node respectively. The heat transfer associated with airflow Qij, such as 

the air exchange between zones, the infiltration or natural ventilation, can be computed from: 

 

                                                                           ijij p j iQ m c T T


                (2) 

 

where,   is the upwind operator used in order to account for the influence of the upwind control volume j to i with 

      if the flow is from volume j to i and     otherwise; cp is the specific heat of air, Ti and Tj is the air 

temperature in zone i and j respectively;      is the air exchange flow rate. The multi-zone airflow network method 

(Hensen, 1990) that represents building spaces by homogeneous nodes that are linked with other nodes through 

openings between spaces, is adopted to calculate the flow rate     . This method can predict overall ventilation flow 

rates for the entire building and individual flow rates through openings, caused by pressure differences due to wind 

and buoyancy forces, or mechanical systems along with air exchanges between zones. For buildings optimally 

designed for natural ventilation there is strong coupling between heat and air flows. To account for this effect in the 

present study, the thermal and the airflow network models can be coupled using the “Onion” method (Hensen, 1990). 

 

Rearranging the terms in Equation (1), the thermal dynamic system for a building with mixed-mode cooling can be 

formulated using the state-space representation as follows:  

                                                                         , ,x Ax Bu f x u m
  
    

 
                                                 (3) 

                                                                        y Cx Du   
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Figure 1: Flowchart for the formulation of the linear time variant state-space model 

 

in which, A, B, C, D are coefficient matrices and the size of A matrix decides the system order. x is the state vector 

that represents the temperature of each node. u is the input vector (e.g. outside temperature, solar heat gain, auxiliary 

heat supply or extraction rate) and y is the output vector (e.g. zone air temperature, wall surface temperature). This 

forward state-space model is nonlinear due to the term           that represents the heat transfer associated with the 

airflow and it can be linearized and discretized in time as follows: 

 

                                                                                
1k k k k kx A x B u                 (4) 

                                                                                
k k ky Cx Du        

 

In this linear time-variant state-space model (LTV-SS), instead of finding the air mass flow rate    using zone 

temperatures (e.g. state variables) at the current time-step, the airflow rate can be calculated using zone temperatures 

from the previous time-step. In this way,    becomes known in the current time step. Furthermore, the heat transfer 

coefficients of convection and radiation are calculated using temperatures from the previous time step so they can be 

seen as constant in the current time step. The flow chart for the formulation of the LTV-SS model is illustrated in 

Figure 1. This modeling approach was validated with experimental data collected in a two-zone test-building under 

four operation modes (Hu and Karava, 2014b). 

 

2.2 LTV-SS Model for Multi-zone Building with Mixed-Mode Cooling 
The LTV-SS formulation presented in the previous section is used to develop a model for an institutional building 

(located in Montreal, Canada) with mixed-mode cooling (Figure 2). The natural ventilation design concept of the 

building includes: (a) inlet grilles with motorized dampers (opening area about 1.4 m
2
) located at the end of the 

corridors in the southeast and northwest façade of each floor, and (b) five three-storey atria that are separated with a 

floor slab and connected with grilles (4 m
2 
area) equipped with motorized dampers to enhance buoyancy-driven flow. 

The atrium is located on the southwest façade (facing 35° west of south) of the building extending from the second 

to the sixteenth floor and each of the five three-storey atria has dimensions of 9 m × 12 m × 12 m high, with motorized 

roller shades on all glass surfaces. The building has high levels of thermal mass in the form of exposed concrete floor 

slabs in the atrium (0.1 m thick) and the corridors (0.4 m thick), which are located adjacent to the inlet grilles on the 

southeast and northwest ends and extended all the way to the atrium. The mechanical cooling in the atrium zone is 

assumed to be a variable air volume (VAV) system. The VAV system has a cooling supply temperature of 13 ºC 

with maximum and minimum flow rate of 1.0 m
3
/s and 0.2 m

3
/s respectively. When heating is required in the zone, 

the VAV system supplies reheated air with minimum flow rate. The damper for air supply and the valve for hot 

water supply for the reheat coil are assumed to be controlled by a PID controller (one minute sampling time step). 

