Purdue University Purdue e-Pubs

Timber Reports

Department of Agricultural Communication

1996

1996 Indiana Forest Products Price Report and Trend Analysis

William L. Hoover

Ralph W. Gann

Glenn Durham

Follow this and additional works at: http://docs.lib.purdue.edu/timber

Recommended Citation

Hoover, William L.; Gann, Ralph W.; and Durham, Glenn, "1996 Indiana Forest Products Price Report and Trend Analysis" (1996). Timber Reports. Paper 17.

http://docs.lib.purdue.edu/timber/17

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

1996 INDIANA FOREST PRODUCTS PRICE REPORT AND TREND ANALYSIS

William L. Hoover Professor of Forest Economics Purdue University

Ralph W. Gann State Statistician Indiana Agricultural Statistics Service

and

Glenn Durham
Utilization Supervisor
Division of Forestry
Indiana Department of Natural Resources

Purdue University Agricultural Bulletin No. 736

SUMMARY

A questionnaire requesting prices paid for timber products was sent to all known commercial sawmills and veneer mills in the state of Indiana. Fifty-one of the 230 mills surveyed responded with 43 providing usable data. Fifty-two mills provided usable data last year.

Compared to May 1995, prices paid for sawlogs decreased overall, especially for the premium species such as the oaks, black cherry and ash. Increases were reported for upper grade hard and soft maple logs, and for basswood and hickory. Veneer log prices were generally up. Five face veneer mills returned the survey. Four provided data.

The long-term overall price trend remains positive. The trend line for the real price of the average stand continues to reflect a real price increase of about 1.1 percent per annum. This is essentially unchanged from 1995. The trend for quality stands continues to show a 1.8 percent per annum increase. adequately stocked stands of hardwood timber in Indiana continue to represent a investment opportunity properly managed. These stands provide very competitive real rates of return with income tax deferral on accumulated value increments. unrealized Timber owners should consult a professional forester to properly assess the options available to manage and market their timber assets.

INTRODUCTION

The Department of Forestry and Natural Resources, Purdue University in cooperation with the Indiana Agricultural Statistics Service has conducted a formal survey of Indiana sawmills and veneer mills since at least 1957. The primary data collected are prices paid for logs delivered to the mills. From 1957 to 1976 the results

were published as an Extension Circular. From 1977 to 1989 the results were published in the Indiana Forest Products Marketing and Wood Utilization Report. The results also appear in the Woodland Steward published by the Woodland Steward Institute, a cooperative effort of Indiana's leading forest resource related organizations. Historical data are available by contacting the primary author.

METHODOLOGY

The questionnaire was mailed by the Indiana Agricultural Statistics Service in early May of 1996 to the 230 mills listed in the data base as buying logs. The data base is maintained by Glenn Durham, Utilization Specialist, Indiana Department of Natural Resources, Division of Forestry in cooperation with Purdue's Department of Forestry and Natural Resources. A second mailing was made three weeks later to non-respondents. Two weeks later enumerators from Ag. Statistics called the larger mills who had not responded to request their assistance.

A total of 230 questionnaires were mailed. Fifty-two mills responded, 11 fewer than in 1995. The overall response rate was 23 percent (52/230). Nine provided no data. The small number of reports for some species and product classes, especially veneer logs, makes the data suspect, and year-to-year variations The size distribution of mills very large. included in the survey and responding is presented in Table 1. No attempt was made to sample non-respondents. Therefore, it must be assumed that the response is biased. The standard errors should be used for year-to-year comparisons only.

Responses were analyzed using a PC-based Excel spreadsheet. Data that appeared to be in error were purged. For example, if the responses for a category included most mills reporting prices of \$40, \$50, \$60, \$70, \$80, and only one

reporting \$240, the \$240 response was discarded.

The median price shown in Tables 2 and 4 is the reported price that divides the distribution into two equal halves. The median and mean would have the same value if the distribution was an exact bell-shaped normal curve. The standard error of the mean (s.e.) is a measure of the variability of the responses. It indicates the amount by which the mean would vary if a different set of mills had responded to the survey. Note that the standard error is relatively small for those species/grade categories for which ten or more mills responded but is high for categories for which only a few mills responded.

Table 1. Type of mills included in data base and providing data.

