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ABSTRACT 
Buildings represent a major part of the world energy requirement. The simulation of combined heat, air and moisture 
(HAM) and pollutant transfer in this context is important to predict the indoor air quality (IAQ), along with the 
thermal comfort inside the buildings. Moreover, it is important to have appropriate levels of indoor humidity along 
with the room temperature as movement of water vapor through the building envelope causes a lot of harm to the 
building structure and reduces the quality of its thermal insulation leading to higher energy demand. In modern 
houses people is exposed to a big amount of building materials, many of which release pollutants, many of them are 
volatile organic compounds (VOCs) that degrade the IAQ. The knowledge of the peak loads, temperatures, humidity 
levels, pollutant dispersion can help to optimize the design of new buildings or existing buildings that need to be 
refurbished and therefore results in energy efficient buildings.  
 
In this work a modular object-oriented building simulation tool (NEST) with CFD&HT code Termofluids, capable 
of coupling different levels of simulation models, allowing the simulation of heat, air, moisture and pollutant 
distribution (multizone model, envelope model, room analysis and HVAC system) and VOC is presented. The 
modular approach gives flexibility of choosing a model for each element and to have different levels of modeling for 
different elements in the system. Special attention has been focused on: the large eddy simulation turbulence models 
used for the room air dynamics and pollutants distribution transport and high performance parallel software. 
Parallelization of the building simulation is necessary if some critical processes/zones need to be modeled with more 
detail for reducing computational time. The main focus of this article is to couple the HAM and pollutants models 
for the building envelope with CFD&HT models with heat, moisture and pollutant transfer models for room airflow. 
An analysis of the effect of different materials on the IAQ of the buildings will be performed. 
 
 

1. INTRODUCTION 
 
The aim of this paper is to contribute towards the progress in the numerical simulation of the thermal and fluid flow 
processes within and around buildings. Buildings account to about 40% of the global CO2 emissions which are 
directly related to the energy consumed for maintaining the building usability (European Comission, 2002). Building 
energy consumption has increased from 20% to 40% in developed countries exceeding the industrial and 
transportation (Pérez-Lombard et al., 2008). It is estimated that almost 50% of the global energy demand is due to 

3rd International High Performance Buildings Conference at Purdue, July 14-17, 2014 



 
 3661, Page 2 

 
buildings. Hence, energy conscious architecture is the need of current times. This involves the use of eco-friendly and 
less energy intensive building materials, incorporation of passive solar principles in building design, operation 
including day-lighting features, conservation of water, waste water recycling, rainfall harvesting, integration of 
renewable energy technologies and use of energy efficient appliances in buildings. 
 
Energy simulations are important for the study of energy efficiency of buildings for optimizing the different processes 
involved, considering the building as a thermal system interacting with the surroundings through heat transfer and 
fluid flow processes This numerical approach not only helps in saving the full scale experiment time and cost, but also 
helps in optimizing the governing parameters for the efficient functioning of the entire system. It can give vital 
information of the peak loads during the heating and cooling season, room temperatures and velocity distributions for 
maintaining an adequate IAQ, and overall energy demands during a year. This information can be used to reduce the 
energy costs with a good architectural and HVAC (Heating Ventilating, Air-Conditioning) design.  
 
The prediction of the physical phenomena involved in buildings is difficult due to the large and complex geometry 
involved, changing boundary conditions, airflows due to natural convection, stack and wind effects, infiltration of 
ambient air and mechanical ventilation, and the mixture of free and forced convection flows which are often are 
turbulent. In that sense, the present paper is focused on two main aspects: the combined Heat and Air Moisture 
transfer modeling (HAM) and the Computational Fluid Dynamics (CFD) air distribution analysis coupling with 
building energy modeling. 
 
