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Abstract 

 

Objective:  To develop statistical tools that utilize combined initial survival data and post-

resuscitation survival data to test the null hypothesis that true, population-wide outcomes 

following experimental CPR interventions are not different from control. 

Method:  A new test statistic, d
2
, for evaluating Type 1 error is derived from a bivariate, 

two-dimensional analysis of categorical initial resuscitation and post-resuscitation survival 

data, which are statistically independent because they are obtained during non-overlapping 

periods of time.  The d
2
 test statistic, which is distributed as a chi-squared distribution, is 

derived from first principles and validated using Monte Carlo methods of computer 

simulation for thousands of clinical trials. 

Results:  Under the null hypothesis, the normalized difference in the proportions of 

patients surviving the initial resuscitation period and the normalized difference in the 

proportions of such short-term survivors that also survive the post-resuscitation period are 

jointly distributed in a two-dimensional space as a bivariate standard normal distribution, 

against which observed intervention and control outcomes can be compared in a test of 

statistical significance.  Typically this two-dimensional approach has greater statistical 

power to detect true differences, compared to conventional one-dimensional tests.  Smaller 

group sizes (Ns) are usually required to reach statistical significance when both initial 

survival and post-resuscitation survival are considered together.  Such two-dimensional 

analysis is easily extended to meta-analysis of multiple trials.  

Conclusions:  A straightforward, easy-to-use bivariate test for Type I errors in statistical 

inference can be done for resuscitation studies reporting both short-term and long-term 

survival data.  Acceptance of such two-dimensional tests of the null hypothesis, as 

proposed by Hallstrom, can save time, money, effort, and disappointment in the difficult 

and sometimes frustrating field of resuscitation research. 

 

Key words:  Cardiopulmonary resuscitation (CPR); Clinical trials, Device; Drug Therapy, 

Meta-analysis, Methodology, Statistical analysis. 

 

 

 

 

1. Introduction 

 

In a typical clinical study of a new resuscitation device or method victims of cardiac arrest 

are randomized to experimental care (the intervention group) and to standard care (the 

control group).   Some measure of outcome, typically survival, is recorded as a categorical 

end-point.  The fractions or percentages of survivors in the intervention group and in the 

control group are compared for statistical significance.  Survival is usually reported both 

after initial return of spontaneous circulation (ROSC, or short-term survival) and after 24 

hours, hospital discharge, or some time after hospital discharge (long-term survival).  The 

numbers of patients surviving long-term tend to be small.  Members of the resuscitation 

research community have debated for years the merits of powering studies for short-term 

survival versus long-term survival.  Ideally one would want to see the virtues of proposed 
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improvements documented by studies demonstrating improved long-term, neurologically 

intact survival
1, 2

.  No one advocates developing methods that resuscitate hearts but not 

brains, leaving victims in lingering vegetative states.  Yet the awful realities of current 

long-term survival rates and the unforgiving nature of the binomial distribution dictate that 

many hundreds, even thousands, of patients must be randomized to achieve a significant 

long-term end point in a single study. 

 

Pragmatists worry that if all innovations must pass the test of long-term survival, the cost 

of innovation would become so high that many useful improvements—especially modest, 

incremental improvements—would never be realized.  They retort that since the purpose of 

CPR is return of spontaneous circulation, and since long-term outcome depends on many 

confounding factors related to the quality of post-resuscitation intensive care, it is an 

unrealistic burden to require that all innovations in CPR be tested to the gold standard of 

long-term, neurologically intact survival.  Many fewer patients would be required for 

statistical significance if the accepted primary end point were ROSC.  In turn, clinical 

research could proceed much faster, ultimately benefiting more people sooner. 

 

The problem with relying on short-term survival only was demonstrated by the experience 

with high dose epinephrine (some would say any dose of epinephrine), which in animal 

studies and clinical trials showed increased frequencies of ROSC, but not necessarily long-

term survival.
3-10

  Further work documented significant toxicity in the form of post-

resuscitation myocardial depression and prolonged high peripheral vascular resistance.  

