
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Publications from USDA-ARS / UNL Faculty U.S. Department of Agriculture: Agricultural 
Research Service, Lincoln, Nebraska 

2014 

The Molecular Basis of Peanut Allergy The Molecular Basis of Peanut Allergy 

Geoffrey A. Mueller 
National Institute of Environmental Health Sciences, mueller3@niehs.nih.gov 

Soheila J. Maleki 
United States Department of Agriculture, Agricultural Research Service, soheila.maleki@ars.usda.gov 

Lars C. Pedersen 
National Institute of Environmental Health Sciences 

Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub 

Mueller, Geoffrey A.; Maleki, Soheila J.; and Pedersen, Lars C., "The Molecular Basis of Peanut Allergy" 
(2014). Publications from USDA-ARS / UNL Faculty. 1597. 
https://digitalcommons.unl.edu/usdaarsfacpub/1597 

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research 
Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in 
Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of 
Nebraska - Lincoln. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/77942016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/usdaarsfacpub
https://digitalcommons.unl.edu/usdaars
https://digitalcommons.unl.edu/usdaars
https://digitalcommons.unl.edu/usdaarsfacpub?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F1597&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/usdaarsfacpub/1597?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F1597&utm_medium=PDF&utm_campaign=PDFCoverPages


ALLERGENS (RK BUSH AND JAWOODFOLK, SECTION EDITORS)

The Molecular Basis of Peanut Allergy

Geoffrey A. Mueller & Soheila J. Maleki &
Lars C. Pedersen

Published online: 16 March 2014
# Springer Science+Business Media New York (outside the USA) 2014

Abstract Peanut allergens can trigger a potent and sometimes
dangerous immune response in an increasing number of people.
The molecular structures of these allergens form the basis for
understanding this response. This review describes the current-
ly known peanut allergen structures and discusses how modi-
fications both enzymatic and non-enzymatic affect digestion,
innate immune recognition, and IgE interactions. The allergen
structures help explain cross-reactivity among allergens from
different sources, which is useful in improving patient diagnos-
tics. Surprisingly, it was recently noted that similar short pep-
tide sequences among unrelated peanut allergens could also be
a source of cross-reactivity. The molecular features of peanut
allergens continue to inform predictions and provide new re-
search directions in the study of allergic disease.

Keywords Peanut allergy .Molecular basis . Peanut
allergens .Major allergens .Minor allergens . Protein
structures . Cross-reactivity . Molecular modifications

Introduction

Allergies to peanuts are a major public health concern. Recent
data suggests that the incidence is increasing and currently 1–
2 % of Americans, or nearly 3 million people, are allergic to
peanuts [1]. Not surprisingly, the basis for peanut allergy has
been the subject of extensive research. In this review, we hope

to highlight new data focused on the molecular recognition of
peanut allergens by the adaptive and innate immune system.
This review will delve into two recent major topics: cross-
reactivity among non-homologous peanut and nut allergens
and molecular modifications to peanuts and their immunolog-
ical consequences. We briefly discuss IgE epitopes in general,
as this topic has recently been well reviewed [2••, 3••, 4]. We
begin by discussing the molecular structures of the peanut
allergens in order to set the stage for these topics.

Protein Structures of Peanut Allergens

Greater than 50 % of all plant food allergens can be categorized
into just four structural protein families; prolamin superfamily,
cupin superfamily, profilins, and Bet v-1-related proteins [5].
Almost all of these are either storage or plant defense-related
proteins [6]. Peanuts harbor 12 allergens and multiple isoforms
recognized by the Allergen Nomenclature Sub-Committee of
the International Union of Immunological Societies, 70 % of
which fall into these families. These 12 allergens, can be cate-
gorized into the four most common food allergen families: the
Cupin superfamily (Ara h 1, 3), the Prolamin superfamily (Ara h
2, 6, 7, 9), the Profilin family (Ara h 5), and Bet v-1-related
proteins (Ara h 8), as well as two additional families, Oleosin
(Ara h 10,11) and Defensin (Ara h 12, 13). Currently, structural
data exist for Ara h 1, 2, 3, 5, 6, and 8 [7•, 8•, 9–13]. We
subdivided these structural descriptions into the major allergens
that have the highest prevalence of IgE binding, and the minor
allergens, which have less IgE-binding prevalence but signifi-
cant cross reactivity with allergens from other sources.

