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Abstract 

Characterization and design of fluid-thermal transport through random porous sintered beds is critical 

for improving the performance of two-phase heat transport devices such as heat pipes. Two-dimensional 

imaging techniques are quite well developed and commonly employed for microstructure and material 

characterization. In this study, we employ 2D image data (thin sections) for measuring critical 

microstructural features of commercial wicks for use in correlation-based prediction of transport 

properties. We employ a stochastic characterization methodology based on the two-point autocorrelation 

function, and compare the predicted properties such as particle and pore diameters and permeability with 

those from our previously published studies, in which 3D x-ray microtomography data was employed for 

reconstruction. Further, we implement a reconstruction technique for reconstructing a three-dimensional 

stochastic equivalent structure from the thin sections. These reconstructed domains are employed for 

predicting effective thermal conductivity, permeability and interfacial heat transfer coefficient in single-

phase flow. The current computations are found to compare well with models and correlations from the 

literature, as well as our previous numerical studies. Finally, we propose a new parametrized model for 

the design of porous materials based on the nature of the two-point autocorrelation functions. Using this 

model, we reconstruct sample three-dimensional microstructures, and analyze the influence of various 

parameters on fluid-thermal properties of interest. With advances in additive manufacturing techniques, 

such an approach may eventually be employed to design intricate porous structures with properties 

tailored to specific applications.  
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Nomenclature 

a, b, c, d fitting coefficients 

A  area 

Bo  Bond number 

C  specific heat 

CE  Ergun’s coefficient 

DH  hydraulic diameter 

Dp, Dp,3D particle diameter 

f(x)  indicator function 

F  filter function 

hsf  heat transfer coefficient 

J  heat flux vector 

k  thermal conductivity 

K  permeability 

M, N  image dimensions 

Nusf  Nusselt number 

P  pressure 

q”  heat flux 

 

 

r  radial coordinate 

rg  particle size 

R  correlated 3D image 

s  specific surface area 

S1, S2  correlation functions 

T  temperature 

u, U  velocity 

Greek symbols 

ρ  density 

σ  surface tension 

θ  contact angle 

Φ  porosity 

µ  viscosity 

Subscripts 

3D  calculated from 3D XMT data 

cap  capillary 

f  fluid side 

sf  solid-fluid 

 

Keywords:  porous media, wick structures, 3D reconstruction, effective thermal conductivity, 

permeability, interfacial heat transfer, autocorrelation function, designed porous media 

 

1. Introduction 

Heat pipes and vapor chambers are two-phase heat transport devices that offer a passive and compact 

means of transporting heat over long distances without a substantial drop in temperature [1, 2]. A heat 

pipe consists of a sealed chamber containing a working fluid such as water which transports heat through 

phase change. It exploits the capillary action generated by the wicking material lining the inside to 

passively transport the working fluid. Because their effective thermal conductivity can be two to three 

orders of magnitude higher than for solid metal structures of the same dimensions, these devices find 

widespread application in thermal management [3]. Some of the specific applications of such two-phase 

heat transport devices in the electronics cooling industry are for hot-spot cooling and heat spreading [4]. 

Estimation of transport properties of the wick structures, as well as enhanced wick designs, are 

essential for improving the performance of heat pipes. Dullien [5] reviewed various experimental 
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measurement techniques available for characterizing transport properties of porous media. Numerical 

modeling offers an alternative means of transport characterization. In our previous studies ([6, 7]), a 

thorough characterization of single-phase properties as well as evaporative performance of monoporous 

sintered copper wicks was performed. The limitations of present-day experimental methods and 

commonly used analytical expressions in characterizing heat transfer properties, such as effective thermal 

conductivity and capillary pressure, were demonstrated. A recent study [8] provided a detailed review of 

advances in the prediction of fluid-thermal transport properties of ideal and realistic porous media. 

Recent advances in 3D imaging techniques, employing both destructive and non-destructive 

approaches, as well as a corresponding development of 3D image-based mesh generation, have led to a 

surge in the number of studies employing such methods for numerical characterization of transport 

properties of random porous materials. In our past studies [6, 9], an x-ray microtomography (XMT) based 

numerical characterization technique was developed for simulating fundamental thermal transport 

properties of open-cell metal foams. Subsequently, this methodology was employed for predicting the 

transport properties of commercial wick structures; single-phase transport properties were simulated in 

[6], followed by capillary and evaporative performance in [7]. Example studies in other areas include 

prediction of petrophysical characteristics of porous rocks [10], and micromechanical characterization of 

reinforced composites [11]. 

3D imaging techniques provide a number of obvious benefits such as accurate and detailed 

representation of the scanned volume, and a requirement of little to no pre-processing. However, they also 

suffer from a few fundamental limitations. Typically, there is a tradeoff between the scanning resolution 

and the size of the sample being scanned, as discussed in [9]. Along similar lines, the high present-day 

cost and limitations of x-rays in detecting denser materials limit the technique to a few exotic 

applications. Further, feature sizes in the materials of interest are on the order of a few microns, while 

popular nanometer-resolution techniques, such as 3D Transmission Electron Microtomography (TEMT), 

are typically employed to characterize the structures with characteristic lengths on the order of few 

nanometers [12]. 2D scanning techniques such as optical microscopy, scanning and transmission electron 

microscopy, and scanning probe microscopy are quite well developed [13]. 2D scanning is also rapid and 

inexpensive, and is employed widely. Porous media characterization techniques based on 2D images are 

thus desirable for a broad range of applications. 

Two-dimensional scans may be used for measuring microstructural features such as porosity, specific 

surface area, and pore and particle sizes of the porous media. By employing a correlation-based approach, 

these characteristics may then be used for rapidly predicting transport properties such as permeability via 

the widely used Kozeny-Carman correlation [1]. In this work we adopt a statistical analysis procedure 

based on the two-point autocorrelation function developed by Blair et al. [14] and detailed in the 
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following section. We apply this technique to individual 2D slices taken from our past 3D scans [6], and 

measure microstructural features. A detailed comparison of pore and particle sizes, as well as permeability 

from the current study and those obtained from [6], is performed. 