These effects appear to decrease the chances of surviving the immediate post-resuscitation 

period, negating any overall long-term benefit and perhaps diminishing the quality of life 

of those who do survive.  The problem in general is that some interventions that increase 

short-term survival may themselves have long-term toxicity or do lasting harm.  Easily 

imagined examples of such harm include broken ribs, barotrauma to the lungs, myocardial 

damage, infection, renal failure, hepatotoxicity, or stroke. 

 

This paper is dedicated to the proposition that truly good innovations in CPR will increase 

both ROSC and post-resuscitation survival and that this combined effect can be verified in 

more enlightened and efficient statistical tests of the null hypothesis to exclude Type I 

errors in statistical inference (rejecting the null hypothesis when it is true).  In a recent 

paper utilizing computer simulations Hallstrom
11

 has suggested that both short-term and 

long-term survival are important outcomes and need to be considered jointly.  In particular, 

a bivariate, two-dimensional analysis of survival data can often produce better 

discrimination of significant results with fewer patients per study group than tests of long-

term survival alone.  The present paper further develops this concept and presents a simple, 

direct, analytical approach for two-dimensional tests of joint short-term and long-term 

survival.  Both types of survival data are usually reported in CPR research studies, albeit 

with smaller numbers for long-term survivors, and so are readily available for analysis.  

The strategy is to use all hard won clinical data available to test the null hypothesis by 

explicitly considering survival in two non-overlapping epochs of time—the arrest and 

resuscitation interval, and the post-resuscitation interval.  
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2. Methods 

 

2.1 Definitions 

 

Imagine a clinical trial in which NA patients are randomized to receive standard CPR 

(controls) and NB patients are randomized to receive experimental CPR.  Let N1A and N1B 

be the numbers initially resuscitated in the control and intervention groups, according to 

reasonable criteria for return of spontaneous circulation (ROSC).  The corresponding 

observed proportions of initial survivors are p1A and p1B.  Let N2A and N2B be the numbers 

of patients who survive through the post-resuscitation phase and live long-term according 

to a reasonable definition, such as neurologically intact hospital discharge.  The 

proportions of long-term survivors, as conventionally reported, are N2A/NA and N2B/NB.  

These values are readily found in the literature as the traditional gold standard end points. 

 

For analysis we divide the trial into two non-overlapping phases in the time domain: the 

initial resuscitation phase and the post-resuscitation phase.  Then we introduce a new 

outcome measure, which is the proportion of those initially resuscitated that also survive 

long term.  For control group A, p2A = N2A/N1A, if N1A > 0.  For experimental group B,  

p2B = N2B/N1B , if N1B > 0.  The proportions p2A and p2B are measures of the probability of 

surviving from the beginning of the post-resuscitation period to the end of the post-

resuscitation period.  They are statistically independent of proportions p1A and p1B of initial 

survivors.  Proportions p1 and p2 represent events in non-overlapping epochs of time.  The 

experiment is like rolling a die twice.  Patients have to run certain risks of arrest and CPR 

itself, and then, if they survive this challenge, run a second set of new and independent 

risks in the post-resuscitation period.   

 

We consider p1 and p2 to be experimental samples of the underlying true probabilities, 1 

and 2 , of initial resuscitation survival and post-resuscitation survival.  For example, if 1 

= 2 = 1/3 for group A, then the outcome of standard CPR for any single patient could be 

simulated by rolling a die.  Since a normal die has 6 sides, if either one or two spots come 

up on the first roll, then that would indicate short-term survival.  If so, a second roll is 

taken, and if either one or two spots come up on the second roll, then that would indicate 

long-term survival.  The observed proportions p1A and p2A are the result of repeating this 

experiment NA times for group A with true probabilities 1A and 2A.  Similarly for group 

B, the observed proportions p1B and p2B are modeled by NB paired rolls, with perhaps 

different probabilities for survival 1B and 2B. 