Major Allergens

Allergens in a food are considered major if they are recognized
by the serum IgE of greater than 50% of the allergic population.
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The major allergens in peanuts are generally considered to be
Ara h 1 and Ara h 3, which are members of the cupin super-
family of proteins, and Ara h 2 and Ara h 6, which are members
of the prolamin superfamily. As can be inferred from the de-
scriptions below, a remarkable amount of structural, biophysical,
and bioinformatic information on these allergens has been
obtained.

Cupins are a functionally diverse superfamily that can have
low levels of sequence conservation yet maintain a high degree
of structural similarity in a conservedβ-barrel motif [14]. Ara h
1, a member of this superfamily, is a 65-kDa, 7S globulin or
vicilin seed storage protein. Attempts by multiple groups to
solve the structure of the native protein were unsuccessful;
however, attempts with recombinant expressed core domains
resulted in two crystal structures [7•, 8•]. Ara h 1 forms a
symmetrical trimer with a 3-fold axis running between the
monomers (Fig. 1). Each monomer is comprised of two cupin
domains (known as a bicupin) with small cavities flanked byα-
helices. These two cupin domains share limited sequence iden-
tity (15 %) but are structurally conserved (r.m.s.d=1.9 Å for
153 Cαs) and are thought to have evolved from a gene dupli-
cation event of an ancestral prokaryotic gene [15]. It has been
suggested that the central cavities formed by the β-barrel may
bind ligands [7•]. Sequence variations between the two cavities
leave open the possibility that the ligands could be different.
The cupin domains of the individual proteins are related by a
pseudo-two-fold axis that is approximately perpendicular to the
3-fold axis. Theα-helices that flank the cupin domain are found
at the subunit interfaces and are involved in trimer formation. It
is thought that Ara h 1 forms higher ordered oligomers consis-
tent with trimer of trimers or tetramer of trimers based on small
angle X-ray scattering (SAXS) data of the core domain and
natural allergen as well as elution profiles from size-exclusion
chromatography of native protein [7•, 16]. As discussed below
in the section on molecular modifications, oligomeric forms of

Ara h 1 and other peanut allergens are covalently stabilized
when peanuts are cooked, which may be related to the allerge-
nicity of peanuts [17].

Ara h 3 is an 11S globulin or legumin in the cupin super-
family and shares 21% sequence identity to Ara h 1. In addition
to being a seed storage protein, Ara h 3 is also a trypsin inhibitor
[18]. Unlike Ara h 1, Ara h 3 can be crystallized in its native
form purified from dry peanut kernels [13]. Despite the low
sequence identity, the crystal structure of Ara h 3 is very similar
to that of Ara h 1 with an r.m.s.d. of 2.4 Å over 316 of the core
residues. Ara h 3 forms a hexamer consisting of two Ara h 1-
like trimers stacked head to head (Fig. 2). Ara h 3 is post-
translationally modified by a proteolytic cleavage that occurs
between the two cupin domains on a flexible loop. This cleav-
age appears to be required for hexamer formation as this loop
needs to be removed for the two trimers to form the hexameric
interface. The two cupin domains are known as the acidic and
basic subunit and can be readily separated by isolectric focusing
[19]. Certain cultivars of peanuts lacking the basic subunit of
Ara h 3 have been studied as potentially less allergenic [20].

The prolamin superfamily consist of 2S albumins, cerealα-
amylase, and trypsin inhibitors, as well as non-specific lipid
transfer proteins (nsLTPs) [21]. These are cysteine-rich α-
helical proteins of similar fold with multiple disulfide bonds
that likely contribute to their resistance to proteolysis as well
as to their high heat and pH stability [17, 21]. A recombinant
maltose binding protein, (MBP)-Ara h 2 fusion protein, was
used to solve the structure of Ara h 2, shown in Fig. 3 [9]. The
crystal structure revealed Ara h 2 to be comprised of a five
helical bundle with four disulfide bonds interconnecting the
helices. Missing from the structure is a large, disordered loop
of 31 residues connecting helices 2 and 3. Despite often being
considered a 2S albumin, a search of the structural database
revealed it to be structurally most similar to theα-amylase and
trypsin inhibitors [9, 22]. This is consistent with previous