Three-dimensional microstructure reconstruction typically requires a stack of 2D data, such as that 

obtained via x-ray microtomography. However, when the porous material of interest is homogeneous and 

largely isotropic, stochastically equivalent 3D microstructures, corresponding to the 2D scan image may 

be obtained. A number of techniques such as the Joshi-Quiblier-Adler (JQA) approach [15], the single 

cut-Gaussian Random Field (GRF) approach [15], and the Karhunen-Loeve expansion-based approach 

[16] are available for accomplishing this reconstruction. The JQA approach was originally developed by 

Joshi [17] for reconstruction of stochastically similar 2D data, and later extended by Quiblier [18] to three 

dimensions. Optimization techniques such as the simulated annealing (SA)-based reconstruction 

technique developed by Yeong and Torquato [19] are also commonly used. Other recently developed 

approaches include employment of multi-point statistics for 3D reconstruction [20]. In this work we 

employ a modified JQA approach, similar to the one proposed in [15], and use it to reconstruct 3D 

microstructures from 2D scan images. These 3D microstructures are then used for computing transport 

characteristics such as permeability, effective thermal conductivity and interfacial heat transfer coefficient 

for single-phase flow through the microstructure. Examples of other recent publications that reconstruct 

3D porous media from stochastic information computed from 2D images include Jiang et al. [21], Zhang 

and Du [22], and Chen et al. [23]. 

In addition to simulating transport properties of existing microstructures, a novel parameterized 

model based on the typical functional form of the autocorrelation function for the porous material is also 

proposed. For this, a spring-mass-damper system analogy is employed, and the influence of various 

parameters on transport characteristics, viz., effective thermal conductivity, permeability and interfacial 

heat transfer, is analyzed. Similar approaches in the literature include models for generating “Debye 

random media” proposed by Debye and Bueche [24] and Debye et al. [25], and discussed in detail in 

Yeong and Torquato [19]. This model consists of a single parameter, the correlation length, while our 

model has three independent parameters as described in Section 4. Employing such a parameterized 

model with controllable parameters, new microstructures with tailored transport characteristics may be 

designed. The following section describes the autocorrelation function, and the correlation-based 

approach developed for a quick estimation of transport.  

 

2. Correlation-based analysis of transport characteristics 

2.1. Spatial Correlation Functions 
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Stochastic porous media may be analyzed by means of a variety of correlation functions. Binary 

porous materials such as the sintered metals considered here may be represented via an indicator function, 

f(x), defined as follows: 

  
1

0

if x Pore space
f x

if x Material


 


 (1) 

Binarised digital images through any cross-section of the material represent a discretized version of 

this indicator function [14]. Furthermore, when the medium is isotropic, the sum of f over the entire image 

of any cross-section provides an estimate of porosity of the material, Φ, within statistical uncertainty. 

Formally, porosity may be defined as the one-point correlation function, S1; in other words, given an 

indicator function, the  porosity of a porous material is the probability of finding a randomly selected 

point in the pore space [14]: 

  1S f x    (2) 

Here,  indicates area averaging for the case of 2D data. Along similar lines, a two-point 

autocorrelation function, S2, may be defined as the probability of finding two points, located at r1 and r2, 

such that both lie in the pore space of the material [14]: 

      2 ,S f f
1 2 1 2

r r r r  (3) 

Again, in Eq. (3),  represents spatial averaging. It may be noted that when the material is isotropic, S2 

depends only on the separation distance, r = |r1- r2|, and not on the specific location of the individual 

points [14]. For such cases, S2(r) may be simply computed as: 

      2S r f x f x r   (4) 

This property has significant uses. Firstly, the autocorrelation function may be computed along 

various directions and employed to analyze the microstructural isotropy of a material – if the 

autocorrelation function is the same along all directions, the material is statistically isotropic, and vice 

versa. Along similar lines, S2 may be computed from a single 2D image, and employed to generate an 

isotropic stochastically equivalent 3D structure as described in detail in [15] and Section 3.2.  

Other higher-order functions, such as generic n-point correlation functions (n>2), and lineal path 

functions, are also typically employed for characterizing porous materials (e.g., [19] and [26]), at the cost 

of increasing computational effort. In this work, we restrict ourselves to the lower order, one- and two-

point correlation functions, which are the most commonly employed functions in the literature. 

Several algorithms exist for computing the one- and two-point correlation functions from discretized 

2D images. One such algorithm may be found in [27], and is widely employed for isotropic, 
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homogeneous porous media. Using this approach, the one-point correlation function, S1, is computed as 

follows: 

 1 ,

1
1

1
i j

i M
j N

S f
MN


 
 

    (5) 

Here, the image size is assumed to be M × N pixels. Similarly, the autocorrelation function is computed 

for each pixel (m, n) in the image as follows: 

  
max

max

2 , ,

1max max
1

1
, i j i m j n

i i
j j

S m n f f
i j

 

 
 

   (6) 

In this equation, imax = M-m, and jmax = N-n, respectively [27]. Once computed, the data are averaged to 

produce the direction-independent, one-dimensional two-point autocorrelation function, S2 (r). For this, 

the first pixel in the image is considered as the origin, and autocorrelation functions along various polar 

directions with discrete increments are considered. For points not coinciding with the pixel centroids, 

bilinear interpolation is employed [27]. Figure 1 a) shows a typical computational grid with pixel 

centroids and actual lattice points, while Figure 1 b) shows the S2 function computed for our samples, 

along with the 2D images employed, taken from [6]. Further details of this approach may be found in 

[27]. 

 

2.2. Microstructural Characteristics from Autocorrelation Functions 

Correlation functions may be employed to characterize the microstructure of stochastic porous 

materials. As noted earlier, S1 is simply the porosity of the material of interest. Similarly, the two-point 

autocorrelation function has several interesting characteristics. For all isotropic materials without long-

range order, the following properties may be readily derived: 

   2

2 20 ;lim ( )
r

S r S r 


    (7) 

Further, Debye et al. [25] showed that the surface area per unit volume or the specific surface area s 

of the porous material may be readily obtained from the slope of the two-point autocorrelation function. 

Employing a 2D image, such as the one in the current study, the surface area per unit volume may be 

computed as follows [19]: 

   2 0r

d
s S r

dr
    (8) 

Specific surface area is useful in estimating the effective pore diameter of porous media. As noted in 

Dullien [5], the effective pore diameter of any porous material may be defined as follows: 
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4

HD
s


  (9) 

Blair et al. employed a two-point autocorrelation function for estimating permeability of sandstones, 

via the Kozeny-Carman correlation [1]. By considering ideal, non-penetrable and penetrable sphere 

models of packed beds, they demonstrated the utility of the autocorrelation function in computing the 

particle size in addition to the specific surface area s. It was shown that when the autocorrelation function 

showed a distinct minimum, dropping below the asymptotic value of Φ
2
 (Eq. (7)), the strong negative 

correlation implied the presence of particles of nearly uniform size [14]. Further, the oscillatory behavior 

of S2 around the asymptotic value, observed for certain cases, was attributed to the roundness of particles. 