 

The results will vary according to the underlying binomial probability distributions, which 

have mean values  and variances  (1-)/N, where  is the true probability of survival and 

N is the number of rolls.  The clinical trial can be regarded as an experiment designed to 

measure these true underlying probabilities 1A ,1B , 2A , and 2B of initial resuscitation 

survival and post-resuscitation survival in the intervention and control groups by sampling 

from four different probability distributions.  The measured proportions, p1A, ,p1B , p2A , 

and p2B provide unbiased estimates of the underlying probabilities.  These sample 

proportions have variances 1A (1-1A)/NA , etc., which are not known exactly at the time 
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of the experiment.  However, unbiased estimates of the variances are provided by  

p1A (1-p1A)/(NA –1) , etc.
12

 

 

 

2.2 Two dimensional significance testing 

 

Using these definitions, one may compute the observed initial resuscitation and post-

resuscitation survival proportions, p1A, p1B, p2A, and p2B from reported outcome data for 

control group A and intervention group B.  All four proportions are statistically 

independent.  The observed differences in survival proportions between intervention and 

control groups are 

 

A1B11 ppp           (1a) 

 

for initial resuscitation and 

 

A2B22 ppp           (1b) 

 

for survival during the post-resuscitation period. 

 

The corresponding variance estimates based upon sample data are 
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where AA1A1 NpN   > 1, and BB1B1 NpN  > 1.  Here we invoke the principle that the 

variance of the sum or difference of two independent random variables is the sum of the 

variances.  The use of N-1 values in the denominators leads to unbiased variance 

estimates
12

. 

 

Under the null hypothesis that 1A = 1B and 2A = 2B any apparent differences in 

outcomes between groups A and B are the result of sampling variation of the binomial 

distribution.  The expected values of p1 and p2 are zero, and the variances are given 

approximately by (2a) and (2b).  Somewhat more stable and accurate estimates 
2

1̂  and 
2

2̂  

can be obtained for the purpose of null hypothesis testing using pooled estimates for the 

presumed common survival probabilities in groups A and B during each phase of the 

study.  These pooled estimates are )NN()NN(p BAB1A11   and 

)NN()NN(p B1A1B2A22  .  Then refined variance estimates can be computed as 
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In turn, we can define independent normalized differences in survival proportions as 
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For NA and NB greater than, say, 20 random variables z1 and z2 are each distributed as 

independent standard normal distributions with zero means and approximately unit 

variances.  One can show along the lines of Welch
13

 that z1 and z2 are each distributed very 

much like a "Student" t-distribution with a number of degrees of freedom roughly equal to 

twice the number of survivors in each case.  For most practical cases such a Student t-

distribution is equivalent to the normal distribution.  In turn, to obtain a joint test of the 

null hypothesis one can compute the test statistic 

 
2

2

2

1

2 zzd  ,          (4) 

 

which is distributed approximately as a chi-squared distribution with two degrees of 

freedom.  (In general, if k21 z,z,z   are independent normally distributed random 

variables, each with zero mean and unit variance, then the random variable 
2

k

2

2

2

1

2 zzzd    has, by definition, a chi-squared distribution with  k  degrees of 

freedom.)   

 

When the simple variance estimates (2a) and (2b) are used to derive d
2
, the actual 

distribution of (4) will have a slightly longer "tail" than a perfect analytical chi-squared 

distribution.  The tail of the distribution of d
2
 more closely approximates the chi-squared 

distribution when the refined variance estimates (2c) and (2d) are used.  As the sizes of the 

study groups NA and NB increase the estimates improve.  One objective of the present 

research is to determine by computer simulation whether for realistic Ns in resuscitation 

studies, the accuracy of these estimates is sufficient. 