Fig. 1 Ara h 1 trimer. Ara h 1 of
the cupin superfamily is a trimer
of bicupins, colored by the cupin
domains (PDB:3SMH). The
individual bicupins are colored
pink, green, and blue, with N-
terminal domains lightly shaded
and the C-terminal domains a
darker shade. Highlighted on the
structure are the identified sites of
glycosylation colored red [47]
and glycation colored yellow. As
technology improves, more
glycation sites and AGE
modifications may be identified
[59]
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reports of trypsin inhibition by Ara h 2 [23]. An NMR struc-
ture of recombinant Ara h 6 has also been determined [10].
Ara h 6 shares 59 % sequence identity to Ara h 2 and shares
the same secondary and tertiary structural features (r.m.s.d. =
2.4 for 79 residues). While Ara h 2 is frequently cited as the
most potent peanut allergen [24–26], it was only recently
appreciated that Ara h 2 and Ara h 6 have highly similar
allergenic activities [27, 28]. Given the highly similar physical
and immunological characteristics, the two proteins probably
should be considered collectively as related allergens.

Minor Allergens

Minor allergens are recognized by the serum IgE of less than
50 % of the allergic population. The minor allergens in

peanuts, for which there is structural information, include
Ara h 5 from the profilin protein family, and Ara h 8 from
the Bet v 1-like superfamily. These two structures were deter-
mined recently.

Unlike the aforementioned allergens, Ara h 5 in not a seed-
storage protein, but rather belongs to the profilin family of
proteins. Profilins are small, ~15-kDa, proteins found in all
eukaryotic cells that interact with actin and are involved with a
number of cellular processes such as cytoskeletal dynamics. In
plants, they are involved in cell elongation, cell shape main-
tenance, polarized growth of root hair and flowering time [29,
30]. Figure 4 shows that the crystal structure of recombinant
Ara h 5 is comprised of the canonical profilinα/βmotif with a
central anti-parallel β-sheet flanked by α-helices [11]. High
sequence and structural conservation to profilins from other
species such as the pollen allergen Bet v 2 and latex allergen
Hev b 8 may explain why profilin panallergens show cross-
reactivity from multiple sources [31].

Ara h 8 is a 17-kDa member of the pathogenesis-related
protein 10 (PR-10) class of proteins, which belong to the Bet v
1-like superfamily. The functional roles of PR-10 proteins are
not well understood, but some may play a role in a stress
response/general defense mechanism as they can be induced
by pathogen attack [32]. The structures of PR-10 proteins
generally consist of a curved seven-stranded anti-parallel β-
sheet flanked by three α-helices on one side creating a hydro-
phobic cavity with the ability to bind hydrophobic ligands
[32]. Ara h 8 shares these structural features and has been
shown to bind a number of biological compounds including
flavonoids, suggesting a potential role as a flavonoid carrier
protein [12]. Different crystal structures of recombinantly
expressed Ara h 8 demonstrate binding of epicatechin as well
as the laboratory buffer MES to the ligand-binding cavity
(Fig. 4). These compounds are located in non-overlapping
positions suggesting multiple ligands can bind simultaneous-
ly, similar to studies of ligand binding to the prototypical Bet v

Fig. 2 Ara h 3 hexamer. Ara h 3
is a hexamer of two trimers of
bicupins (PDB:3C3V). One
trimer is colored pink and for the
other: two bicupins are colored
gray and the third dark blue for
the basic N-terminal cupin
domain and cyan for the acidic C-
terminal cupin domain. The
hexamer forms after cleavage of a
peptide between the cupin
domains (cleavage site circled in
red). Sites of identified glycation
are colored yellow [59]

Fig. 3 Ara h 2 of the promalin family. Highlighted on Ara h 2 are
peptides that were found to inhibit the IgE binding to Ara h 1 (colored
green) and Ara h 3 (colored blue). Missing residues in the crystal structure
are indicated with a dashed line. Disulfide connectivity is shown with
magenta and yellow sticks (PDB:3OB4)
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1 [33]. Structural conservation of surface patches between Ara
h 8 and the pollen allergen Bet v 1 may explain the IgE cross-
reactivity between these panallergens [12].