It was demonstrated that rounder particles showed significant oscillations, while angular ones, such as the 

sandstone microstructures, corresponded to non-oscillatory behavior in the computed autocorrelation 

function. Furthermore, the location of the first minimum (in cases with oscillatory behavior), and the 

location at which the autocorrelation function became asymptotic (in cases with non-oscillatory 

behavior), rg (Figure 1 b)), was correlated to the average particle size as follows: 

 
2

2

2
,

1.3

,

g

p

g

r
for S with distinct minimum

D

r for S with no distinct minimum








 (10) 

The pore and particle diameters thus estimated may be employed for predicting transport 

characteristics. Permeability is typically estimated via the Kozeny-Carman correlation [1]: 

 
 

2 3

2
150 1

pD
K







 (11) 

Similarly, hydraulic diameter may be used to gain a first estimate of capillary pressure employing the 

Young-Laplace equation [7]: 

 
4 cos

cap

H

P
D

 
  (12) 

Here, σ and θ are the surface tension and the contact angle of the liquid, respectively.  

In this study, we have employed the two-point autocorrelation function for estimating the 

microstructural characteristics for three sintered copper wick microstructures fabricated at a porosity of  

approximately 61-63%, and consisting of particles in the size ranges, 45-75 µm, 106-150 µm, and 250-

355 µm, respectively. It may be noted that the original scan resolution employed in [6] was 5.5 µm, and 

based on the physical dimension of the volumes scanned, we have access to about 900×1300×100, 

750×1300×100, and 700×1300×100 pixels of data for the small, intermediate and large-sized particle 

samples, respectively. In this study, we employ 2D images of size 350×350 pixels for computing the 
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stochastic functions described. For the small and intermediate particle sizes, the image resolution 

employed was 5.5 µm, while for the largest particle-size sample, a 11 µm resolution was used so as to 

include a sufficient number of particles in the 350×350 pixel image. Five images spanning the entire 3D 

space are employed per sample to average out the randomness in the sample. A detailed comparison of 

our present results, along with those from our past study [6], is provided in Section 6.1.    

 

3. Porous medium reconstruction 

3.1. Reconstruction from Image Stack 

The correlation-based analysis presented in the previous section provides a quick means of predicting 

transport properties of porous materials. Such methods may be employed to analyze large sets of samples. 

However, when a detailed analysis or high levels of accuracy are desirable, a suitable alternative 

technique is the use of 3D computational volumes for numerically estimating fluid-thermal transport 

properties. This section briefly describes the various 3D reconstruction methods available in the literature, 

along with the method employed in the current study which is based on the modified JQA approach, 

proposed in [28]. 

Accurate 3D representations of random porous materials may be obtained via destructive or non-

destructive 3D imaging techniques, each with its own merits and drawbacks. Examples of the former 

include Focused Ion Beam (FIB)-based milling followed by 2D SEM imaging, FIB-SEM [29], to produce 

a series of 2D scans that may be subsequently employed to reconstruct the 3D volume of interest. 

Similarly, non-destructive techniques such as x-ray microtomography may be employed to produce 2D 

scan data in a non-intrusive fashion. In our previous studies ([6], [9] and [30]) we have employed such a 

technique for reconstructing random aluminum foams and sintered copper microstructures. The 

reconstructed volumes were employed to compute fundamental single- and two-phase transport 

characteristics.  

Employing destructive techniques, high resolutions are realizable. However, being destructive, they 

have certain inherent limitations such as the inability to accurately image all the pore space. Further, these 

techniques often require a significant amount of processing owing to the underlying milling process 

involved, and typically, the higher the desired resolution, the longer is the required processing time. On 

the other hand, x-ray microtomography techniques are quick, and require little to no processing prior to 

scanning. However, x-rays have limited penetrability, and the penetrability decreases with increase in the 

density of the material being imaged. Therefore, rapid reconstruction techniques based on 2D scan images 

are desirable. 

 

3.2. Reconstruction from Thin Sections 
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3.2.1 Modified Joshi-Quiblier-Adler (JQA) approach  

2D imaging, in contrast to its 3D counterpart, is quite well developed and often readily available at 

high resolutions. Further, as described in Section 2, 2D scan images are sufficient for estimating 

stochastic descriptors such as one- and two-point correlation functions in addition to microstructural 

features. Such information may be employed to reconstruct 3D volumes [31]. One such approach, 

originally developed by Joshi [17] in two dimensions, and later extended by Quiblier to three dimensions, 

is the most widely used JQA approach [15]. In this approach, based on conditioning and truncation of 

Gaussian random fields, 3D binary image data are generated by simply using the one- and two-point 

autocorrelation functions computed from 2D images [18]. 

A slightly modified version of this approach was proposed in Bentz and Martys [28], and is employed 

in this work. In this approach, the first step consists of obtaining the porosity and two-point 

autocorrelation functions, as described in Section 2.1. Then, an initial three-dimensional image consisting 

of Gaussian distributed noise is generated using a uniform random number generator and the Box-Muller 

method to convert the uniform random deviates to normal deviates [28]. This 3D noise image, N(x,y,z), is 

subsequently directly filtered (or convolved) with the normalized autocorrelation function, F(x,y,z), 

defined as 

    
   

   

22 2 2

2 2

2

2 2

0
, ,

0 0

S r x y z S
F r F x y z

S S

   
 


 (13) 

In this equation, S2(r) is the autocorrelation function defined in Eq. (4) and computed from the 2D image 

as described in Section 2.1. Also, the Cartesian pixel coordinates are converted to spherical coordinates 

for computing the value of the filter function, F [28]. Once the filter coefficients are obtained, the 

resulting 3D image is then filtered as 

  
0 0 0

, , ( , , ) ( , , )
c c c

i j k

R x y z N x i y j z k F i j k
  

      (14) 

It may be noted that c is the cutoff distance in pixels, and its value is chosen based on the observed 

correlation length, from the S2 function. Typical values of c are about 2-3 times the correlation length, and 

in this study, a cutoff value of c = 30 was chosen for all cases, based on an observed correlation length of 

about 10 pixels. Also, typical reconstructed sample sizes consisted of 100 pixels on a side.  

The resulting 3D image, R, is not binary-valued. Therefore, a thresholding operation is subsequently 

performed to binarize the generated 3D image. A histogram of all the values is constructed and the 

threshold value is obtained iteratively, so as to match the porosity of the porous material. It may also be 

noted that since this approach is based on a normalized autocorrelation function, any desired value of 

porosity may be chosen in the thresholding step [28]. In this study, we have employed porosity values as 
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quoted by the manufacturer and described in [6], for thresholding operations; similar values are also 

employed for binarizing the starting multi-valued 2D image. However, for a few cases, the porosity 

values were varied to assess the effect of porosity on computed values of effective thermal conductivity, 

as discussed in Section 6.2.3.  