 

One of the pleasing features of this approach is that there is a straightforward graphical 

interpretation of the test statistic, d
2
.  It is the square of the straight-line distance between 

the origin and sample point P = (z1 , z2) in the two-dimensional z-space of Figure 1, in 

which for any study z1 and z2 are plotted in a rectangular grid.  Here the horizontal axis for 

z1 represents the normalized difference in initial survival.  The vertical axis z2 represents 

the normalized difference in post-resuscitation survival.  These two independent axes 
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represent two non-overlapping phases of resuscitation.  Components z1 and z2 can be either 

positive or negative, representing beneficial or harmful effects in each phase.  Straight-line 

distance, d, is the length of the vector between the origin and sample point, P = (z1 , z2).  

Length, d, is always positive or zero.  Length, d, is computed from the sum of squares of z1 

and z2 using the Pythagorean theorem of equation (4). 

 

Under the null hypothesis, denoted H0 , the probability density distribution for all possible 

trial outcomes, P, in Figure 1 is binormal, centered about the origin.  It has circular 

contours of constant value in the z1 – z2 plane.  A circular contour at approximately 2.4 

units from the origin, such as that labeled H0 in Figure 1, represents the 95 percent 

confidence limit of the binormal distribution.  If sample point, P, lies at the periphery of 

this distribution, it is unlikely to be the result of sampling variation only.  Test statistic d
2
 is 

a measure of the remoteness of P from the origin.  The farther P is from the origin, the 

smaller is the probability of making a false positive interpretation of the results—that is, a 

Type I error in statistical inference.   

 

When an alternative hypothesis, H1, is true, there is a real effect of the intervention upon 

survival.  Then the distribution of sample points will fall farther from the origin in the z1 – 

z2 plane.  Point P1 in Figure 1 represents such a result.  The distribution of sample points 

under H1, also has circular contours but is centered on a point displaced from the origin by 

a distance proportional to the true treatment effect. 

 

The direction of point, P, from the origin in the z1 – z2 plane defines whether any 

significant effect is good, bad, or mixed.  A point such as P1 that is clearly in the right 

upper quadrant in Figure 1 represents a good effect that improves both short-term survival 

and post-resuscitation survival from cardiac arrest.  A point clearly in the left, lower 

quadrant represents a harmful effect in both phases of resuscitation, and one located 

elsewhere represents a mixed effect.  Such mixed effects are biologically plausible.  A 

point in the right lower quadrant of the z1 – z2 plane implies short-term benefit with longer-

term toxicity, rather like epinephrine.  A point in the left upper quadrant implies short-term 

toxicity coupled with long-term benefit, for example the action of a cytoprotective drug 

that also causes hypotension when given as an intravenous bolus (e.g. deferoxamine
14

).  

Thus it is reasonable to employ a test statistic such as d
2
 to evaluate departure from the null 

hypothesis in all four quadrants.  The direction of point, P, from the origin indicates the 

quality of the effect, and the distance of point, P, from the origin indicates its statistical 

significance. 

 

Hallstrom
11

 has suggested that some points in the right upper quadrant of similar plots that 

are close to the horizontal (short-term) axis may not represent good outcomes from a cost-

effectiveness standpoint.  A large increase in short-term survival, accompanied by a very 

small increase in long-term survival might represent an unreasonable increase in cost, 

individual suffering, and family suffering for little-long term benefit.  Hallstrom's estimate 

of the unacceptable cost, however, shaves only a small fraction of the area from the bottom 

of the right upper quadrant, which remains largely intact. 
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2.3 Monte Carlo methods 

 

To determine if a chi-squared distribution is a reasonable approximation to the actual 

distribution of d
2
 as defined in Equation (4), computer simulations of several million 

control and experimental resuscitations were implemented in the Visual Basic 

programming language within a Microsoft Excel spreadsheet.  If a random number 0 < x < 

1 was less than a given true probability 1, then a simulated patient was designated as 

resuscitated, and in this case if a second random number 0 < x < 1 was less than a given 

true probability 2, then a simulated patient was designated as long-term survivor.  For 

simulations of a true null there was no true difference between intervention and control 

probabilities: 1 = 1A= 1B , and  2 = 2A= 2B . 