The south-west facing atrium façade is assumed to have roller shade (with total transmittance of 6.4% and total 

absorptance of 47.1%) controlled with heuristic rules: the atrium façade is fully shaded when the incident beam 

radiation is higher than 400 W/m
2
, otherwise, the façade is not shaded. Thus, the solar gain on internal surfaces is 

affected by the blind control.  

 

States (x0) from previous time step as 

initial states for current time step

Convective and radiative heat transfer coefficient

Constant coefficient matrices:

A, B, C, D

State-space mode: 

ss(A, B, C, D)

Inputs (Constant in 

current time step): 
Solar heat gain, exterior 
temperature, heat 

extraction rate

Initial states: (temperatures of wall, air, floor, etc.)

States (x1) at the end of the time step

Temperatures from 

previous time-step

Airflow rate       calculated 

with airflow model

“Open/Close” signal for 

current time -step
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For simplicity, this study focuses on a generic section of the building with an atrium connected to six corridors as 

shown in Figure 2. Each corridor has one exterior façade where the inlet grilles are installed. The corridors have 

dimensions  of 30 m × 1.8 m × 3 m  and act as long air “duct”  for delivery  of outside air  into the  atrium zone.  The  

   
 

Figure 2: Outside view of the building and its mixed-mode cooling concept 

 

total floor area of the atrium is 108 m
2
 with a height of 11.6 m. To establish a model considering the potential 

temperature stratification, the atrium is divided into three stacked zones and each of them is connected with two 

corridors through large openings using the Multiple Opening Model (Walton and Dols, 2010). Thus, with the zoning 

method, the building section has nine simulation zones. Detailed information on the airflow network model is 

presented in Hu and Karava (2014a). 

 

A 280
th

-order LTV-SS model is established for the investigated building section. The input vector u       includes 

controlled inputs such as the heat extraction rate (provided by the HVAC system or natural ventilation) and 

uncontrolled inputs (disturbances), which are the exterior temperature (Text), solar gain on internal and external 

surfaces (Sij), and the internal heat gain (QIHG). Details of the inputs, outputs and state variables are shown in Table 1. 

The matrix C
            is an identity matrix so that the output vector y

          is identical to the state vector x   

      . D is a zero matrix. The matrices A            (state matrix) and B           (input matrix) can be found 

from the balance equations for each thermal node. Both matrices are time-variant as their elements associated with 

the airflow rate, convection and radiant heat transfer coefficients vary with time. 

 

Table 1: States, inputs, and outputs used in the forward state-space model 

 

States (x): Inputs (u): Outputs (y): 

x = [Ti , Tj, Tk]
T
 

 i: zone index 

 j: surface index 

 k: mass node index 

u = [Text, Sij, QIHG, Q]
T
 

 Text: exterior air temperature; 

 Sj: solar radiation on surfaces j; 

 QIHG: internal heat gain; 

 Q: heat extraction rate; 

y = [Ti , Tj, Tk]
T
 

 i: zone index 

 j: surface index 

 k: mass node index 

o In natural ventilation mode, there is no HVAC cooling/heating supply;  

o In mechanical mode, consider HVAC cooling/heating supply (calculated with zone temperature, VAV 

discharge temperature and flow rate); 

o Internal heat gain is assumed to be zero; 

o Solar gain on internal surfaces calculated based on heuristic blind control; 

 

3.  SUBSPACE IDENTIFICATION 
 

3.1 Subspace Identification Algorithm 
For real-time MPC implementation in MM buildings, an essential requirement is the efficiency of the prediction 

model. The developed 280
th

-order LTV-SS model for the investigated institutional MM building is a high-order 

model and it requires the calculation of the mass flow rate through the motorized grilles and between interconnected 

zones with an airflow model. Hence, the model needs to be simplified for use in actual predictive controllers. For 

this purpose, the 4SID algorithm is adopted which uses the following state-space structure: 

Corridors leading to  SE 
façade motorized inlet grilles 

Air Supply

Air return

Corridors leading to  NW 
façade motorized inlet grilles 
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1k k k kx Ax Bu Ke                      (5) 

k k k ky Cx Du e    

in which,    is zero mean Gaussian white noise,       is the state vector,       is the input vector,       is 

the output vector, and A, B, C, D, K are system matrices. The objective of the algorithm is to determine the system 

order n and to find the system matrices. A detailed description of the method can be found in Overschee and Moor 

(1999) and Prívara et al. (2013). Among the different options, the N4SID algorithm is selected, for its availability in 

Matlab
®
. The white noise ek is assumed to be zero, since we are using simulation results and sufficient input 

parameters, rather than actual measurements, for the identification. In this study, the detailed 280
th

-order LTV-SS 

model is viewed as a true representation of the building and the simulation results from it become the dataset for 

model training and calibration. 