Many authors have studied heat and moisture transfer through building envelope. H.M. Kunzel (1995) presented a 
comprehensive study of the combined heat and moisture transfer mechanisms along with numerical and experimental 
studies. Methodology of heat air moisture transfer modelling was numerically detailed benchmark cases for one 
dimensional way (Hagentoft, 2002 and Hagentoft et al. 2005). The state of the art and the different programs for heat 
air moisture simulation in buildings and overview of the different approaches in heat and moisture transfer modelling 
are referenced in Woloszyn and Rode (2008) and Woloszyn et al. (2009). Recently, Tariku et al, (2010) presented a 
transient model for coupled HAM through multilayered porous media. 
 
On the other hand, several studies of airflow in buildings due to ventilation are referenced in the technical literature, 
available in different numerical codes. J. Axley (2007) presented a comprehensive study of the multizone airflow 
modelling where some models are described: LBL model (ASHRAE, 1989) for single zone buildings; CONTAM 
(Walton, 1977 ) for multizone modelling; AIRGLAZE (Voeltzel et al., 2001) modelling large highly-glazed spaces, or 
COwZ (Stewart and Ren, 2006) that divides the zones into sub-zones. Recently, Q. Chen (2009) has summarized the 
different methods for the ventilation performance for buildings and suggests that the use of subzonal models is not 
easy because of the special cells (with boundary layers, jets, etc.) and that they are not much superior to coarse grid 
CFD & HT simulations. Finally, Van Belleghem et al. (2011) are the one that have published benchmark experiments 
for moisture transfer modelling in air and porous materials along with the state of the art and CFD coupling. 
 
In the IAQ, indoor air pollution plays a very important role since indoor air pollution has been recognized as one of 
the top environmental risks worldwide (World Health Organization, 1989). Two different factors can degrade the 
indoor environments: the synthetic building materials, which may emit a wide variety of pollutants such as volatile 
organic compounds (VOCs), and the air tightness of buildings. Ventilation, with appropriate air-handling processes, is 
used to create an indoor environment with acceptable air temperature, humidity, air velocity and remove pollutants, 
i.e. good thermal comfort and IAQ (Yang et al. 2004).  Selection and design of appropriate HVAC require detailed 
knowledge of pollutant dispersion, which may depend on type and location of pollutant sources. Numerical 
simulation can help on the modellization of pollutant emission and dispersion. 
 
In conclusion, the numerical simulation implies mathematical modelling and coding of the different physical 
processes occurring in different elements that constitute the building thermal system. In that sense, the models 
implemented in the numerical code presented could be from simple zero dimensional expressions relating the 
unknown variable, one dimensional model based upon experimental correlations, to two or three dimensional 
analysis with turbulence models or direct numerical simulations (DNS) for detailed resolution of fluid flow and heat 
transfer, where the level of modelling a given process may be different depending upon the nature of the process, 
resources available and the accuracy of the desired result. Thus, a modular object-oriented program can be very 
useful for the simulation of building processes. The modular methodology (Damle, et al. 2011), the description of 
the elements developed and the global resolution algorithm of the NEST program explaining the coupling of HAM 
models for the building envelope (Damle, et al. 2012a) with CFD&HT models (Damle, et al. 2012b) with heat, 
moisture and pollutant transfer models for room airflow, along with different case studies, are presented in the 
following sections. 
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2. MODULAR FRAMEWORK 
 
In this work a building or a structure is modeled as a collection of basic elements (walls, rooms, windows, outdoor, 
etc.) as shown in Figure 1. 
 
 
 
 

 

 

 

Fig. 1: A simple building diagram and group of elements structure equivalent. 

 
MPI (Message Passing Interface) is used for the parallelization of the software and a given system is split into 
partitions (groups of elements) to be run on different processors. These elements/objects are capable of solving 
themselves when subjected to boundary conditions which are taken from the neighbouring elements. In each 
iteration, inputs (e.g., pressure, temperature, etc.) are taken from neighbours. Governing equations of the element are 
solved and the outputs (e.g., pressure, temperature, etc.) are set as boundary conditions for the resolution of the 
neighbour elements. Iterations continue until convergence is reached at a given time step and then the next time step 
calculation starts after updating the variables. The advantage of such a modular approach, as can be seen from 
Figure 2, is that each element can be represented in any form as long as it can exchange the necessary boundary 
information from the rest of the elements in the system. 