 

To assess agreement between numerical and analytical results, distributions of d
2
 test 

statistics were generated for thousands of simulated clinical trials.  Group Ns for each trial 

ranged from 25 to 200.  For each of several trial scenarios the simulated distributions of d
2
 

test statistics for 50,000 simulated trials was compared with the theoretical chi-squared 

distribution with two degrees of freedom.  To assess agreement in the critical tail regions 

of the distributions the tail probability (proportion of d
2
 values > 6) was calculated using 

both the numerical results and the analytical chi-squared distribution, for which the tail 

probability is 0.0498. 

 

 

2.4 Power of the analysis 

 

Derivation of the power of the analysis is illustrated in Figure 2.  Here the distribution of 

the test statistic, d
2
, under the null hypothesis, H0 , is represented by the thin curve to the 

left, and the distribution of d
2
 under an alternative hypothesis, H1, of a true positive 

treatment effect, is represented by the thicker curve to the right.  Power may be calculated 

for the d
2
 statistic in the usual way, given an alternative hypothesis    2

2

2

1  > 0, as 

well as the associated probability density distribution for 1

2 Hd , and a particular cutoff 

value, c, for statistical significance of d
2
 in a test of the null hypothesis, for example c = 6, 

which corresponds to 1-tailed P < 0.05. 

 

The probability density distribution for 1

2 Hd , is a noncentral chi-squared distribution.  

The noncentral chi-squared distribution is not as well-known as the ordinary, or central, 

chi-squared distribution, but it is precisely formulated and can be computed exactly
15

.  In 

particular, if k21 z,z,z   are independent normally distributed random variables with 

mean values k21 ,,    and each with unit variance, then the random variable 
2

k

2

2

2

1

2 zzzd    has, by definition, a noncentral chi-squared distribution with  k  

degrees of freedom and noncentrality parameter 
2

k

2

2

2

1   .  If  = 0 then we 

have an ordinary, central chi-squared distribution, corresponding to the distribution of d
2
 

under H0.  However, for alternative hypotheses we have  > 0.  The mean of the noncentral 

chi-squared distribution is k + , and the variance is 2(k+).  Central and noncentral chi-
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squared distributions for k = 2 are shown in Figure 2.  In the present application for a 

single research study  k  is always 2 and 
   

2

2

2

2

2

1

2

1









  for true differences in 

survival proportions 1 = 1B - 1A  and  2 = 2B - 2A  with true variances  
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Now let f(x) be the known probability density function for the particular noncentral chi-

squared distribution
15

 of 1

2 Hd .  Let 0.6c   be the cutoff for statistical significance of the 

central chi-squared distribution with two degrees of freedom, as shown in Figure 2.  The 

power to detect the alternative positive effect is  

 





c

dx)x(fPower .         (5) 

 

 

2.6 Required sample size 

 

Sample size calculations allow investigators to plan study Ns so that there is a high 

probability of detecting, as statistically significant, a biologically meaningful effect, if it 

exists.  For a particular alternative hypothesis, H1 , for example 1A= 0.2,  1B = 0.3, and 

2A= 0.25,  2B = 0.35, one can determine the sample sizes (Ns) required to detect a 

particular true effect with a particular probability or power.  For simplicity the group size 

for both intervention and control groups is assumed to be the same.  By solving equations 

(1) through (5) together for successive Ns, beginning with a very low value such as 10, a 

computer program can quickly find the N required for the power to exceed a chosen target 

value such as 0.90.  In such calculations the true, population survival probabilities 1A , etc. 

and the true population variances 1A (1-1A)/N1A , etc., are used in the place of the 

sample-based expressions (1) and (2). 