 

3.2 Training Dataset 
The selection of training data which are the inputs and outputs of the system under investigation is important for the 

particular identification. The inputs should include all the possible system excitations, while the outputs can be 

selected according to the application of the identified model. For the identification problem in this study, the model 

inputs include the weather disturbance and heating/cooling supply to the zone by the mixed-mode system. The 

weather disturbance includes the outdoor temperature Text, wind speed Wspd and direction Wdir, and transmitted solar 

radiation in corridors Qtr,cor and atrium Qtr,at (the blind in the atrium is ON when the incident beam radiation on the 

façade is higher than 400 W/m
2
). A unique feature of the identification is the mode switch between free cooling 

(using natural ventilation) and mechanical cooling, which results in different system dynamics. The switching 

behavior is indicated by the input Wspd,IO based on the fact that when the building is in natural cooling mode, 

windows are open so that the outdoor wind speed has significant impact on the zone temperature inside the building; 

when the building is in mechanical cooling mode, windows are closed and thus the wind effect becomes negligible. 

The Wspd,IO is the same as the real-time wind speed Wspd when windows open and becomes zero when windows close. 

The VAV box discharge air temperature and the supply flow rate are also inputs for the model identification 

accounting for the heat extraction from the zone when the mechanical cooling in ON. 

 

The model is used for the development of predictive control strategies to achieve a trade-off between reduction of 

energy consumption and thermal comfort maintenance evaluated using the operative temperature index. Therefore, 

for the performance metrics evaluation, information for the air and surrounding surfaces temperature is required and 

thus these two parameters (air and weighted-average mean surface temperature) in the control-targeted zone (atrium) 

become the model outputs. Information on the system inputs and outputs is provided in Table 2. Note that the VAV 

box is controlled with a PID controller which samples every minute, hence, the simulation time step-size of the 

detailed  model  should be  one  minute. Directly  using the  one-minute  time  step  simulation  results  (three-month  

 

Table 2: Training inputs and outputs for the SID model 

 

Notation Scaling range Description 

Inputs: 

Text [0, 40] Outdoor temperature, ºC 

Qtr,at [0, 8000] Transmitted solar radiation into atrium, affect by the 

blind control (threshold, 400 W/m
2
), W 

Qtr,cor [0, 8000] Transmitted solar radiation into corridors, W 

Wspd [0, 10] Wind speed, m/s 

Wdir [0, 360] Wind direction, degrees 

Tsup [0, 40] VAV discharge air temperature, ºC 

Vsup [0, 1] VAV supply flow rate, m
3
/s 

Wspd,IO [0, 10] Wind speed indicator for close/open window: when 

window close, it is zero, otherwise, it equals to real wind 

speed Wspd, m/s 

Outputs: 
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Tat [0, 40] Atrium zone temperature, ºC 

Ts [0, 40] Area-weighted atrium zone surface temperature, ºC 

simulation) would require significant computational effort. Thus, hourly averaged data are used for the identification. 

Furthermore, instead of directly using the selected parameter values, all the inputs and outputs  are normalized 

considering an approximate range [0, 1] to avoid scaling issues (Spindler, 2004). 

 

3.3 Signal Excitation 
The system identification needs high quality training data that would cover a sufficiently large range in the 

frequency domain so that the identified model can predict the system dynamics under different excitation signals 

(Overschee and Moor, 1999). However, when the objective is to find a model suitable for control, it is not necessary 

for the training data to cover the entire frequency domain, but rather some control-relevant selection of frequencies. 

