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Direct Simulation of Transport in
Open-Cell Metal Foam
Flows in porous media may be modeled using two major classes of approaches: (a) a
macroscopic approach, where volume-averaged semiempirical equations are used to de-
scribe flow characteristics, and (b) a microscopic approach, where small-scale flow de-
tails are simulated by considering the specific geometry of the porous medium. In the first
approach, small-scale details are ignored and the information so lost is represented in the
governing equations using an engineering model. In the second, the intricate geometry of
the porous structures is accounted for and the transport through these structures com-
puted. The latter approach is computationally expensive if the entire physical domain
were to be simulated. Computational time can be reduced by exploiting periodicity when
it exists. In the present work we carry out a direct simulation of the transport in an
open-cell metal foam using a periodic unit cell. The foam geometry is created by assum-
ing the pore to be spherical. The spheres are located at the vertices and at the center of
the unit cell. The periodic foam geometry is obtained by subtracting the unit cell cube
from the spheres. Fluid and heat flow are computed in the periodic unit cell. Our objec-
tive in the present study is to obtain the effective thermal conductivity, pressure drop, and
local heat transfer coefficient from a consistent direct simulation of the open-cell foam
structure. The computed values compare well with the existing experimental measure-
ments and semiempirical models for porosities greater than 94%. The results and the
merits of the present approach are discussed. �DOI: 10.1115/1.2227038�

Introduction
Metal foams are a class of materials with low densities and

novel physical, mechanical, thermal, electrical, and acoustic prop-
erties. They offer great potential for use as lightweight structures,
and for energy absorption and thermal management applications
�1�. Metal foams can offer effective solutions to many thermal
management problems because of their large surface area to vol-
ume ratio and high permeability to fluids �2–4�.

Flows in porous media may be modeled using two major ap-
proaches: �a� a macroscopic approach, where volume-averaged
semiempirical equations are used to describe flow characteristics,
and �b� a microscopic approach, where the small-scale flow de-
tails are simulated by considering the specific geometry of the
porous medium. In the former approach, small-scale details are
ignored and the information so lost is represented in the governing
equations using an engineering model. In the latter approach, the
intricate geometry of the porous structures is accounted for and
the flow through these structures is computed. The latter approach
is computationally expensive if the entire physical domain were to
be simulated. Computational time can be reduced by exploiting
periodicity in situations where periodicity is obtained.

Resolution of flow and heat transfer at the pore scale is neces-
sary for a number of reasons when modeling metal foams. De-
tailed modeling of pore-scale heat transfer has been used to yield
the effective thermal conductivity of the foam for situations with
no flow. Existing models have frequently used idealized �and ap-
proximate� geometries assuming one-dimensional conduction heat
transfer with a free parameter that is adjusted to match experimen-
tal results �5,6�. Another use for pore-scale models is to better
characterize the pressure drop and local heat transfer coefficient
during flow and convective heat transfer through the foam.
Though there have been a few studies that take this approach
�7,8�, the range of Reynolds numbers considered does not ad-

equately cover metal-PCM systems where the pore Reynolds
numbers are very small �Re�1� �9�. The geometric representation
of the foam varies greatly in the literature. Past investigators have
represented the open-celled foam structure using �i� simple cubic
unit cells consisting of slender circular cylinders �3�, �ii� cubic
unit cells consisting of square cylinders �10�, �iii� truncated tetra-
kaidecahedron unit cells with triangular strands �fibers� �7�, and
�iv� a Weaire-Phelan unit cell �8�. Results from these models have
included effective thermal conductivity and pressure drop calcu-
lations, but no information has been reported on local heat trans-
fer. The local heat transfer coefficients are very important for clos-
ing �coupling� the solid and fluid energy equations in the two-
medium volume-averaged models �9,11–13�. Also, the unit cell
used to predict effective thermal conductivity is frequently differ-
ent from the ones used for flow calculations �14�. Our objective in
the present study is to obtain the effective thermal conductivity,
pressure drop, and local heat transfer coefficient from a consistent
direct simulation of the open-cell foam structure.