 

 

3. Results 

 

3.1 Validation of test statistics under H0 

 

In the theory just presented the test statistic, d
2
, should be distributed approximately as a 

chi-squared distribution with two degrees of freedom under the null hypothesis.  To obtain 

a figure of merit for the goodness of approximation one can compute the tail probabilities 

of the numerical vs. analytical d
2
-distributions.  Here we define the tail probability as the 

area under the probability density function for values of d
2
 greater than 6.  Histograms of 

computer simulated results for 50,000 hypothetical clinical studies give a good 

representation of the actual distribution of d
2
.  When variance estimates (2a) and (2b) are 

used to compute d
2
, the average tail probability for the d

2
 test statistic in 7 computer 
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simulated scenarios in which the null hypothesis is true was 0.0580  0.0066 SD.  This 

result indicates that actual tail probability is slightly greater under the null hypothesis than 

that which would be calculated using the chi-square distribution.  However, when refined 

variance estimates (2c) and (2d) are used to compute d
2
, the average tail probability for the 

d
2
 test statistic in the same 7 computer simulated scenarios was 0.0495  0.0018 SD (Table 

1).  The analytical tail probability from the central chi-squared distribution is 0.0498.  

These results demonstrate that for group sizes typical in resuscitation research the actual 

distribution of d
2
 under the null hypothesis is well approximated by a central chi-squared 

distribution. 

 

 

3.2 Sample calculations 

 

Two dimensional significance testing is no more difficult than applying equations (1) 

through (4) to readily available short-term and long-term survival data from a typical CPR 

research study that is performed generally according to the Utstein guidelines
16-19

.  

Consider the hypothetical results for "new" vs. "old" CPR in Table 2.  Short-term survival 

for new CPR is an encouraging 39 percent vs. 25 percent for old CPR.  However, the long-

term survival is 10 percent for new CPR vs. 11 percent for old CPR.  A conventional 

interpretation of these data might be that although short-term results were encouraging, the 

gold standard results for long-term survival showed no difference.  The conclusion is that 

the null hypothesis was probably true after all. 

 

Analysis of joint survival leads to a different conclusion.  First to compute d
2
 it is 

necessary to find the proportions of short-term survivors who also survive long-term, that 

is, p2A = N2A/N1A and p2B = N2B/N1B.  These proportions are different from the 

conventional proportions of long-term survivors for the entire study, namely N2A/NA and 

N2B/NB.  Then it is a simple matter to apply Equations (1) through (4) to compute d
2
, as 

shown in Table 2. 

 

Two-dimensional analysis using the d
2
 test shows a significant deviation from the result 

expected under the null hypothesis, for which we expect d
2
 < 6. In two-dimensional z-

space, the outcome of the trial is represented by a point in the right lower quadrant of 

Figure 1.  With new CPR there is increased short-term survival and decreased survival 

during the post-resuscitation interval.  This result is, if you will, epinephrine-like, showing 

some lingering toxicity.  This two-dimensional statistical inference has consequences for 

research planning.  At first glance one would be tempted to abandon new CPR as 

altogether ineffective and seek completely new strategies.  After analysis of the joint 

results, however, one would be inspired to modify new CPR to isolate the immediate 

benefit and minimize the post-resuscitation toxicity. 

 

 

3.3 Ns needed for significance 

 

Table 3 presents sample (group) sizes for significance in a test of the null hypothesis with 

90 percent power over a range of true treatment effects 1B and 2B.  Here the group size 
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for both intervention and control groups is assumed to be the same: NA = NB = N.  The first 

row and first column of Table 3 show various alternative hypotheses in which survival 

probabilities for the intervention group are actually greater than those for the control group.  

For all control groups in Table 3 the probability of initial resuscitation is assumed to be 1/5 

and the probability of surviving the post-resuscitation period is assumed to be 1/5 also, so 

that the probability of long-term survival is (1/5) x (1/5) = 0.04.  Various true treatment 

effects are represented by the column and row values of 1B and 2B, each greater than 0.2.  