The data are generated based on prior knowledge of the time constants of the system. Let τH, τL represent the slowest 

and the fastest systems time constants, then the required frequency spectrum to be covered by the generated signal is: 

 

                                                                                     1

H L




 
                 (6) 

 

where α defines the ratio of closed-and-open loop responses and the β defines the settling time. Their typical values 

are α =2 and β = 3, which corresponds to 95% of settling time (Braun et al., 2002). The time constant of the studied 

building can be found with the system matrix A in the full-scale model (Ruscio, 2009; Spindler, 2004):  

 

 
1

i

i

T
A

 
               (7) 

 

in which, λi(A) denotes the eigenvalues of A matrix. For the dynamic system under consideration, the maximum and 

minimum time constant τH and τL are 90 and 2 hours which indicate the response time of temperature inside the 

massive corridor floor and the air zone temperature. Thus, with Equation 6, the required frequency spectrum to be 

covered by the generated signal is [1.0288e-6 Hz, 2.7778e-4 Hz]. Note that for buildings with mixed-mode cooling, 

it is critical to accurately predict the system dynamics under both the free cooling and mechanical cooling mode. 

Thus, a three-month (May to July) simulation period with the mixed-mode building controlled using a standard 

heuristic (rule-based) strategy (Text   [15 °C, 25 °C], Wspd < 7.5 m/s) was implemented for generating training data. 

When mechanical cooling is required, night set back control is applied (set point temperature range from 13 °C to 

30 °C). The frequency spectrum covered in the three-month mode switch sequence was analyzed with the fast 

Fourier transfer (FFT) method (Duhamel and Vetterli, 1990) and the results are shown in Figure 3. It is observed 

that the mode switch sequence can cover the required frequency spectrum so that the simulation results with the 

heuristic control sequence have good quality for training the simplified model of the mixed-mode building. 

 

 
 

Figure 3: Frequency spectrum of the input data sequence (window open/close) 

 

3.4 Selection of Model Order and Hankel Matrix Size 
In this modeling representation, the states lose their physical meaning and an appropriate order needs to be 

determined to obtain the best fit with the training data. A common approach for the order selection suggests 2
nd

-3
rd

 

order dynamics per output temperature (Prívara et al. 2013), which leads to 4
th

-6
th

 order dynamics based on the two 

system outputs considered herein. However, since the white noise of the system is set to be zero, a higher order state 

is required to reach better identification results. Moreover, there is mode switch which leads to significant change of 

the system dynamics in different time steps, so that the state order should be large to capture the switching dynamics. 

0
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100
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After testing the fitting error for 10
th

, 20
th

, 30
th

, and 40
th

 orders, a 30
th

 order model appeared to have the best overall 

performance. 

The size of Hankel matrices which is required in the training process and defines how far into the past/future the 

“measured” dataset is searched for training an appropriate model. Bigger size may lead to better results. However, 

there is a trade-off between computational difficulties and the matrices size. The study investigated the performance 

of models trained with different Hankel matrices size, i.e. 5, 10, 15, 30, 50, and 75. The model trained from the 

matrices size of 50 turns out to have the best performance. 

 

4. SYSTEM IDENTIFICATION RESULTS 
 

4.1 Single-Model 
The system identification method described above is used to develop a simplified prediction model for mixed-mode 

buildings. A four-month (May to August) simulation period with the forward LTV-SS model is considered. A 

heuristic strategy is used for the mixed-mode cooling in order to prepare the datasets for training (May to July) and 

calibration (August). The TMY3 weather data for Montreal, Canada were used as the weather inputs in the 

simulation. Figure 4(b) presents results for the atrium air temperature obtained with the detailed and the simplified 

prediction model for a week during the training period. The sequence of mode switch between mechanical cooling 

and free cooling is denoted by IO, with the value 1 indicating that the motorized grilles are open, thus free cooling is 

ON and the value 0 means that the grilles close, thereby the mechanical cooling is ON. It can be seen that the 

simplified model results match well with those obtained with the detailed LTV-SS model, though small 

discrepancies are observed at the moments of mode switch due to the abrupt change of the system dynamics. 