IgE Epitopes

The utility of molecular structures of allergens in the study of
allergy, and in particular the study of IgE epitopes, has been
extensively reviewed [2••, 3••, 4]. The importance of the
structures is primarily seen as a template for visualizing sur-
face residues and consequently understanding the IgE
interacting surface. As mentioned above, this can improve
our understanding and make predictions about the potential
for cross-reactivity. Presumably with knowledge of the epi-
topes, it may be possible to rationally design better diagnostic
tools or hypoallergenic alternatives for safer and/or more
effective immunotherapy. Aalberse and Crameri regard the
latter suggestion as unlikely given the polyclonal nature of
the IgE response, and the fact that usually rather drastic
modifications to allergens are needed to significantly reduce
reactivity [2••]. However, they do suggest that another way in
which epitope informationmay be useful is in discerningmore
fundamental information about the peculiarities of the IgE
repertoire [2••]. Several hypotheses have been presented
concerning differences between IgE and IgG: IgE epitopes
may be more cross-reactive and biased toward different sur-
faces [4]; IgE epitopes may cluster to certain regions [34]; and
IgE paratopes may be more flexible [2••]. While not proven
and speculative in general, these ideas provide potentially
interesting avenues for future research.

Cross-Reactivity Among Peanut Allergens

One of the biggest difficulties in food allergy diagnosis and
detection involves allergen cross-reactivity. The phenomenon

of cross-reactivity in allergy can be clinically relevant or irrel-
evant. It is common to observe positive specific IgE (sIgE) test
results (by ELISA or by skin test) to foods that are tolerated. For
example, peanut allergic individuals can demonstrate sIgE
cross-reactivity to multiple nuts and or legumes, but have
clinical symptoms to peanuts and tolerate none, one or more
of the cross-reactive foods. In fact, approximately 50 % of
peanut-allergic patients have positive skin prick tests to other
legumes, but less than 5 % are clinically symptomatic upon
ingestion of legumes [35]. Without a good medical history and
a food challenge, it is increasingly difficult to assign accurate
food avoidance diets and often leads to unnecessary blanket
elimination diets [36]. These types of widespread dietary avoid-
ance are very difficult for the patient and their families [36].

Historically, the general belief has been that cross-
reactivity is only seen between proteins of the same family,
mostly because of structural and sequential identity [6, 35,
37]. And, although it is well known and documented that
cross-reactivity exists between proteins that share high homol-
ogy in structure and sequence, recent studies that demonstrate
IgE cross-reactivity between non-homologous protein fami-
lies challenge this dogma in the field of food allergy [35, 38••,
39]. In one study, a computational predictionmethodwas used
to search an allergen database for clinically cross-reactive
epitopes based purely on physical and chemical properties of
a previously known IgE binding site. This method does not
rely on sequence alone and is therefore able to identify similar
peptides with significantly divergent sequences that would not
normally be found with the standard sequence-based search
engines [39]. Originally, in 2005, potential cross-reactivity
was suggested between known epitopes of Ara h 2 and Ara
h 1, and among similar sequences within different regions of
Ara h 1 using the prediction tool from the Structural Database
for Allergic Proteins (SDAP) [40]. More recently, the epitopes
that were predicted by SDAP to cross-react with known
epitopes of Ara h 2 were empirically tested for IgE binding.
A previously unidentified and highly cross-reactive IgE epi-
tope was identified in Jug r 2, the walnut vicilin. The newly

Fig. 4 Ara h 5 and Ara h 8.
Structures of Ara h 5 (a) from the
profilin family and Ara h 8 (b)
from the Bet v 1 related protein
family. Ligands found in the
active site of Ara h 8 from
different structures (MES color
cyan, and epicathecin color
magenta) are rendered with a
semitransparent surface
(PDB:4ESP, 4M9W, and 4MA6,
respectively)
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identified epitope was shown to inhibit IgE binding to Ara h 2
as well as a known Ara h 2 epitiope. A majority of the reactive
peptides identifiedwere shown to be exposed on the surface of
the molecules. A second study tested the IgE cross-reactivity
among the 4 major peanut allergens, Ara h 1, Ara h 2, Ara h 3,
and Ara h 6, and peptides thereof with western blotting,
competitive inhibition ELISA, and basophil-histamine release
assays. All the allergens were able to significantly inhibit IgE
binding to each other to various extents. Peptides fromAra h 2
that inhibited IgE binding to Ara h 1 and Ara h 3 are highlight-
ed on the structure of Ara h 2 in Fig. 2. These combined results
definitively demonstrate that the phenomenon of cross-
reactivity in allergy is much more complex than originally
imagined. Based on these studies and unpublished observa-
tions, we believe that IgE cross-reactivity among non-
homologous proteins within one food and among different
foods will prove to be relatively common.