The final operation step, as described by Bentz and Martys [28], involved correcting the reconstructed 

microstructures to match the hydraulic diameter computed from the 2D image. A surface-smoothing 

algorithm developed for modeling sintering [32] was employed to swap material and pore pixels on the 

surface. Further details on this approach may be found in [28]. In this work, we have not employed this 

algorithm. Instead, we use a 3D Gaussian smoothing operation, followed by a porosity-matching 

threshold. This approach was found to better match both the surface area (hydraulic diameter) as well as 

the correlation length, as described in Section 6.2. In the hydraulic radius-matching approach of [32], the 

highest curvature pixels are randomly selected and relocated to the lowest curvature regions, so as to 

match the hydraulic diameter by lowering the surface area. Such an approach is not a local smoothing 

approach, and leads to particle elongation, similar to sintering. In contrast, Gaussian smoothing is a local 

smoothing technique in which a filter matrix with different coefficients (weights) corresponding to 

differently spaced neighbors is generated based on the Gaussian distribution. The filter matrix is then 

employed to convolve the starting image, leading to local smoothing. The reconstruction procedure 

employed is summarized in Figure 2 for a 250-355 µm case. The 2D image from the starting 3D XMT 

stack (top left) is first binarized to match the manufacturer-specified porosity (top center). This binary 

image is then employed to construct the filter function, F, in Eq. (14) (top right). Subsequently, the 

resultant image, R (bottom right), is obtained by convolving the 3D Gaussian noise image  with a cutoff 

value of 30 pixels, as mentioned earlier. The image is smoothed via the 3D Gaussian smoothing operation 

and a representative 2D cross-section (bottom center) and 3D microstructure reconstruction (bottom right) 

are shown for the same 250-355 µm case. 

  

3.2.2 Optimization-based reconstruction 

Other reconstruction techniques include optimization-based approaches such as that proposed by 

Yeong and Torquato [19], based on the simulated annealing technique. In this approach, the starting 

microstructure consists of a porosity-matching, random distribution of pore and material pixels. In each 

iteration of the algorithm, pixels are swapped so as to minimize an energy function, consisting of a 

weighted sum of any of the stochastic descriptors. Commonly employed functions include  

autocorrelation functions, lineal path functions and chord length distribution functions [19], [26]. The 

advantage of this approach is that it can produce microstructures with the desired level of agreement 

between the stochastic properties of the 3D microstructure and the base 2D images [19]. However, being 
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iterative, the approach is typically computationally intensive and time-consuming. Furthermore, the cost 

of the approach increases rapidly as the number of descriptors increase, as the stochastic parameters must  

be computed after each pixel swap. 

 

4. Designed porous media 

The various properties of the two-point autocorrelation function, S2, were described in Section 2.1. As 

may be observed from Figure 1 b), the S2 function for a porous material starts with a value of porosity Φ 

at the origin, and rapidly decreases to the asymptotic value of Φ
2
, and the distance after which the 

autocorrelation function becomes asymptotic is the correlation length. Pixels separated by a distance 

greater than this length are uncorrelated, and vice versa [19]. Based on these observations, Debye et al. 

[25] proposed a model consisting of an exponentially decaying function to represent porous media made 

up of random shapes and sizes: 

 
 

 
 

2

2

2

2

exp /
0

S r
r a

S






 


 (15) 

in which a is the correlation length defined earlier. Yeong and Torquato [19] generated various 

microstructures, termed Debye random media, based on this function and demonstrated its utility in 

generating physically realistic microstructures. However, it may be noted that the Debye model has a 

single parameter, the characteristic length. Further, being based on a simple exponential decay function, 

the model fails to account for the oscillations observed in the correlation functions computed for porous 

media consisting of round particles, such as the sintered beds of interest. In order to reproduce these 

damped oscillations in the present work, we propose the following model that is based on a spring-mass-

damper system analogy [33]: 

 
 

 

2

2 2 2

2 2
2

[cos( 1 ) sin( 1 ) ]
0 1

bcr
S r d bc

e b c r b c r
S b c






 

   
 

 (16) 

It may be noted that this model satisfies the boundary conditions, Eq. (7). The model parameters, b, c 

and d, control the correlation length, extent of oscillations (damping), and slope (hydraulic diameter) of 

the generated porous media.  

We employ this model in conjunction with the 3D microstructure generation procedure described in 

the previous section, and demonstrate its utility in generating microstructures with tunable performance 

characteristics such as permeability and interfacial heat transfer coefficients, as described in Section 6.3. 

With the advent of additive manufacturing techniques such as 3D printing, user-defined high-performance 

wick structures with tailored fluid-thermal transport characteristics may be realizable in the near future. 
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5. Numerical modeling 

The microstructures generated are analyzed for their thermal-fluid properties using the computational 

procedure described in this section. The first step involves converting the generated 3D data (stack of 2D 

images) into viable computational meshes. Following this, the discretized version of the governing 

equations, continuity, momentum and energy, are solved in the 3D computational domain. The solution 

procedure is described only briefly here, and the readers are referred to our prior studies ([6, [30]) for a 

detailed discussion. 

 

5.1. Mesh Generation 

Computational meshes are generated from the 3D image data employing the commercial image 

processing and meshing program Simpleware [34]. This tool has a variety of options for processing, and 

generating all tetrahedral, or mixed hexahedral and tetrahedral elements. In this work, we employ the 

‘ScanFE-Grid’ algorithm and generate meshes with volumetric and boundary adaptation to optimize and 

reduce the number of cells in the mesh [6]. Further, a mix of hexahedral and tetrahedral elements is 

employed to further lower the overall mesh element count. The meshes so produced are then exported to 

the FLUENT solver [35], which is used for flow and heat transfer analysis. For computing effective 

thermal conductivity, both the material and pore spaces are considered, while flow and interfacial heat 

transfer analysis only require the pore space of the domain meshed. Figure 3 shows a sample solid and 

pore space domain, along with an inset of the generated computational mesh. 

 

5.2.  Governing Equations and Boundary Conditions 

The continuity, momentum and energy equations for the steady, constant-property flow of an 

incompressible Newtonian fluid are given by [6]: 
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Two types of computational simulations are performed in the cuboidal computational domain shown 

in Figure 3: a) thermal conduction in the presence of an interstitial fluid, i.e., conduction through both the 

metal and pore regions, and b) permeability and convective transport through the pore space. In the 

former computations, a conjugate heat conduction problem is solved, with an imposed temperature 
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gradient. In the latter, computations are performed only in the pore space, assuming a no-slip boundary 

condition on the metal-pore space interface. For the thermal conductivity computation, given 

temperatures are imposed on the two opposing faces of the cuboidal domain, while the lateral boundaries 

are assumed to be adiabatic; the heat conduction equation is solved in both the fluid and solid regions, and 

continuity of temperature and heat flux is imposed at the interface. For the flow problem, a pressure-outlet 

boundary condition is employed in conjunction with a velocity inlet boundary condition on opposite 

boundaries, while the lateral boundaries are assumed to be symmetry boundaries. Although a fully 

developed flow assumption is not made, we found that the cross-section averaged pressure achieved a 

linear profile within the sample for all the Reynolds numbers considered here. For computation of the 

Nusselt number, conduction through the metal is neglected and a constant heat flux boundary condition is 

imposed on the interface separating the pore space from the metal. As with the pressure drop 

computation, we do not explicitly impose a fully developed thermal condition; nevertheless, the Nusselt 

number was found to become constant in the flow direction for the sample sizes and flow conditions 

considered here. 