Foam Geometry
A three-dimensional periodic module is identified for the direct

simulation of open-cell foams. The geometry chosen should be
space filling and should have minimum surface energy. This is
required because of the nature of the foaming process. A popular
method for foaming metals such as aluminum is by blowing a
foaming gas through molten metal with ceramic particles �used
for stabilization� from below �1�. The gas bubbles developed are
free to move around and pack themselves. The liquid metal accu-
mulates at the interstices of the bubbles. For the process to reach
a steady state, the bubbles must attain an equilibrium, i.e., a mini-
mum surface energy state. Once the molten foam is solidified, the
open-cell foam is rolled into sheets or into any other desired form
�1�. Until recently, the body-centered-cubic �BCC� structure �simi-
lar to Kelvin’s tetrakaidecahedron unit cell �15,16��, has been
shown to have minimum surface-area to volume ratio compared to
all other space filling structures �17�. Figure 1 shows a schematic
diagram of a BCC unit cell. Though other choices such as the
Weaire-Phelan �WP� unit cell are possible to model, a BCC unit
cell model is used here for simplicity.
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In the present approach for foam geometry creation, the shape
of the pore is assumed to be spherical and spheres of equal vol-
umes are located at the vertices of the cell and at the center of the
unit cell. The ideal periodic foam geometry is obtained by sub-
tracting the unit cell cube from the spheres located at the body
centers and vertices of the cube, as shown in Fig. 2. For open-cell
structures, the sphere radius must be larger than half the side of
the cube. The cross section of the foam ligaments are convex
triangles �Plateau borders� and they all meet at symmetric tetra-
hedral vertices �17�. It may be noted that there is a nonuniform
distribution of metal mass along the length of the ligament with
more mass accumulating at the vertices �nodes�, resulting in a
thinning at the center of the ligament, as experimentally observed
in foam samples by many authors �1,6,14,18�. Figure 3 shows
some sample open-cell structures. The distinguishing feature of
this approach is that �i� the geometry creation is simple; �ii� it
captures many of the important features of real foams; and �iii�
meshing of the geometry is easier compared to the approach car-
ried out in �8� for modeling pressure drop. In �8�, the foam was
represented by an ideal Weaire-Phelan unit-cell obtained using
Surface Evolver, a surface minimization software package. The
idealized geometry was exported to a mesh generation program.
After a series of post-processing steps on the geometry obtained
from Surface Evolver, an unstructured volume mesh was gener-
ated for CFD calculations.

The expression for the porosity of the periodic module and the
fluid inlet area of the periodic face can be obtained by accounting
for the overlapping sphere volumes and circle areas, respectively.
The intersection volume �lens volume� between two overlapping
spheres is given by the relation

Vint =
�

12
�4R + s��2R − s�2, �1�

where s is the center-to-center distance between the in-line
spheres and R is the radius of the sphere. The body-centered
sphere intersects with eight spheres on the vertices of the cube and
hence the volume of the sphere at the body center of the cube is

Vbc� =
4�

3
R3 − 8�Vint

2
� �2�

In addition to the sphere at the body center, there is one additional
sphere volume contributed by the eight segments of the sphere at
the vertices. Hence the total sphere volume not accounting for the
spherical caps �see Fig. 2�b�� at the intersection between the face
of the cube �plane� and the spheres is twice the Vbc� given in Eq.
�2�. The volume occupied by the spherical cap �the protruding
volume from the unit cube for sphere diameter larger than length
of the cube� due to a sphere intersecting a plane is given by the
expression

Vsc� =
�

3
�R − a/2�2�2R + a/2�

There are six spherical caps for the six corresponding faces of the
cube and hence the volume of the fluid space in the cube is given
by the expression

Vf� = 2�4�

3
R3 −

�

3
�4R + s��2R − s�2 − 2��R − a/2�2�2R + a/2��

and, hence, the porosity is given by the relation

Fig. 1 Schematic of the body-centered-cubic model

Fig. 2 Schematic diagram of „a… the geometry creation and „b…
a periodic unit cell

Fig. 3 Sample images of „a… the Representative Elementary
Volume „REV… and „b… the computational mesh of the solid-
foam „fluid zone grid points are omitted for clarity…
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� =
Vf�

V

=

2�4�

3
R3 −

�

3
�4R + s��2R − s�2 − 2��R − a/2�2�2R + a/2��

a3

�3�

In the above expressions, a is the length of the side of the unit
cell. Similarly, the inlet face area for the fluid can be obtained by
subtracting the circle area and the intersection area between the
sphere and the plane from the face area. The inlet face area is
given by the expression

Ain,f = �R2 − 2�2R2 cos−1� s

2R
� −

1

2
s�4R2 − s2	 + ��4R2 − a2

4
�
�4�

It should be noted that the center-to-center distance ��3a/2� for
the volume �porosity� calculation is different from the center-to-
center distance �a /2� for the area calculation. An effective pore
diameter was extracted, setting Eq. �4� equal to the area of an
equivalent circle. It should be noted that exactly at a sphere radius
of 0.5, the BCC structure ceases to be a complete open structure,
and the corresponding porosity at this condition is 0.94. The im-
plications of this porosity on model fidelity will be discussed later
in this paper.

Mathematical and Numerical Modeling

Flow and Temperature Periodicity. Consider a module with

periodic boundaries separated by a constant translation vector �L� �,
as shown in Fig. 4. For simplicity, a two-dimensional domain is
shown. This module represents one of a series of periodic modules

translated by L� . It should be noted that there may be other periodic
boundaries in the module, but there is no net inflow through any
of these boundaries. For periodic boundaries, according to �19�,
the following relationship holds for the velocity and the pressure
at any position r�:

ui�r�� = ui�r� + L� � = ui�r� + 2L� � = ¯

P�r�� − P�r� + L� � = P�r� + L� � − P�r� + 2L� � = ¯

For periodic flows, the pressure gradient can be divided into
two components – the gradient of the periodic component, �p� /�xi,
and the gradient of a linearly varying component, ��p̄ /�xi�e�L:

�P

�xi
= −

� p̄

�xi
e�L,i +

�p�
�xi

where eL,i is the ith component of the unit vector in the direction

L� .
For given heat-flux boundary conditions, the shape of the tem-

perature field becomes constant from module to module. Conse-
quently, the periodic condition for the temperature is given by

T�r�� − Tb�r�� = T�r� + L� � − Tb�r� + L� � = T�r� + 2L� � − Tb�r� + 2L� � = ¯

Here the bulk temperature Tb is defined as


 

A

�uieL,i�T dA


 

A

�uieL,i�dA

= 0

where A is the area of the cross section.

Governing Equations. The governing flow and heat transfer
equations for periodic fully developed incompressible, steady flow
of a Newtonian fluid are �19,20�

�

�xi
��ui� = 0 �5�

�

�xj
��uiuj� =

�p

�xi
+

�

�xj
��

�ui

�xj
�

i

−
� p̄

�xi
eL,i �6�

�

�xi
��uiCpT� =

�

�xi
�k

�T

�xi
� �7�

The above equations assume that the flow is thermally and hydro-
dynamically fully developed. In Eq. �6�, the terms involving
�2 /�x2 have been included to account for the large local stream-
wise gradients that may occur in periodically fully developed
flows. The quantity �p̄ /�xi in Eq. �6� is assigned a priori, and
controls the mass flow rate through the module, and hence the
pore Reynolds number. In order to sustain periodicity, all fluid
properties are assumed to be independent of temperature. It should
be noted that on the solid bounding walls a no-slip boundary
condition is imposed for the velocities and a constant heat flux is
specified for the energy equation. Details of the mathematical
model are available in �19�. An extensive treatment of the numeri-
cal method for the periodic flow and heat transfer on unstructured
meshes along with the implementation is given in �20�.

The periodic unit cell geometry was created using the commer-
cial software GAMBIT �21�. The geometry was meshed using
hybrid �tetrahedral and hexagonal� elements in GAMBIT by
specifying the minimum edge length. The mesh so created was
exported to the commercial code FLUENT �22� for flow simula-
tions. A second-order upwind scheme was used for the flow and
heat transfer calculations. A colocated pressure-velocity formula-
tion in conjunction with the SIMPLE algorithm was used for ob-
taining the velocity fields, and the linearized systems of equations
are solved using an algebraic multigrid algorithm. Details of the
numerical method may be found in �23�. The calculations were
terminated when the �scaled� residual �22� had dropped below
10−7 for all governing equations.