 
 

Fig. 2: Flexibility in choosing individual element models. 
 
For instance, in a building with many rooms some rooms can be modelled with a detailed CFD & HT calculation 
while other rooms could be modelled using a global single CV energy balance. Also, new models can be 
implemented for a given element without changing the entire program. 
 
 

3. WALL TREATMENT 
 
The mathematical model for heat, air and moisture transfer implemented in the general building program, is 
described in this section. Both building walls and rooms are considered.  
 
3.1 Moisture transfer 
The moisture transfer equation (Künzel, 1995 and Tariku et al., 2010) obtained by applying the Fick's law for vapor 
diffusion and Darcy's law for liquid transport, in terms of relative humidity  and temperature T is written as: 
 

 (1) 
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where 
 
3.2 Heat transfer 
The conservation equation of energy for a moist porous material, by taking into account condensation/evaporation 
within the material (Hagentoft, 2002 and Tariku et al., 2010), can be written as: 
 

    (2) 
 
 
where  
 
The equations (1) and (2) are solved simultaneously to resolve heat and moisture transfer in building walls with 
single or multiple material layers. 
 
3.3 Air flow momentum balance 
The air flow is governed by the Darcy equation that relates the flow rate with pressure gradient and air 
characteristics of the media. 
 

 (3) 
 
3.4. VOC 
The modeling of VOC pollutants is done by considering the diffusion of the concerned species which may be 
emitted by the building materials. Concentration gradient is the driving force for VOC transport in the material with 
no chemical reaction inside. The transient VOC diffusion is given by 
                                 (4) 

 
A partition coefficient KP=Cmb/Cas (Huang and Haghighat, 2002) is assumed to relate the VOC concentration at the 
boundary Cmb of the material to the concentration in the immediate vicinity of the boundary (Cas). 
 
 

4. INDOOR ROOM MATHERMATICAL MODEL 
 
On one hand, thermal and humidity room conditions can be predicted by means of heat and moisture balances using 
a single node energy balance. On the other hand, rooms can also be modeled by means of detailed CFD&HT 
calculations (Damle et al. 2011). The following section details numerical balances of a single node, while CFD&HT 
used within NEST code is referenced and detailed in Lehmkuhl et al. (2007). 
 
4.1 Humidity balance 
The moisture balance equation for a single well mixed zone room can be written as: 
 

 
 (5) 

 
 
where the left hand side term represents moisture accumulation while the right hand side terms represent moisture 
transfer from room walls                                          , internal moisture generation and moisture transported by the 
infiltrating ambient air respectively.  
 
4.2 Energy balance 
The general energy heat transfer equation in terms of enthalpy can be written as: 
 

  
 (6) 
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where, the left hand side term represents accumulation of enthalpy while the right hand side terms represent 
convective heat from walls, heat brought by ambient air, heat added/removed by moisture coming from or going into 
the room walls (  at temperature Tsj = Tw and Tsj = Tr respectively, and heat added due to moisture generation 
( ) at temperature Tg. 
 
4.3. VOC balance 
The conservation equation for each VOC emitted by the wall materials is written by considering a transient mass 
balance over the well-mixed room as: 

 (7) 
 

5. VERIFICATION AND VALIDATION  
To verify the working of the aforementioned model equations for building rooms and walls, some benchmark cases 
are worked out. 
 
5.1 Isothermal moisture transfer in a wall 
The HAMSTAD benchmark exercise #2 (Hagentoft, 2002) is a one dimensional case with isothermal moisture 
transfer in a single layer exposed to air with relative humidity of 65% on one side and 45% on the other side, while 
the temperature is held constant at 25oC. Figure 3 shows how the numerical model is able to predict very well the 
transient moisture diffusion in the wall with the relative differences below 1.2 %.  

 

 
 

Fig. 3. Moisture distribution along the wall with time. 
 