 

5.3. Solution Procedure 

For the domain sizes in this work, computational meshes of approximately 4 million cells are 

generated for computations involving only the pore space (permeability and interfacial heat transfer), 

while a mesh of approximately 7 million cells is used for computing effective thermal conductivity. The 

governing equations are solved using the commercial computational fluid dynamics (CFD) solver 

FLUENT [35], employing a second-order upwind scheme for the flow and heat transfer calculations. 

Pressure-velocity coupling is addressed using the SIMPLE algorithm, along with an algebraic multigrid 

algorithm for solving the linearized system of governing equations. Details of the numerical method may 

be found in [6]. Also, the governing equations are suitably under-relaxed to ensure proper convergence. 

The default convergence criterion in FLUENT, based on the scaled residuals, is employed for 

termination. For heat transfer computations, the flow equations are decoupled from the energy equation 

and hence the continuity and momentum equations are first solved to convergence. After this, the energy 

equation is solved to convergence, with the converged flow solution assumed fixed.  

The following sections present the results obtained corresponding to microstructural characterization 

based on the autocorrelation function, along with fluid-thermal transport characteristics computed for the 

generated 3D microstructures. 

 

6. Results and discussion 

6.1. Correlation-Based Transport 
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We now present results for the microstructural and transport characteristics of the sintered wicks 

considered, as estimated via the autocorrelation function. Five training images are considered for each of 

the 45-75 µm, 106-150 µm, and 250-355 µm samples, as noted earlier. These images span the entire 

thickness of the scanned wicks from [6], and thereby provide a better representation of the random 

sintered wicks than a single scan. 

  

6.1.1 Autocorrelation function 

All the fifteen grayscale images of size 350 × 350 pixels, five each corresponding to the small, 

intermediate and large particle-size cases, are first thresholded and binarized. The porosity values as 

quoted by the manufacturer (Thermacore Inc.) and reported in [6] are used as inputs, and the threshold 

value is selected iteratively. Following this, the autocorrelation function is computed, as in Eq. (4) and 

Eq. (6). Figure 4 shows a starting grayscale image, the corresponding binarized image, and the computed 

autocorrelation function for the smallest particle-size case for all the five images considered. Also shown 

is an inset that highlights the behavior near the correlation length. The autocorrelation functions  – the 

correlation length, slope near the origin, and the location and extent of the mimima and maxima computed 

from various cross-sections – are observed to be grouped closely together. This observation confirms that 

a 2D image is sufficient to describe a stochastic 3D system, and that the image may be obtained at any 

cross-section. In addition, the autocorrelation function rapidly decreases to the asymptotic value of Φ
2
 as 

described earlier.  

Figure 1 b) shows the autocorrelation functions for the three samples considered, computed for one 

2D image per sample. The small and intermediate sized particle cases clearly demonstrate significant 

oscillations, with a distinct first minimum, indicating the presence of rounded particles of nearly uniform 

size [14]. On the other hand, the largest particle-size sample demonstrates little to no oscillations in the 

computed autocorrelation function, thereby indicating a non-uniformity of particle size in this sample. 

Similar observations were also reported in [14], in which the lack of oscillations in the computed 

autocorrelation function was attributed to the irregular particles present in the investigated sandstone 

microstructures.  

 

6.1.2 Microstructural characteristics  

The autocorrelation functions are also employed to compute microstructural characteristics, viz., 

average pore size and particle size, and surface area per unit volume, as noted in Section 2.2. The 

computed values may then be employed as inputs in Eq. (11) for estimating permeability. The average 

value and standard deviation computed from the five images considered are shown in Table 1. Also 
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shown are fitted particle diameter values, which are usually employed in the absence of a well-defined 

particle size, and computed via the following equation 

 
 

,3

6 1
p DD

s


  (20) 

Table 1 shows that the particle sizes computed from Eq. (10) and Eq. (20) are in good agreement with 

each other, with a maximum percentage difference of only approximately 10%.  

The specific surface area, s, is computed from Eq. (8), employing the slope of S2 at the origin. As the 

autocorrelation function is a rapidly decreasing function, and as resolutions below 1 pixel are not possible 

without actually increasing the original scan resolution, we employ a spline-fit from MATLAB [32] for 

fitting the data. The slope of the curve is then computed from the fitted data, and the mean and standard 

deviation values of the specific surface area reported (Table 1). Also shown are values calculated from the 

actual scans from our previous study [6]. There is excellent agreement overall – the differences observed 

for the smallest, intermediate and largest particle-size samples are only approximately 14%, 5% and 

0.4%, respectively, relative to the 3D microtomography data from [6]. 

Another microstructural characteristic of interest is the average pore size of the porous material, 

which features in correlations developed for predicting single- and two-phase heat transfer through these 

structures. In this study, we employ the definition of Dullien, Eq. (9), for computing the effective pore 

diameter, and the corresponding mean and standard deviation values may be found in Table 1. Also 

shown for comparison are the effective pore diameters computed from our past study [6] which employed 

the porosity and specific surface areas from 3D microtomography data. As indicated, percentage 

differences are approximately 11%, 5% and 1%, respectively, for the smallest, intermediate and the 

largest sized samples, proving the utility of the correlation-based approach in providing a coarse estimate 

of capillary pressure of sintered beds.  

The relatively larger differences observed for the smallest particle-size sample may be attributed to 

the scan resolution, i.e., number of pixels per particle in the original 2D image. Based on scan resolutions, 

and mean particle sizes from Table 1, it may be noted that we had roughly 20 pixels per particle for the 

largest and intermediate particle-size samples, while, we had only approximately 12 pixels per particle for 

the smallest particle-size sample. High-resolution scans with an improved number of pixels per particle 

are therefore desirable for improving the prediction of microstructural features via the two-point 

autocorrelation function. 

As demonstrated in this study, the autocorrelation function may be employed to estimate important 

microstructural characteristics of random, irregular porous media such as the sintered particle wicks. 