Grid independence of the solution for the meshes used in the
present simulations was established. A pore Reynolds number of
20, a Prandtl number of 0.71, and a porosity of 0.965 were used
for this set of calculations. Grid sensitivity was tested on three
different grids: grid 1 �106,520 cells�, grid 2 �188,885 cells�, and
grid 3 �383,230 cells�. For grid 1, deviations of 2.6% and 0.5% in
the friction factor and Nusselt number were found with respect to
grid 3. For grid 2, the corresponding deviations with respect to
grid 3 were 0.9% and 0.4%. The calculations reported in this
paper were therefore performed on grid 2.

Results and Discussion

Effective Thermal Conductivity. In addition to the friction
factor and Nusselt number results described above, the effective
thermal conductivity of the foam is computed by considering heat
conduction through the solid structure, in the absence of fluid
flow. The effective thermal conductivity is computed numerically

Fig. 4 Schematic illustration of a periodic domain
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by solving the conduction heat transfer equation �� ·k �T=0�.
Only a single periodic module is used in the analysis. Using the
periodicity assumption, each module in the heat flow direction
experiences an equal temperature drop, i.e.,

�T�r�� = �T�r� + L� � = �T�r� − L� �
The numerical implementation of this type of periodic condition
in the unstructured finite volume framework is described in �24�.
Computations are performed by choosing an arbitrary temperature
drop �T across the module in the heat flow direction and finding
the resulting heat transfer rate at the periodic boundaries from the
simulation results. The effective thermal conductivity of the mod-
ule is then given by the expression

kef f =

−

Ap

J · dA

�TAp
�8�

In the above equation, J is the diffusion flux vector at the periodic
face obtained from the simulation, dA is the outward pointing
elemental face, area vector on the periodic face, and Ap is the area
of the periodic face. Computations are performed using a modified
version of the commercial code FLUENT �22�. It is noted that
conduction through the solid foam and the fluid are considered for
the calculation of the effective thermal conductivity of the mod-
ule.

Lemlich Theory. Lemlich �25� developed a theory to predict
the electrical conductivity of a polyhedral liquid foam of high
porosity. The electrical conduction is viewed as occurring only
through the Plateau border �ligament in the case of solid foams�
along its axis, and not through its periphery. He found that the
effective electrical conductivity of the foam was related to the
electrical conductivity of the liquid through the following relation:

�eff = �l

�1 − ��
3

�9�

This expression can be used for the effective thermal conductivity
of the solid foam by exploiting the analogy between Ohm’s law
and Fourier’s law, so that

keff = ks

�1 − ��
3

�10�

Figures 5�a� and 5�b� show the predicted effective thermal con-
ductivity from the simulations as a function of porosity for an
open cell foam saturated with air and water, respectively. Also
plotted in Fig. 5 are measured experimental values �6,26� and
results from semiempirical models in the literature �6�. It can be
seen from Fig. 6 that the present model compares well with the
experiments �both air and water� and the other models for porosi-
ties above 0.94. The foam geometry ceases to be “open” celled for
porosities below 0.94, as previously discussed. It may be recalled
that the models of Boomsma and Poulikakos �5�, Calmidi and
Mahajan �6�, and Bhattacharya et al. �14� employ an adjustable
free parameter to match the experiments of Calmidi and Mahajan
�6�. The computations in this paper employ no such adjustable
parameter; here, the attempt is to directly compute the effective
conductivity from a detailed description of the foam geometry. It
may be noted, however, that deviations from experimental data
reflect the inadequacy of the present geometric model at lower
porosities.

The Lemlich theory predicts the thermal conductivity values
well when the interstitial fluid is air �Fig. 5�a��, but is less suc-
cessful with water saturation �Fig. 5�b��. This deviation for water
is primarily due to the assumption of negligible heat exchange to
the interstitial fluid in the model, and also due to the ignored
contribution of nodal resistance at the tetrahedral vertices. In the
case of water �whose thermal conductivity is an order of magni-
tude higher than that of air� the heat exchange between the foam

ligament and interstitial fluid is significant. Equation �10� may
thus be used for very satisfactory order-of-magnitude estimates of
effective thermal conductivity of open cell foams.