 
5.2 Air transfer in a “lightweight wall” 
The HAMSTAD benchmark exercise #3 (Hagentoft, 2002) is a one dimensional case with air transfer through single 
200 mm thick layer. Moisture transfer is caused mainly by airflow, but also by the moisture and temperature gradients 
across the layer. During 100 days of simulation, initial and boundary temperature is 20ºC, with 70% and 80% of 
indoor outdoor humidity, respectively. During the first 20 days there is air exfiltration that changes within day 20 and 
21 to air infiltration until the end of the period, both effects due to change of pressure distribution. Fig. 4 shows the 
temperature and moisture distribution in time in the middle of the layer. NEST results agree very well with the other 
four numerical solutions referenced in (Hagentoft, 2002).  
 

 
Fig. 4 Temperature and Moisture distribution in the midle of the layer with time. 
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5.3 Non-isothermal moisture transfer in a composite wall 
Results for the benchmark exercise #4 (Hagentoft, 2002) with heat and moisture transfer in a two layer wall having a 
hygroscopic finish are presented. The wall is subjected to changes in heat and moisture loads at its surfaces. Severe 
climatic load is imposed for having different phenomena of heat and moisture transfer generated by heating, cooling, 
alternating drying and wetting due to rain load along with fast liquid transfer properties of the first layer. These 
conditions allow a very good case for checking the heat and moisture transfer model. Fig 5 shows interior and 
exterior moisture surface variation, while Fig 6 shows interior and exterior temperature surface variation. All 
comparative results show a very good agreement as compared with other programs. 

Fig. 5 External and internal moisturesurface variation. 

Fig. 6 External and internal temperature surface variation. 

5.4 Room and wall moisture transfer 
A simplified building (a rectangular box shape) is presented for verification purpose (Bednar and Hagentoft, 2005) 
with walls made monolithic layer (150mm) of aerated concrete is tested under isothermal conditions, but with 
moisture transfer until cyclic steady state is reached. The single zone envelope exchanges moisture with outdoor with 
an internal moisture generation of 500 g/h between 9:00h and 17:00h. Two different cases are studied: (a) vapor tight 
interior and exterior wall surfaces of the building (case 0A); b) only exterior surfaces vapor tight with absorption and 
desorption at interior wall surfaces (case 0B). Initial and boundary temperature is 20ºC, while relative humidity is 
30%, during the simulation period. Fig. 7 shows the relative humidity over the length of the day for case 0A and case 
0B, respectively. Good agreement with analytical solution with a maximum relative difference of 1.0573% and 
1.42065 % for case 0A and case 0B is observed.  

Fig. 7 Relative humidity variation of the room in case 0A and 0B, respectively. 

 

5.5 Room and wall VOC transfer 
The implemented models for the VOC transfer through walls and rooms is validated with experiment data of Yang et 
al. 2001. This is a case of a small chamber having a volume of 50 liters (0.212x0.212x0.0159m) with a pollutant 
emitting panel material inside. The VOCs in this case, TVOC (Total Volatile Organic Compound), are hexanal, α-
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pinene, camphene and limonene. Two different particleboards PB1 and PB2 are tested. The initial concentration of 
the TVOC in these two particleboards is 5.28·107 μg/cm3 and 9. 86·107 μg/cm3, respectively, while the initial 
concentration in the room is zero. For both particleboards the diffusion coefficient for TVOC is 7.65·10-11 and the 
partition coefficient is 3289.Air exchange rate of 1h-1 is maintained during the tests. Figure 8 shows the evolution of 
the pollutant concentration in the chamber with time with both particleboards. It can be seen that, after the first few 
hours, the numerical values show a good agreement with the measured values for both the particleboards under 
consideration. The initial period corresponds to the high emission rate initially due to the high concentration of the 
VOC near surface and zero in the room air. Beyond the initial period the material dries and diffusion of VOC play a 
more significant role and the model compares well with the measured data. 
 

 

 

 

 

Fig. 8.Evolution of the pollutant concentration in the chamber with time with two particle boards: (left) PB1 and (right) PB2. 