Once estimated, the pore and particle sizes and the specific surface area may be employed in 

empirical/semi-empirical correlations for a coarse prediction of transport characteristics. Such 
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approximate methods prove themselves particularly useful when analyzing a large dataset of samples, or 

when assessing new materials. For a refined analysis, however, 3D computational domains are needed. 

The prediction of permeability, interfacial heat transfer coefficient and effective thermal conductivity 

employing the JQA approach is discussed in the following section.    

 

6.2. Analysis of Transport in Reconstructed Porous Media 

6.2.1 Porous medium reconstruction 

The modified JQA approach detailed in Section 3.2.1 is employed for generating 3D microstructures, 

based on three starting images for each of the large, intermediate and small particle-size samples. Figure 5 

shows a starting 2D image, the unsmoothed 3D data generated along with a 2D slice through the cross-

section, and the corresponding smoothed 3D data along with a 2D slice. The data shown correspond to a 

250-355 µm sample. As indicated in Figure 5, the microstructure generated by the JQA approach is 

rough. Further, as may be noted from the slope of the autocorrelation function in Figure 6 a), it has a 

larger specific surface area relative to the starting microstructure. In [28], a post-processing operation was 

performed to match the hydraulic diameter of the reconstructed volume with that obtained via the starting 

2D image, to correct this artifact. In this work, we employ an alternative approach based on Gaussian 

smoothing.  

Gaussian smoothing is an image-processing technique used for blurring (smoothing) images so as to 

reduce the inherent noise. In this approach, the smoothing operation is carried out via the application of a 

Gaussian kernel to each pixel in the image. The Gaussian kernel requires the parameters sigma and filter 

size [36] for performing the smoothing, with larger values of sigma leading to increased blurring 

(smoothing). A sigma value of 2.0 was found to preserve both the slope and correlation distance for the 

various cases investigated here. The recommended value of 6×sigma (= 12) is employed for the filter size 

[36]. Figure 6 a) shows a comparison of the autocorrelation functions obtained from the starting 2D 

image, a slice from the generated unsmoothed 3D data, a slice from the smoothed 3D data smoothed via 

the hydraulic radius-matching procedure detailed in [28], and also a slice from the Gaussian smoothed 3D 

data. Although the autocorrelation function computed from the as-generated data preserves the correlation 

length and mean particle size well, it has a large slope at the origin. In contrast, the smoothing procedure 

from [28] is observed to preserve the slope of the autocorrelation function (surface area), but leads to an 

increase in correlation length and mean particle size, which may be attributed to the non-local smoothing 

nature of this approach, as discussed in Section 3.2.1. Instead, our approach is a local smoothing 

approach, and preserves both the slope as well as the mean particle size and correlation length, as 

indicated in Figure 6. In the light of these observations, we employ Gaussian smoothing for all cases 

investigated in this work. The smoothed data is then converted to a computational mesh for analyzing 
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transport characteristics, viz., permeability, interfacial heat transfer coefficient and effective thermal 

conductivity. Figure 6 b) shows similarly computed autocorrelation functions, obtained from various 

cross-sectional images constituting a Gaussian smoothing-based reconstructed 3D stack for the 250-355 

µm case. 

 

6.2.2 Permeability and interfacial Nusselt number 

The permeability of sintered beds is typically predicted via the Kozeny-Carman (K-C) correlation, 

Eq. (11). Computationally, permeability K may be estimated by imposing velocity inlet-pressure outlet 

boundary conditions on either ends of the domain, and correlating the observed pressure drop to the 

superficial velocity Umod via the modified Darcy equation [6]: 
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Table 2 shows permeability values predicted in this study, compared against those from the Kozeny-

Carman correlation as well as permeability data from [6], in which x-ray microtomography was employed 

for reconstructing the 3D microstructure for numerically estimating fluid-thermal transport properties of 

sintered wicks. Predictions from the current work are in excellent agreement with the microtomography 

data, proving a successful reconstruction. This is expected, since we start with a matched porosity during 

reconstruction. Further, we also ensure that the slope of the autocorrelation function, as well as the 

correlation length, are matched with those from the starting 2D image, as shown in Figure 6 a). On the 

other hand, the Kozeny-Carmen correlation, developed for packed beds of unsintered particles, predicts 

the trends reasonably well, but significantly over-predicts the values themselves. Similar observations 

were also reported in [6], and the mismatch was attributed to non-spherical particles with rough 

interfaces. Table 2 also shows values of Ergun’s coefficient CE computed in this study, along with those 

from [6]. As indicated, there are significant differences with respect to [6] in the computed Ergun’s 

coefficient data, which may be attributed to the limited information contained in the two-point 

autocorrelation functions employed for reconstruction in this study. For higher Reynolds numbers, and 

better reconstruction of particulate media, alternative stochastic information such as the chord length 

distribution function and the lineal path function (e.g., [19], [26]) may be employed.  

Interfacial heat transfer coefficient is computed for a constant heat flux case as in our earlier studies 

([6, [30]). A constant heat flux boundary condition is imposed at the solid-fluid interface, while the 

domain boundaries in the transverse direction are considered adiabatic. Since the flow field is decoupled 

from the energy equation, we begin the heat transfer computations with the converged flow-field solution, 

and once the energy equation is also converged, interfacial heat transfer coefficient and Nusselt number 

are computed as shown below: 
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In this equation, 
sfT is the average temperature of the solid-fluid interface, while 

fT  is the average 

fluid temperature in the pore region. Figure 7 shows a comparison of Nusselt number data computed from 

this work, along with those from [6] in which x-ray microtomography was employed to reconstruct the 

3D geometry. Also shown are uncertainty bars from [6]. As may be noted, the data are in very good 

agreement with the past computations for low Re, falling within the observed uncertainties. For higher 

Re, the data are seen to diverge from previous computations; for higher Re, reconstruction based on the 

S2 function may be unable to capture geometric characteristics adequately, and alternative stochastic 

functions such as the chord-length distribution function may need to be employed for improved 

prediction. 

 

6.2.3 Effective thermal conductivity 

For computing effective thermal conductivity in a direction xi , a temperature gradient 
i

T

x

 
 
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 is 

imposed across the two ends of the cuboidal sample, holding the lateral faces adiabatic. No pressure 

gradient is imposed and fluid in the pore space is considered static. The effective thermal conductivity, 

keff, is calculated for water-saturated cases, as: 
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In contrast to values of permeability and interfacial Nusselt number, effective thermal conductivity 

values of the reconstructed samples demonstrated a negligible influence of particle or pore size and 

depended mainly on the porosity. This may be attributed to the limited information contained in the two-

point autocorrelation function S2 employed for reconstructions. The autocorrelation function does not 

seem to capture the information on inter-particle contact (neck) size, which is critical to thermal 

conduction in packed/sintered beds, as noted in [37]. To delineate this better, sample 2D microstructures 

from [6] are considered. 