Understanding this “non-homologous” cross-reactivity
may be related to the severity of the patient response. Sensi-
tization to a single peanut allergen correlated with less severe
reactions to peanuts compared to patients that were sensitized
to multiple peanut allergens [41–43]. We hypothesize that
those patients sensitized to multiple peanut allergens are rec-
ognizing the IgE epitopes that are cross-reactive among the
non-homologous proteins, leading to a more severe response.

Molecular Modifications

To understand the allergen-immune system recognition and
response further, the added complexities of modifications to
allergens and their potential role in cross-reactivity needs to be
addressed. Two categories of molecular modifications to pea-
nut allergens have previously been described, enzymatic and
non-enzymatic. Enzymatic modifications include glycosyla-
tion while non-enzymatic modifications arise from food pro-
cessing primarily in the form of advanced glycation end
products, or AGEs.

Enzymatic

Plant allergens are frequently glycosylated. The two main O-
linked sugar motifs are xylose and core-3-linked fucose,
which are both found in nearly all plants [44]. Therefore,
any IgE antibodies against these glycans could potentially
interact with a huge variety of glycosylated plant proteins. It
was recognized in 1981 that carbohydrate epitopes were a
source of cross-reactivity between plant and insect allergens
[45]. These glyco-epitopes became known as cross-reactive
carbohydrate determinants (CCDs) and can make it difficult to
correctly diagnose the important sensitizing allergen source in
a clinical setting [46]. Among peanut allergens only Ara h 1 is
known to be glycosylated and at a single site (Fig. 1) [47],

which implies that anti-CCD IgE will only bind one site per
peptide chain. This further implies that, for two IgE molecules
to cross-link on the surface of mast cells to initiate symptoms
via the CCD, one of two scenarios must occur [44]. Cross-
linking could occur through different antibodies recognizing
the CCD and another protein epitope or, if the protein forms
multimers like Ara h 1, two anti-CCD IgE could potentially
initiate symptoms. This is an interesting case where the anti-
CCD IgE could stimulate mast cells. Fortunately for most
patients, no clinical symptoms accompany anti-glycan IgE,
probably due to the presence of soluble anti-glycan IgG mol-
ecules that serve as decoys to prevent IgE crosslinking [48,
49]. Anti-carbohydrate antibodies are generally not consid-
ered important in allergic disease; however, similar carbohy-
drates on helminthes can have potent effects [50, 51].

Indeed, the carbohydrate determinants on Ara h 1 were
demonstrated to have immunomodulatory properties [52]. Ara
h 1 glycosylation is high in mannose and occasionally con-
tains xylose moieties [47]. These carbohydrates interact with
various receptors on dendritic cells (DC), which play an
important sentinel role in the innate immune response. The
Ara h 1 stimulation of DC via the lectin receptorsMR andDC-
SIGN has been demonstrated to induce cytokines known to
bias the immune response towards an allergic or Th2 type
response [52, 53]. Hence, the gycosylation state of the peanut
allergens stimulates the innate immune cells to signal that an
allergic-type response is warranted by downstream T-cells.
The properties of immune stimulation via C-type lectin recep-
tors have been extensively studied in the case of dust mite
allergens, as recently reviewed [54].

Non-Enzymatic

Proteins can also be modified by carbohydrates in a non-
enzymatic mechanism known as the Maillard reaction. The
formation of AGEs occurs when sugars react primarily with
free amines and undergo an Amadori rearrangement [55]. The
modifications are most common on lysines and are less fre-
quently observed on arginines, the N-terminus, and cysteines
[56]. In addition, stable covalent cross-links can be formed
between the aforementioned residues. This process is acceler-
ated by higher temperatures (i.e. cooking): dry roasting versus
boiling can increase the number of AGE modifications by
greater than 10-fold [57]. It is important to note that these
modifications are spontaneous and occur at room temperature,
although at a slower rate compared to cooking temperatures.
Indeed, AGE modifications can be detected in raw peanuts to
varying degrees [58, 59]. Therefore, it may bemore prudent to
utilize recombinant allergens in studies designed to isolate the
effect of AGEs instead of comparing raw versus roasted
peanuts.