 

6. ILUSTRATIVE RESULTS CASE 
In order to show the possibilities that this modular and object oriented tool presents can offers, and illustrative test 
case is proposed as Figure 8 shows. Here, the channel is resolved with a CFD&HT model while the room is modeled 
with a global single well-mixed zone model. The channel which needs more computational resources for CFD&HT 
analysis is resolved with processors 1, 2 and 3, while the other objects like openings and the room are resolved on 
processor 4 as shown in the same Figure 9. 
 
Thot=301K and Tcold=296K are cold and hot temperatures channel sides, while the rest of the surfaces are adiabatic. 
Ra=1.04 x1010 and Pr= 0.71 are the non-dimensional parameters. The inflow at the bottom of the channel and the 
outflow at the top of the channel is put as the boundary condition for the room which adjusts itself to both the mass 
flow rates. The room model assumes a single well mixed zone. A compressible flow large eddy simulation (LES) 
model is used for the air flow movement in the channel. 

 

Fig. 9 Schematics of the solved case. Processors distribution of the case. 

 
Figure 10 shows the evolution of the temperature in the room. All temperature values are non-dimension respect to 
the highest temperature 301K. Figure 11 shows the evolution of the temperature field with time. It can be seen how 
the air near the hot wall starts rising and the flow develops over the entire channel with time.                                                   

 

CFD&HT
for channel on
processors:[1,2,3]

room
processor:[4]

top opening
processor:[4]

bot opening
processor:[4]

channel

one CV
 room
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.
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.
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Fig. 10 CV room temperature evolution. 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 11 Temperature maps after 40, 80, 120 and 300 seconds, respectively. 

 
7. CONCLUSIONS 

A modular object-oriented tool with parallel infrastructure has been presented for the simulation of buildings which 
also has the possibility to integrate CFD & HT models for required elements of a building system. The simulation of 
the Heat, Air and Moisture and VOC is taken into account coupling different levels of modelization. Verification and 
validation of the numerical platform is presented. Finally, an illustrative case is presented in order to show the 
possibilities that this tool offers. 
 

NOMENCLATURE 
 
A area (m2) 
C bulk heat capacity (J/kg K) 
Cm VOC concentration in the material  (kg/m3) 
Cmb VOC concentration at the material boundary (kg/m3) 
Cas VOC concentration in the near material surface air  (kg/m3) 
Cg generation of VOC in the room (kg/m3s)? 
Cpa heat capacity of dry air (J/kg K) 
Cpv heat capacity of water vapor (J/kg K) 
CFD computational fluid dynamics  
Cr VOC room concentration (kg/m3) 
Dl liquid conductivity (s) 
Dm VOC diffusion coefficient of the material (m2/s) 
hfg latent heat of condensation/evaporation (J/kg) 
hm mass transfer coefficient (m/s) 
KP material/air partition coefficient  
me mass flow rate of dry air (kg/s) 
mp moisture production rate (kg/s) 
mw moisture from wall surfaces (kg/s) 
M molecular weight of water (kg/mol) 
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p partial pressure (N/m2) 
psat saturation pressure (N/m2) 
Qven ventilation rate (m3/s)? 
R universal gas constant (J/mol K) 
RV specific gas constant for water vapor (J/kg K) 
T temperature (oC) 
t time (s) 
dt time step (s) 
V volume (m3) 
w water content (kg/m3) 
   
Subscripts   
amb ambient temperature  
e external/outdoor air flow rate  
r room  
w wall surface  
g moisture generation  
   
Greek letters   
α heat transfer coefficient (W/m2K) 
β moisture transfer coefficient (s/m) 
δ vapor permeability (s) 
λ thermal conductivity (W/mK) 
Ø relative humidity  
ρ density of dry air (kg/m3) 
ρw density of water (kg/m3) 
ρ0 density of dry material (kg/m3) 
θ sorption capacity  ∂w/∂ Ø (kg/m3) 
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