In [8], a sintering model was developed to predict microstructural evolution during sintering of 

randomly packed circular and spherical particles in two and three dimensions, respectively. The model 

was employed to quantify the influence of sintering neck size on thermal conductivity and permeability. 

Here, we took three snapshots from the 2D random spherical bed case from [8], as shown in Figure 8. 
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Also shown are the corresponding normalized autocorrelation functions. As may be observed, sintering 

leads to improved inter-particle contact at the expense of decreasing surface area [8]. The corresponding 

autocorrelation function computed also indicates a decreasing slope. However, the growth of the sintering 

neck is not explicitly captured – S2 simply captures the increase in particle size as sintering progresses. 

The 3D microstructures reconstructed via S2 are also expected to follow a similar behavior. The 

limitations of S2-based thermal conductivity predictions were also demonstrated in [38], in which other 

higher-order descriptors such as the chord length distribution function, and lineal path function were 

employed to improve thermal conductivity predictions. However, the improvement in thermal 

conductivity predictions was found to be small despite a significant increase in computational cost. 

Furthermore, as the starting microstructure prior to filtering was a Gaussian noise image, it was 

observed that the effective thermal conductivity values were very similar to those obtained via the 

effective medium theory (EMT) model [37]: 
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Here, k1 is the thermal conductivity of the surrounding matrix (water), while k2 is the thermal conductivity 

of the dispersed phase (copper). This model assumes a random dispersion of the phases, and as shown in 

[37], provides a suitable bound for predicting effective thermal conductivity of porous materials. In our 

previous study we demonstrated that EMT model may be employed as an alternative to the recommended 

Maxwell models (e.g., [1]) for predicting effective thermal conductivity of sintered beds. The values 

predicted via the EMT model were within ± 50% of our detailed computations, in contrast to Maxwell 

models which resulted in differences on the order of ± 200%. 

Figure 9 shows a comparison of normalized thermal conductivity computed via the generated 3D 

microstructures and the EMT model, Eq. (24), for a range of porosity values. Also shown are the Maxwell 

models [1], and a few data points from the literature, Bodla et al. [6], and Januszwski et al. [39] obtained 

for sintered beds manufactured in the range of 60-70% porosity. The lower Maxwell model assumes 

bicontinuous behavior in the matrix phase, while the upper Maxwell model assumes bicontinuous 

behavior of the particulate phase. As may be observed, the S2 reconstruction-based simulations and the 

EMT model are in excellent agreement with each other in the range of 0-60% porosity. However, the 

EMT model has a percolation threshold of about 60%, and the thermal conductivity value from this model 

begins to decreases rapidly around this value. Similarly, the lower Maxwell model decreases rapidly with 

porosity as indicated in Figure 9, and effective thermal conductivity values predicted via this model are 

lower than those obtained via the EMT model.  On the other hand, our generated microstructures show 

bicontinuous behavior till about 80% porosity; consequently, our approach provides a higher value of 

effective thermal conductivity as compared to the EMT model in this range. However, our values are still 
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considerably lower than the predictions via the upper Maxwell model, as the latter model assumes 

bicontinuous behavior of the particulate phase, indicating that the connectivity generated by our 

reconstruction lies in between that assumed by the two Maxwell models.  

 

6.3. Porous Media Design 

In addition to analyzing existing microstructures, the current methodology enables the development 

of new designed porous microstructures. The model for the autocorrelation function, Eq. (16), is 

employed and 3D data generated via the procedure detailed here.  

Nine cases, three each with varying values for parameters b, c and d in Eq. (16), are analyzed for their 

influence on the generated microstructures. The starting values for these parameters are obtained by 

fitting the autocorrelation function for an intermediate particle-size sample case; the exact values 

considered are listed in Table 3. Also shown are values of coefficients for samples from the smallest and 

largest particle-size cases. A few snapshots of the generated dataset are shown as insets in Figure 10 and 

in Figure 11. 

Figure 10 shows a comparison of autocorrelation functions for a few cases. Also plotted are 

corresponding autocorrelation functions computed from an unsmoothed and smoothed slice from the 

generated 3D data set. As indicated, parameter b controls the correlation length and particle size of the 

porous material. Similarly, parameter c controls the extent of damping in the oscillations, while parameter 

d controls the specific surface area. 

The employed reconstruction approach is found to predict the correlation functions of the damped 

cases well. However, for the case c1 in Table 3, which corresponds to a significantly under-damped case, 

the approach fails to provide a useful reconstruction. This is again attributable to the limited information 

contained in the autocorrelation function. To further confirm this behavior, test cases from [40] and [14] 

corresponding to a sandstone microstructure, and a synthetically generated 3D spherical particle bed with 

overlapping particles, were considered. Figure 12 shows the starting image, along with three 

reconstructed slices. The sandstone microstructure, which has fewer oscillations (less rounded particles), 

is reconstructed quite well. However, for the latter case which has rounded particles which exhibit 

oscillatory behavior in the S2 function, the clear distinction of individual particles (roundness) is lost in 

the reconstruction process. Similar observations were also reported in [38], in which a hybrid function 

incorporating the chord length distribution function and the autocorrelation function was proposed as a 

suitable alternative to employing the autocorrelation function alone. Nonetheless, commercial sintered 

wicks demonstrated fewer oscillations in the autocorrelation (Figure 1 and Figure 4), and this model may 

still be employed to obtain a successful reconstruction. Such designed porous materials with controlled 

features may eventually be manufactured via recently developed novel additive manufacturing processes 
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such as 3D printing. Table 3 also shows computed values of permeability and Ergun’s coefficient for the 

various cases investigated. As may be noted, an increase in the absolute value of parameters b and d 

typically lead to decreasing permeability, as they control correlation length and pore size, respectively, 

both of which affect permeability. On the other hand, permeability values were relatively invariant with 

respect to parameter c. 

 

7. Conclusions 

This study investigates the applicability of stochastic functions measured from two-dimensional 

images in predicting transport properties of random sintered beds. Individual 2D images from 

microtomography data corresponding to three commercial wick structures are employed for predicting 

their microstructural characteristics and transport properties. It is demonstrated that the two-point 

autocorrelation function may be readily used to predict pore size, particle size and specific surface area 

accurately. These characteristics appear in fluid-thermal transport property correlations developed for 

porous media such as the widely used Kozeny-Carman correlation, Eq. (11). Such a simple correlation-

based approach may be employed to gain a first estimate of transport characteristics of new materials or 

for analyzing large datasets. 

