Purdue University Purdue e-Pubs

CTRC Research Publications

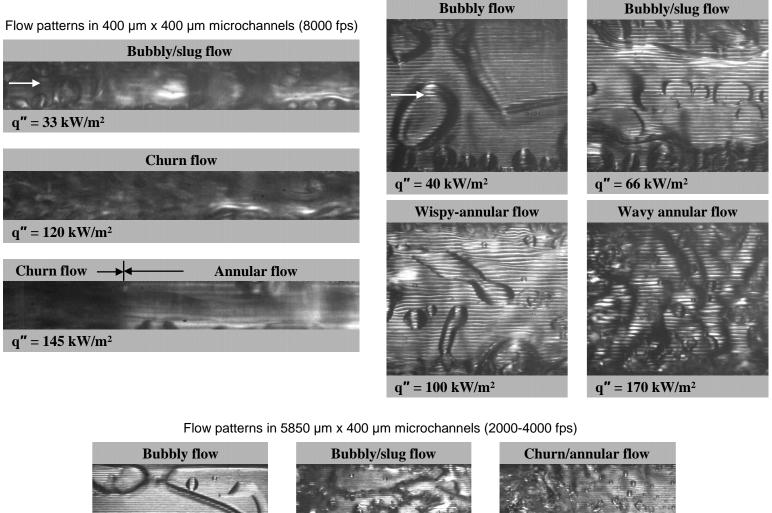
Cooling Technologies Research Center

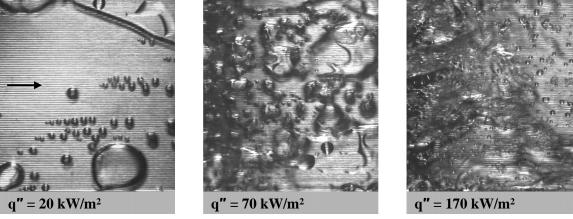
2008

Flow Patterns During Convective Boiling in Microchannels

T. Harirchian

S V. Garimella Purdue University, sureshg@purdue.edu


Follow this and additional works at: http://docs.lib.purdue.edu/coolingpubs


Harirchian, T. and Garimella, S V., "Flow Patterns During Convective Boiling in Microchannels" (2008). *CTRC Research Publications*. Paper 270.

http://docs.lib.purdue.edu/coolingpubs/270

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

Flow patterns in 2200 µm x 400 µm microchannels (6000 fps)

Flow Patterns During Convective Boiling in Microchannels

T. Harirchian and S. V. Garimella NSF Cooling Technologies Research Center School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2088

To develop a flow regime map for convective boiling in microchannels and to propose flow pattern-based models to predict the corresponding heat transfer coefficients, a thorough understanding of the existing flow patterns and their transitions is necessary. In the present study, high-speed photography is employed to observe the flow patterns in flow boiling of a dielectric liquid, FC-77, in parallel silicon microchannels of depth 400 μ m and widths ranging from 100 to 5850 μ m. In each test, liquid mass flux and inlet subcooling are fixed at 250 kg/m²s and 5°C, respectively, while the heat flux to the bottom of the heat sink is increased form zero to a value near the critical heat flux. Temperature and pressure are measured at several locations. A high-speed digital video camera is used to observe boiling patterns at frame rates ranging from 2000 to 24000 frames per second (fps). The images presented show a top view of the horizontal microchannels, at a location along the heat sink centerline and near the flow exit.