However, overall good prediction accuracy is obtained as shown in Table 3. For the atrium air temperature 

prediction, the RMSE for the zone air and weighted-average surface temperature between the simulation and 

identification results is equal to 0.57 ºC and 0.32 ºC respectively. Figure 4(d) presents a comparison (frequency 

distribution for the error range) between the detailed and simplified model for the entire training period. It can be 

seen that 91% and 98% of the simplified model prediction error is in the range of [-1.0 °C, 1.0 °C] for the atrium 

zone and the surrounding surface temperature. The simplified model is subsequently used for the prediction of the  

building  thermal  behavior for  a  period of 7 days in August (calibration set) with results (Figure 5) showing a good 

prediction accuracy with the RMSE for the atrium zone air and weighted-average surface temperature equal to 

0.64 °C a 0.44°C. The results show better model performance compared to that reported (1.21 °C in sunspace zone) 

in previous studies for mixed-mode buildings with high solar gains (Spindler, 2004). 

 

4.2 Hybrid Model 
The present study investigated the feasibility of a hybrid modeling prediction approach using different simplified 

models  for  the  two operation modes under investigation. The  training data  was firstly prepared  by running the 

 

    
                            (a) Weather conditions                                                      (b) Atrium zone air temperature 

 

    
(c) Area-weighted surface temperature in the atrium zone                  (d) Frequency distribution of error range 

 

0

200

400

600

800

1000

1200

0

6

12

18

24

30

20:00 20:00 20:00 20:00 20:00 20:00 20:00

D
N

I,
 W

/m
2

T
e

m
p

e
ra

tu
re

, º
C

Time (from 20:00 of 06/11 to 20:00 of 06/18)

Text Direct normal irradiance

0

1

10

15

20

25

30

20:00 20:00 20:00 20:00 20:00 20:00 20:00

W
in

d
o

w
 O

P
E

N
 (
1

) 
/ 

C
L

O
S

E
 (

0
)

T
e

m
p

e
ra

tu
re

, º
C

Time (from 20:00 of 06/11 to 20:00 of 06/18)

Tat: detailed Tat: simplified IO

0

1

10

15

20

25

30

20:00 20:00 20:00 20:00 20:00 20:00 20:00

W
in

d
o

w
 O

P
E

N
 (
1

) 
/ 

C
L

O
S

E
 (

0
)

T
e

m
p

e
ra

tu
re

, º
C

Time (from 20:00 of 06/11 to 20:00 of 06/18)

Ts: detailed Ts: simplified IO

0

0.1

0.2

0.3

0.4

0.5

(-3.0, -2.5] (-2.5, -2.0] (-2.0, -1.5] (-1.5, -1.0] (-1.0, -0.5] (-0.5, 0.0] (0.0, 0.5] (0.5, 1.0] (1.0, 1.5] (1.5, 2.0] (2.0, 2.5] (2.5, 3.0]F
r
e

q
u

e
n

c
y

 o
f 

e
r
r
o

r
 r

a
n

g
e

Error range, ºC

Tat Ts



 

3636,  Page 8 
 

3
rd

 International High Performance Buildings Conference at Purdue, July 14-17, 2014 

Figure 4: Comparison between the detailed and simplified model: training set 

    
                     (a) Atrium zone air temperature                       (b) Area-weighted surface temperature in the atrium zone 

 

Figure 5: Comparison between the detailed and simplified model: calibration set 

 

Table 3: Identification results for the 4SID single and hybrid model 

 

Model Temp. 
Training Calibration 

RMSE R
2
 RMSE R

2
 

Single-model 
Tat 0.57 0.96 0.64 0.94 

Ts 0.32 0.99 0.44 0.97 

Hybrid-

model 

CLOSE 
Tat 0.23 0.99 0.35 0.93 

Ts 0.19 0.99 0.32 0.92 

OPEN 
Tat 0.22 0.99 0.34 0.99 

Ts 0.30 0.99 0.88 0.94 

 

detailed LTV-SS model for each operation mode. Since each mode is considered separately, there is no mode switch 

indicator used as an input for the training. The identified models are then applied together for predicting the dynamic 

behavior of the switched system. An important aspect of the hybrid prediction approach is the state initialization 

during the mode (and model) switching. For instance, the switch dynamic system has two subsystems 1 and 2: 

 

System-1, representing mode 1, has the form: 
1 1 1

1 1 1k k kx A x B u                      (8) 

1 1 1

1 1k k ky C x D u   

 

System-2, representing mode 2, has the form: 
2 2 2

1 2 2k k kx A x B u                      (9) 

2 2 2

2 2k k ky C x D u   

 