Pressure—Drop and Heat Transfer Coefficient. For the cal-
culations presented in this section, a constant heat flux boundary
condition was imposed on the ligament walls. Hence, conduction
through the ligaments of the foam is neglected. The streamwise
diffusion term is retained in the momentum and energy equations
which govern the generalized fully developed regime �19�.

For a fluid flowing through a porous medium, boundary layer
growth is significant only over an axial length of order �� KuD� /�,
where uD is �K/��dP/dx. Similarly, the thermal boundary layer

Fig. 5 Effective thermal conductivity as a function of porosity
for aluminum foam saturated with „a… air and „b… water. The
thermal conductivity values used for aluminum, air, and water
are 218, 0.0265, and 0.613 W/mK, respectively †5‡
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development length is on the order of KuD/�. The flow penetra-
tion is usually on the order of �K, the characteristic length scale.
It should be noted that unlike packed beds of spheres, the porosity
and permeability for open-cell foams are constant even close to
the solid boundary, i.e., the porosity does not change near the
boundaries. In this section, a representative case of porosity
=0.965 with air being the interstitial fluid is explained first. In the
later part of the section we discusses the predicted variation of the
friction factor and local Nusselt number.

Figure 6 shows the predicted dimensionless u-velocity field
normalized using the mean velocity for a porosity of 0.965. The
Reynolds number based on the effective diameter of the pore is 50
and the Prandtl number is 0.7. The effective diameter for all the
computations is obtained by setting Eq. �4� equal to that of the
area of a circle and backing out the effective diameter. Figure 6�b�
shows the dimensionless velocity field on slices at discrete loca-
tions along the axial direction of flow. Also plotted in Fig. 6�b� is

the velocity field at y /L=0 to illustrate the axial flow. The flow
enters at the periodic inlet, x /L=−0.5. Periodic conditions are
specified on all the boundary faces of the cubic unit cell. The solid
boundaries are demarcated in white in the figure. From Fig. 6 the
boundary layer development at the solid boundaries can be seen.
Due to the resistance offered by the foam ligaments, the mean
velocities are higher in some regions. Figure 7 shows the dimen-

sionless temperature distribution ��T−Tb� / �T̄s−Tb�� in the fluid
for a porosity value of 0.965. As expected, the dimensionless tem-
perature at the periodic inlet is low and thermal boundary layers
can be clearly seen in Fig. 7�b�. For Pe	1, thermal dispersion
effects become important �27,28�. The calculation of thermal dis-
persion conductivity is beyond the scope of this paper and is being
considered in ongoing work.

Figure 8 shows the predicted normalized permeability of the
foam as a function of porosity. Also shown are the reported ex-

Fig. 6 Predicted results for „a… dimensionless velocity field,
and „b… dimensionless velocity field at different locations „x /L
=−0.4, 0.0, 0.4, and y /L=0…

Fig. 7 Predicted results for „a… dimensionless temperature
field and „b… dimensionless temperature maps at different loca-
tions „x /L=−0.4, 0 and 0.4, and y /L=0…
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perimental measurements from Bhattacharya et al. �14�. The per-
meability was normalized with the mean pore diameter of the
open cell. The permeability was calculated from Darcy’s law, K
=−��umean� / ��p̄ /�xi� where the umean was obtained from the
specified periodic inlet mass flow rate and using Eq. �4�. The
pressure drop was obtained as an output from the simulations. It
should be noted that the reported permeability values are averaged
values over a Reynolds number range of 1 to 10, i.e., in the linear
Darcy regime.

Friction factors for the different cases considered are shown in
Fig. 9 for porosities greater than 0.94. Also plotted in Fig. 9 are
the experimental correlations from Paek et al. �26� and Vafai and
Tien �29�. The friction factor is defined as

f =
�−

� p̄

�xi
��K

�umean
2

and in the Darcy regime, the friction factor �f� scales as the in-
verse of the modified Reynolds number based on the flow pen-
etration length �f =1/ReK�. From Fig. 9, it can be seen that for the
porosity and modified Reynolds number �ReK�1–10� ranges
considered in this study, the flow of both air and water through the
foam is still in the Darcy regime. Deviations from 1/ReK behavior
were observed near a modified Reynolds number of approxi-
mately 20 for both air and water.