Furthermore, a 3D microstructure reconstruction procedure is developed and implemented for 

generating stochastically equivalent 3D beds based on a single 2D cross-section. Two-dimensional 

imaging, in contrast to its 3D counterpart, is well-developed. Hence, in the absence of readily available 

3D scan data, the methodology developed here may be used as an alternative for predicting transport 

characteristics. The present computations are successfully compared against simulations performed on  

previous geometries constructed from 3D scans. Furthermore, the influence of porosity on random 

sintered beds is also investigated. It is shown that, compared to the effective medium theory, our random 

microstructures have a significantly improved percolation threshold (porosity at which material ceases to 

be bi-continuous), and hence demonstrated a higher value of effective thermal conductivity.  

In addition to investigating existing random media, a novel model is proposed for controlling the 

microstructure of random wicks. Based on the characteristics of the autocorrelation function, and 

exploiting an analogy to a damped spring-mass system, a parameterized model similar to one available in 

the literature is proposed. The influence of various parameters in the model is investigated, and their 

physical relevance demonstrated. By combining optimization procedures with the proposed 

autocorrelation function, it is possible to optimally design wicks to achieve specific flow and heat transfer 

objectives. For example, wicks with desired capillary pressure may be designed by controlling parameter 

b in the proposed model. Similarly, values of parameters b and d may be tuned to attain desired values of 

permeability. These user-designed wicks may be fabricated using advances in 3D printing and other 
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additive manufacturing techniques, thereby radically improving the effectiveness of heat pipes and vapor 

chambers. 
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Table 1. Particle diameter, pore size and specific surface area from the present study, shown along 

with similar data from [6]. Mean values are shown, along with standard deviations in brackets. 

 

Sample Dp (µm) 
Dp,3D 

(µm) [6] 
DH (µm) 

DH, 3D 

(µm) [6] 

s (m
-1

) 

s from  

XMT  

(m
-1

) [6] 

45-75  

µm 

67.69 

(0.0) 
74.3 

69.69 

(1.50) 
62.64 

38953.2 

(1229.66) 
35281.31 

106-150  

µm 

111.69 

(3.78) 
102 

114.66 

(4.36) 
120.80 

24188 

(2859.72) 
21192.09 

250-355  

µm 

193.6 

(9.84) 
215 

239.4 

(11.39) 
236.47 

10894.2 

(486.64) 
10656.02 
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Table 2. Comparison of permeability K and Ergun’s coefficient CE. Mean values are shown, along 

with standard deviations in brackets. 

 

Sample 
Permeability  

(m
2
) 

Permeability 

from XMT  

(m
2
) [6] 

Permeability from 

Kozeny-Carman, 

Eq. (11) (m
2
)  

CE CE from [6] 

45-75  

µm 

2.67×10
-11

 

(8.1×10
-13

) 

2.51×10
-11 

(4.30×10
-13

) 
6.44×10

-11
 

0.381 

(8.58×10
-4

) 
0.266 

106-150  

µm 

5.11×10
-11

 

(1.39×10
-11

) 

7.89×10
-11 

(1.54×10
-11

) 
3.46×10

-10
 

0.379 

(2.99×10
-2

) 
0.267 

250-355  

µm 

2.68×10
-10

 

(9.11×10
-11

) 

2.63×10
-10 

(5.15×10
-11

) 
1.56×10

-9
 

0.440 

(6.55×10
-2

) 
0.249 
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Table 3. Computed permeability and Ergun’s coefficient data for various designed porous media. 

Also shown are fitted values of coefficients in Eq.(16), obtained for existing samples. 

 

Sample/case B c d 
Permeability 

(m
2
) 

CE 

45-75 µm 0.458 0.7 -0.215 - - 

106-150 µm 0.278 0.735 -0.139 - - 

250-355µm 0.076 0.854 -0.085 - - 

b1 0.2 0.735 -0.139 4.37×10
-11

 0.448 

b2 0.4 0.735 -0.139 2.71×10
-11

 0.434 

b3 0.6 0.735 -0.139 2.70×10
-11

 0.380 

c1 0.278 0.3 -0.139 4.70×10
-11

 0.525 

c2 0.278 0.6 -0.139 5.43×10
-11

 0.443 

c3 0.278 0.9 -0.139 5.64×10
-11

 0.456 

d1 0.278 0.735 -0.05 5.53×10
-11

 0.400 

d2 0.278 0.735 -0.2 4.47×10
-11

 0.446 

d3 0.278 0.735 -0.4 2.42×10
-11

 0.502 
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Figure 1. a) Mesh for computing autocorrelation function. Pixelated grid is shown along with a few 

lattice points used for computation, and b) sample autocorrelation function computed for the three cases 

used in this study, shown along with the microtomography slices employed. 
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Figure 2. Typical workflow employed in this study for generating stochastically equivalent 3D 

microstructures from 2D images. . 
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Figure 3. a) Solid, and b) fluid (pore) domain with boundary conditions for the flow problem, shown 

for a reconstructed microstructure corresponding to the 250-355 µm case. Also shown is an inset with a 

zoomed-in view of mesh. 
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Figure 4.a) Original 2D microtomography image, b) corresponding thresholded and binarized image, 

and c) autocorrelation function computed from various starting images, shown for the 45-75 µm case. 

Also shown is a zoomed-in view around the correlation length, demonstrating oscillations in the 

autocorrelation function. 
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Figure 5. 3D reconstruction from thin sections – a) starting image, b) correlated, unsmoothed 3D 

image, and c) Gaussian smoothed 3D image, shown for the largest particle size. Insets in b) and c), 

demonstrate the effect of smoothing.  
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Figure 6. a) Comparison of autocorrelation functions computed from the original and resultant 

microstructures reconstructed using different methods, and b) variation of autocorrelation functions 

computed via Gaussian smoothed reconstructed data for multiple 2D cross-sections within the 

reconstructed 3D stack.  
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Figure 7. Prediction of Nusselt number as a function of modified Peclet number, compared against 

computations from [6]. 
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Figure 8. Effect of sintering on normalized autocorrelation function, shown for the case of randomly 

packed circles from [8]. 
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Figure 9. Effective thermal conductivity prediction, and comparison against literature. 
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Figure 10. Influence of parameters,( a) b, (b) c, and (c) d (Eq. (16)) on autocorrelation function, 

shown along with sample 2D images of generated microstructures.  
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Figure 11. Representative cross-sections from the reconstructed 3D stack, corresponding to different 

values for parameters, b, c, and d, respectively. Values for the parameters along with computed 

permeability values may be found in Table 3.  
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Figure 12. Qualitative comparison of the developed reconstruction procedure shown for a) 

homogeneous sandstone from [40], and b) random hard spheres from [14].  
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