Table entries are the numbers of patients needed to detect a given true effect with 90 

percent power.  Sample sizes were computed by exhaustive trial-and-error, beginning with 

a minimal sample size of 10 patients in each group and incrementing the common Ns until 

90 percent power is exceeded.  Power is computed by numerical integration of the 

probability density function for the appropriate non-central chi-squared distribution from 6 

to infinity.  Each value in Table 3 is the group size for a d
2
 test with 90 percent power 

using combined short-term and long-term survival. 

 

For comparison Table 4 gives corresponding sample sizes for a difference of proportions 

test using long-term survival as the only endpoint.  The long-term survival probabilities are 

A = 1A2A and B = 1B2B.  Normalized differences in the proportions of survivors are 

considered to be distributed as standard normal distributions with a mean under the null 

hypothesis of zero and a mean under the alternative hypothesis of 

  N/)1(N/)1( BBAAAB  .  In most scenarios fewer patients are needed to 

reject the null hypothesis using the joint d
2
 test (Table 3) than when using a single test of 

long-term survival (Table 4).  In some cases half or fewer patients are needed using the 

joint d
2
 test, compared to the one-dimensional z-test using long-term survival alone. 

 

Exceptions occur if the intervention effect on immediate survival is small and the effect 

during the post-resuscitation interval is somewhat larger.  Then a combination of 

immediate and post-resuscitation outcome has more noise than long-term outcome alone.  

In this case the joint d
2
 test requires larger Ns than a simple z-test of long-term survival.  

For most other cases however, the joint test has greater power. 

 

 

4. Discussion 

 

Putative improvements in CPR that increase ROSC but leave survivors in lingering 

vegetative states who never regain a semblance of health are not to be desired and would 

substantially increase health care costs and family suffering.  For this reason it is important 

not to claim a good outcome of a randomized clinical trial of a new CPR technique without 

improvement in long-term survival.  However, the numbers of patients required for direct 

statistical tests of long-term survival data are often prohibitively large, owing to the nature 

of the binomial distribution and the statistical sampling thereof, especially when control 

survival probability is low.  It is possible, however, to use both short-term ROSC and post-

resuscitation survival together to test the null hypothesis with greater power.  If this is done 

in a way that ensures statistical independence of the initial resuscitation and post-

resuscitation results, then a simple and straightforward test using the chi-squared 

probability distribution can be conducted. 
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One merely computes the test statistic 2d  = 2

1z  + 2

2z  for a study and compares the result to 

the number 6.  This approach is easy to present visually and tends to demystify the process 

of two-dimensional, bivariate analysis, rendering it accessible to physician-scientists who 

have had an introductory course in statistics.  It is also a stronger and more conservative 

test of the null hypothesis because it is able to detect biologically important mixed results, 

such as increased probability of ROSC coupled with subsequent decreased probability of 

surviving the post-resuscitation period.  Such subtle, harmful effects in the post-

resuscitation phase might be missed with analysis of long-term survival alone.  On the 

other hand the d
2
 test is also more sensitive to true departures from the null hypothesis for 

most plausible trial scenarios. 

 

The method can also be extended to a meta-analysis of multiple studies of similar 

interventions in a very straightforward way.  For k studies of essentially the same 

intervention that report both long term and short term data one merely adds together the 2

1z  

and 2

2z  components in equation (3) from the various studies to get an expanded chi-

squared with 2k degrees of freedom.  If a study lacks long-term data, a degree of freedom 

can be subtracted.  The result is distributed as a higher degree chi-squared under the null 

hypothesis, which will have a cutoff value for rejecting the null hypothesis > 6, depending 

on the degrees of freedom. 

 

It is important to emphasize that proportion p2 in the forgoing discussion is not equal to 

conventional long-term survival (namely, the number of long term survivors divided by the 

number randomized for each group) but instead the proportion of patients surviving short-

term that also survive long-term.  This is a measure of the probability of surviving the post-

resuscitation period only.  In this case statistical independence is assured. 