At the moment of switching from subsystem 1 to 2, the state vector x
2
 has to be initialized – e.g. setup initial states 

for the dynamic development. Different from previous modeling work on hybrid systems, in which the states are 

physical variables and the ending states from previous operation mode can be adopted as initial states for the 

following operation mode (Petridis and Kehagias, 1998), the states of each simplified model (for each mode) in this 

study have lost their physical meaning, thus the ending states from the previous mode cannot be directly inherited as 

initial states for the upcoming operation mode. To address this issue, a warm-up simulation is used for each mode 

switch to find the initial state for the upcoming operation mode (Figure 6a). Note that there are initial states   
  

generated from the N4SID model training process of each operation model. The warm-up simulation uses the 

simplified model corresponding to the coming operation mode (Mode 2) and applies its trained initial states   
  as 

the warm-up initial states. The model inputs of previous operation mode      are used as the inputs for the warm-up 

simulation. The ending states     
  from the warm-up simulation then become the initial states for the upcoming 

operation mode.  

 

Based on the identification results for the hybrid-model shown in Table 3, good prediction accuracy is obtained with 

each individual model for its corresponding operation mode with RMSE smaller compared to the single-model. 
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However, the hybrid prediction model does not show advantage over the single model as there are considerable 

errors at the moments of mode switch (indicated by the dashed arrow in Figure 6b) as  the  states cannot be precisely  

    
 

Figure 6: (a) Warm-up simulation for state initialization (Left); (b) comparison between the detailed and the hybrid 

simplified model (Right) 

 

initialized using the warm-up simulation approach. The warm-up simulation using the inputs from the previous 

mode but applying the prediction model for the upcoming mode would result in inconsistencies in the values for Tat 

and Ts between the warm-up simulation results and the real outputs. Although the hybrid-model did not show better 

performance compared to the single-model, it can be seen as an initial attempt towards developing hybrid black-box 

models for buildings with mode switching that may lead to significant improvements in future research. The 

approach presented herein could result in superior overall performance for building energy systems with slower 

dynamics, compared to air systems, such as hydronic heating and cooling while such endeavors are currently under 

investigation. 

 

4.3 Pseudo-Random Mode Switch 
The identified model (single-model) will be used for developing MPC strategies for MM buildings. Since the MPC 

algorithm needs to search the optimal mode switching from multiple candidate sequences, the decisions are strongly 

dependent on the prediction of the overall energy cost and thermal comfort when these candidate mode switches are 

operated. Hence, the simplified model should be able to accurately capture this behavior. For this purpose, a pseudo-

random model switching sequence is generated for validating the simplified model. The frequency spectrum shown 

in Figure 7(a) indicates that the sequence covers a variety of frequencies and contains equal power within a fixed 

bandwidth at any center frequency. It can be seen as a white noise signal and thus has high randomness (Duhamel 

and Vetterli, 1990). The fact that the model accurately captures the system dynamics with the random inputs and 

mode switch is a verification of its quality (Prívara et al. 2011). Both the full-scale LTV-SS model and the 

simplified model are used to predict the system behavior with the results plotted in Figure 7(b) indicating that the 

training data for the model identification provides sufficient excitation. 

 

     
 

Figure 7: Comparison between the detailed and simplified model: (a) frequency spectrum of pseudo-random 

sequence; (b) air temperature comparison 

 

5. CONCLUSIONS 
 

This paper presented a control-oriented model for a complex building with MM cooling based on the sub-space 

identification method. The developed linear time-invariant (LTI) model was then validated with random control 

inputs. The main findings of the study can be summarized as follows: 

 The N4SID identification was successfully applied to reduce the 280
th

-order LTV-SS model to 30
th

-order 

LTI-SS model. With an indicator denoting the mode switch between natural ventilation and mechanical 
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cooling, the simplified model can successfully capture the switching behavior of the MM building, with the 

RMSE for the atrium zone air and weighted-average surface temperature equal to 0.64 °C a 0.44°C.  

 The hybrid model identification method though did not show advantage compared to the single-model, it 

provides an initial framework for future model identification for building energy systems with switched 

dynamics. 

 

The presented system identification approach based on simulated input and output training data can be adopted to 

develop simplified models for MM buildings using measured data. 
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