In terms of peanuts, several studies have characterized the
AGE modifications on peanut allergens. Early studies utilized
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antibodies specific for certain types of AGEs to demonstrate
that Ara h 1 and Ara h 3 are more commonly modified than
Ara h 2 [58]. More recent studies have utilized mass spec-
trometry (MS) to specifically identify modified residues and
to characterize the modifications (Figs. 1 and 2) [59–61].
While providing more detailed atomic information, several
technical challenges make this a difficult process. First, the
modifications on arginine residues prevent digestion of the
allergens with commonly used trypsin-related proteases. As
an aside, a similar phenomenon occurs using in vitro models
of gastric digestion, further suggesting that the refractory
nature of peanut allergens to digestion may play a role in
sensitization [17, 23, 62]. Second, modified allergens, and
proteins in general, were difficult to extract and purify from
roasted peanuts [63], and therefore difficult to detect by MS
and required extraction with urea [61] or multiple chromatog-
raphy steps [59]. Nevertheless, commonly modified peptides
have been identified. Knowing the exact molecular weight
and common fragmentation patterns are useful for MS detec-
tion of trace amounts of peanut allergen in prepared food,
which could improve the accuracy and safety of food labeling
for allergic individuals [61].

Molecular Modifications, Allergy and Immunology

AGE modifications on peanuts are suggested to skew the
immune response towards allergy. The mechanism for this
was demonstrated to be stimulation of receptors like RAGE
(Receptor for Advanced Glycation End products) and scav-
enger receptor class A type I and II (SR-AI/II) [64–66]. Two
independent studies have demonstrated that the stimulation of
dendritic cells with AGE-modified OVA compared to control
OVA leads to activation of more IL-4- [65] or IL-5 [66]-
producing T-cells than IFN-γ-producing T-cells. Both results
suggest a Th2 bias. Further studies in Caco-2 cells, which are a
model for intestinal epithelia, demonstrated that RAGE acti-
vation by AGEs stimulated MAP-kinases [67]. More recently,
AGE-modified Ara h 1 was demonstrated to influence the
proliferation of Caco-2 cells, in a manner dependent on the
incubation time and temperature, indicating the possibility
that specific AGE modifications may be important for
influencing the pro-inflammatory network [68].

Besides peanut allergy, there appears to be a role for RAGE
in other allergic diseases. RAGE knockout mice surprisingly
develop a similar adaptive immune response to dust mite
extract as normal mice, but do not develop asthma symptoms
such as airway hypersensitivity, eosinophilic inflammation,
and airway remodeling [69]. The same study further demon-
strated that the use of soluble RAGE (sRAGE) as a decoy for
the ligands of membrane-bound RAGE had similar results to
the RAGE knockout mouse, indicating a possible tolerizing
role for sRAGE [69]. Bronchioalveolar lavage of patients with
neutrophilic asthma and chronic obstructive pulmonary

disease (COPD) similarly showed a lack of sRAGE showing
how dysregulation of the soluble versus membrane-bound
RAGE is altered in disease [70]. Different organs express
different forms of RAGE: the epidermis primarily makes
soluble forms of RAGE while the lung primarily expresses
membrane-bound RAGE [71–73]. This heterogeneity leads to
some intriguing suggestions about the strategic manipulation
of RAGE in immunotherapy. It may be that epicutaneous
immunotherapy (EPIT) with roasted peanuts would generate
more sRAGE than oral immunotherapy, thereby reducing the
risk of inflammation or further sensitization. Recently, using a
mouse model of peanut allergy, the safety of EPIT was dem-
onstrated along with encouraging data regarding a tolerogenic
immune profile [74]; however, the role of RAGE was not
evaluated. It should be noted that the EPIT requires intact
skin, suggesting that epithelial-derived factors are likely im-
portant. More research is clearly needed to understand wheth-
er or not RAGE was an important factor, and whether the
deliberate manipulation of RAGE can be utilized to induce
tolerance.