The Nusselt number for the foam was also calculated for the
different cases considered and is defined as

Nu =
hD

kf
=

q�D

kf�T̄s − Tb�

In the above equation T̄s is the averaged temperature of the foam.
Figure 10 shows the predicted Nusselt number as a function of the
square root of the Peclet number. This scale is readily obtained by
balancing the convective and axial diffusive fluxes. Also plotted in
Fig. 10 is the correlation from Calmidi and Mahajan computed for
air and for a porosity of 0.973 �30�. While their original correla-
tion was based on the fiber diameter, it is rescaled here in terms of
the mean pore diameter, with 0.00402 and 0.0005 m as the fiber
and pore diameters, respectively �30�. The curves for air and wa-

ter, respectively, are seen to collapse to a single line �unique
slope� for Ped�30, but they have different slopes due to the dif-
ference in the Prandtl number.

Conclusions
In this paper we present a consistent approach to the simulation

of open-cell foam geometries for the study of effective thermal
conductivity, friction factor, and Nusselt number. A BCC unit cell

Fig. 8 Predicted normalized permeability of the foam as a
function of the porosity of the foam. Also plotted are experi-
mental data points from Bhattacharya et al. †14‡.

Fig. 9 Predicted friction factor as a function of Reynolds num-
ber based on the flow penetration length „�K…. Also plotted are
experimental correlations from Paek et al. †26‡ and Vafai and
Tien †29‡. Symbols are defined in Fig. 10.

Fig. 10 Predicted Nusselt number based on effective diameter
of the pore as a function of the square root of the Peclet num-
ber †Red Pr/ „1−�…‡. Also plotted is the correlation from Calmidi
and Mahajan †30‡.
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model is used with no adjustable geometric parameters to match
experiments for all three computations, unlike previous published
work. For porosities higher than 94% ��	0.94�, the predicted
effective thermal conductivity, friction factor, and Nusselt number
from the simulations compare reasonably well with the existing
experimental and semiempirical models. However, the predicted
effective thermal conductivity departs from measurements for
low-porosity foams that are no longer open-celled; alternative
geometric descriptions must be investigated at these lower porosi-
ties. For �	0.94, the effective thermal conductivity scales as
ks�1−�� /3 for the range of porosities investigated, while the fric-
tion factor and Nusselt number scale as 1/ReK and �Pe/ �1
−���1/2, respectively. It is expected that thermal dispersion effects
will be significant for Pe	1 �27,28�. The present study may be
extended to evaluate thermal dispersion effects, as is being done
in ongoing work.
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Nomenclature
a 
 edge length of the unit cell, m
A 
 area, m2

Cp 
 specific heat capacity, J kg−1 K−1

D 
 diameter of the pore, m
Da 
 Darcy number

f 
 friction factor
h 
 heat transfer coefficient, Wm−2 K−1

J 
 diffusion flux vector, m2 s−1

K 
 permeability, m2

k 
 thermal conductivity, Wm−1 K−1

L 
 length of the periodic module, m
Nu 
 Nusselt number
q� 
 heat flux, Wm−2

Pr 
 Prandtl number
Pe 
 Peclet number
R 
 radius of the pore, m

Re 
 Reynolds number
s 
 center-to-center distance, m
T 
 temperature, K
t 
 time, s

u ,v ,w 
 velocities along x ,y ,z directions, ms−1

V 
 volume, m3

x ,y ,z 
 Cartesian coordinates

Greek Symbols
� 
 thermal diffusivity, m2 s−1

� 
 porosity
� 
 dynamic viscosity, kg m−1 s−1

� 
 density, kg m−3

Superscripts
− 
 average or mean

Subscripts
b 
 bulk

bc 
 body center
D 
 Darcian

eff 
 effective
f 
 fluid

in 
 inlet
int 
 intersection

s 
 solid
sa 
 surface area
sc 
 spherical cap
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