 

Use of d
2
 test statistics that are distributed as noncentral chi-squared distributions when 

there is a given true effect of the intervention allows for direct estimation of the power of a 

study and also the N's required to demonstrate an expected treatment effect.  If Table 3 

does not suffice for planning of studies, a computer program embedded in an Excel 

spreadsheet for evaluating the noncentral chi-squared distribution is available 

electronically from the author upon request or can be written de novo without much 

trouble. 

 

The traditional discussion of outcomes in CPR research has been framed in terms of 

"either-or". We should use either short-term or long-term survival as the primary endpoint 

in resuscitation studies.  Why not use both to extract the maximum amount of information 

from hard-won clinical data?  This approach may provide a way to satisfy both the short-

term and long-term camps debating the proper outcome measures of CPR studies and also 

to save time, money, effort, and disappointment in clinical resuscitation research.  Alfred 

Hallstrom's idea that short-term and long-term survival data need to be considered jointly 

is a good one. 
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Tables 

 

 

Table 1. Computer simulated tail probabilities for the d
2
 test statistic calculated using 

variance estimates (2c) and (2d) in runs of 50,000 simulated clinical trials  

 

N =0.25 =0.5 

200 0.0490 0.0484 

100 0.0527 0.0509 

50 0.0488 0.0475 

25   0.0490 

 

Common group size is N = NA = NB.  Common survival probability is  = 1A = 1B = 2A 

= 2B.  The mean tail probability is 0.0495  0.0018 SD.  Analytical tail probability for the 

chi-square distribution is 0.0498. 

 

 

 

 

 

 

 

 

 

 

Table 2. Hypothetical outcome data for a study of "new" CPR (group B) vs. "old" CPR 

(group A) with NA = NB = 100 patients in each group 

 

  ROSC N1 
Discharge 

survivors N2 p1 p2 p3 

Group A 25 11 0.25 0.44 0.11 
Group B 39 10 0.39 0.256 0.10 

 

Proportions: p1 = N1/100, p2 = N1/N2, p3 = N2/100. 

 

Statistics using simple variance estimates (2a) and (2b): z1 = 2.14, z2 = -1.48, d
2
 = 6.77. 

 

Statistics using refined variance estimates (2c) and (2d): z1 = 2.11, z2 = -1.50, d
2
 = 6.71. 
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Table 3.  Sample size for significance in a test of H0 when H1 is true using the d
2
 test of 

joint short-term and long-term survival 

 

    2B   

1B 0.25 0.3 0.35 0.4 0.45 0.5 

0.25 1001 982 641 436 310 229 

0.3 454 388 315 251 200 159 

0.35 218 201 178 154 132 111 

0.4 128 122 113 102 91 80 

0.45 84 81 77 72 66 60 

0.5 59 58 55 53 49 46 

 

 

 

 

 

 

Table 4.  Sample size for significance in a test of H0 when H1 is true using a difference of 

proportion test for long-term survivors 

 

    2B   

1B 0.25 0.3 0.35 0.4 0.45 0.5 

0.25 1001 925 551 375 277 215 

0.3 925 506 330 237 181 145 

0.35 551 330 226 167 131 106 

0.4 375 237 167 127 100 82 

0.45 277 181 131 100 80 66 

0.5 215 145 106 82 66 54 
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Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Graphical representation of two-dimensional survival analysis.  Component test 

statistics z1 and z2 represent normalized differences in immediate survival on the horizontal 

axis and in post-resuscitation survival on the vertical axis.  Joint test statistic, d
2
, is the 

square of the straight-line distance from the origin of the z1 – z2 plane to a sample point 

such as P1, representing the results of a particular study.  Under the null hypothesis, H0 , 

sample points such as P0 will tend to cluster about the origin (contour H0).  Under an 

alternative hypothesis, H1, sample points such as P1 cluster farther from the origin (contour 

H1).   
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Figure 2.  Calculation of power from probability density distributions for the null 

hypothesis, thin curve, and for an alternative hypothesis, thick curve.  The critical value for 

significance is x = 6.0.  The area under the thick curve to the right of the critical value is 

the power. 
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