Multiple studies suggest that AGE-modified peanut aller-
gens are more readily recognized by patients [17, 58, 75, 76].
However, when assessing relative IgE binding, two factors are
important to consider: patient exposure and cooking/
extraction protocols. First, raw peanuts are rarely consumed,
so it is expected that few people are exposed to completely
unmodified peanut allergens. Thus, their IgE will be biased to
detect AGE-modified allergens. Second, as mentioned earlier,
extraction methods can strongly influence the allergen con-
tent. The soluble extraction of Ara h 1 from peanuts is max-
imal when dry roasted for 15 min: shorter roasting times
resulted in less extracted Ara h 1 and much longer times
(25–30 min) produced more denatured protein [77]. Early
studies that compared IgE binding to peanut allergens derived
from different preparative techniques, such as boiling, frying,
and roasting, produced mixed conclusions [75, 78]. A more
recent and thorough examination of protein content in the
soluble and insoluble fractions after different cooking tech-
niques confirms that peanuts are not that different from other
foods, in that boiling is the only method that reduces the
number of AGEs [57, 63]. The differences among the different
studies may be explained by different extraction techniques
and the use of IgE as the detection measurement [63].

It is, however, unlikely that the AGEs are primarily what is
recognized by IgE. Supporting this supposition is a recent
paper that compared the IgE recognition of recombinant Ara
h 1 over a time course of heating in the presence of sugars to
create AGEs [59]. The IgE binding of five patients was similar
to the total protein content over the whole time course, and
increased slightly with more AGE modifications. Therefore,
some commonmodifications are likely recognized by IgE, but
the strong recognition of the unmodified rAra h 1 indicates
that the allergen is primarily what is being recognized. When
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the binding of IgE obtained from three of the patients was
tested against a control allergen, Bos d 6, which had been
AGE-modified in the same protocol, no IgE binding was
detected, indicating again that the allergen is more important
than the AGEmodifications and that the AGEs are recognized
within the context of the protein [59]. Since AGEs are present
in nearly all cooked foods, it would seem to be extremely
dangerous to have IgE antibodies specifically against AGEs,
analogous to the discussion above about having antibodies
against common plant carbohydrates.

If the AGE modifications are so common in cooking, are
there important health effects in other foods? The importance
of dietary AGEs in general are extensively debated in the
literature. In animal models, there is a clear connection be-
tween low AGE diets and the inhibition of atherosclerosis and
the prevention of diabetic nephropathy [79]. However, there
are conflicting studies as to the consequences of dietary AGEs
in humans. Some studies describe AGEs as ‘glycotoxins’ and
encourage reducing AGEs in the human diet [57]. In contrast,
a recent meta-analysis of human trials involving AGE-
restricted diets concluded that there is insufficient evidence
to encourage this dietary restriction in healthy, diabetic, or
renal impaired individuals [80]. The review further notes that
all of the studies indicating a beneficial effect of AGE-
restricted diets emerged from one research group, and all of
the studies could benefit from better study design and stan-
dardized measurements to facilitate better comparisons [80].

The reason that peanuts generate such potent reactions is
unlikely to have a single causative factor but is probably a
combination of unfortunate events that work in concert. The
AGE modifications and the trypsin inhibitory properties of
Ara h 2 and Ara h 3 reduce proteolysis. This leads to more
peanut protein surviving digestion, and, therefore, more whole
protein entering the gut. The surviving proteins or fragments
thereof are likely to maintain structural elements [81]. This
probably stimulates the immune system by both the adaptive
immune system via IgE binding and the innate immure re-
sponse through lectin receptors and receptors such as RAGE
recognizing the glycosylation and glycation modifcations,
respectively.

Conclusions

The structural features of allergens and the protein families
provide important information about detection, diagnosis, and
the design of therapeutic tools in allergy. Recent data demon-
strate that IgE-reactivity across protein families, i.e. among
non-homologous proteins, is also important in peanut allergy,
and may correlate with the most severe symptoms. The gly-
cosylation of peanut allergens is unlikely to be important for
IgE antibody binding, but rather may be important for the
stimulation of innate immunity via dectin or lectin receptors.

Similarly, the glycation state (addition of advanced glycation
end products) is suggested to affect innate immune stimula-
tion, digestion of the peanut allergens, and antibody recogni-
tion of the allergens.
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