	Total	Reporting Mills
Sawmills (SIC 2421)	2151	29
Size Class (MBF)		
1 - 100	66	2
100 - 500	42	4
500 - 1,000	25	3
1,000 - 2,000	40	3
2,000 - 4,000	46	8
4,000 - 7,000	10	4
> 7,000	8	5
Prod. not reported		8
Veneer (SIC 2435)	15	6
Total	230	43

1 Most custom mills didn't receive the questionnaire since they are listed in the data base as not buying logs.

SAWLOG PRICES

Sawlog prices overall were lower compared to May of 1996, Table 2. The survey took place while lumber prices for many species were declining. Further declines in some species have occurred since the survey. Table 3 shows lumber prices through the first of July 1996.

Figures 1 to 14 show lumber prices through August 1996.

Ash lumber prices started down in the winter of 1995 and are still searching for a supportable level, Figure 1. Note that all grades are continuing to decline. In addition to softened demand, ash decline is common in some regions. The need to harvest declining ash before the logs are ruined by fungus and stain has increased the volume of ash harvested. Reported log prices decreased by 10 percent, consistent with the decline in lumber prices.

Basswood lumber prices have been steady since late 1994, Figure 2. The No. 2A grade of lumber declined by \$5 in September of 1995, not enough to affect log prices. Prime basswood log prices increased by almost 8 percent. The increase was much less for lower grade logs with No. 3's declining by over 3 percent. Basswood is a species that fills a market niche for very specific end uses, such as venetion blinds. It does well when the economy is strong, especially the home decorations segment.

Beech lumber prices declined by about 2 percent from their highs in 1994, Figure 3. Log prices were down about 3 percent, although No. 2's were down 10 percent and No. 3's unchanged.

Cottonwood lumber prices, Figure 4, peaked in 1994, declined from June 1995 to February 1996, and have been steady since then. Current levels are well above historical trends, reflecting continued support for the species in many end-uses where clear white wood is needed and strength is not critical. This species is also exported. Cottonwood sawlog prices were down for the upper grades but up slightly for No. 3's.

Black cherry lumber prices, Figure 5, have declined significantly from their highs in mid 1995. FAS prices with the premium added are down 3.2 percent, but No. 1C

and No. 2A are down 19 and 25 percent respectively as of August 1996. Sawlog prices were down from 10 to 13 percent.

Elm lumber prices, Figure 6, peaked in the mid-1980's, declined substantially into the 1990's, and held steady over the last several years. The No. 2B grade followed a more cyclical pattern. Usually the upper grades are more cyclical. Elm sawlog prices were down from 2 to 8 percent with more mills reporting this species.

Hickory lumber prices, Figure 7, continue to support the increases made in 1993 and 1994. Prices have been steady at historical highs since the second half of 1994. Today's level is about 35 percent above the period of steady prices from 1987 to 1990. Sawlog prices were up by 17 percent for prime, but much less for the lower grades. A limited but steady market exists for hickory because of its "rustic" look.

Hard maple lumber prices, Figure 8, are mixed. FAS with the premium was falling off from the early 1993 peak, but recovered this summer. No. 1C and No. 2A prices leveled off after declining by 16 and 25 percent respectively from the 1993 peak. Prime and No. 1 sawlog prices were up by about 6 percent, but the lower grades declined by about 1 percent. Buyers are looking for sapwood (white wood), paying a \$240 premium for No. 1 and 2 white The preference for white wood explains the divergent price trends between the FAS and lower grades of lumber, and between upper and lower grades of sawlogs.

Soft maple lumber prices, Figure 9, are well off their peak in 1994. Current levels are 13, 18, and 21 percent below the peak for FAS, No. 1, and No. 2A, respectively. Sawlog prices were up from 2 to 5 percent, except for an unexplainable decline in No. 2's. Because soft maple trees are easily wounded and stain spreads

well away from wounds, a larger volume of material must be processed to obtain the desired white wood than is true for many other species. The strong demand for hard maple may also be putting pressure soft maple.

White oak lumber prices, Figure 10, remained strong. No. 2A declined by \$10 in April and is down \$85 from the all time high in the summer of 1993. FAS with the premium is only \$10 below the all-time high of \$1,015 in the second quarter of 1989. Although veneer log prices increased significantly, reported sawlog prices declined from 6 to 14 percent. Strong demand for veneer logs could have increased the volume of white oak stands harvested resulting in a more than adequate supply of sawlogs.

Red oak lumber prices, Figure 11, have declined enough to indicate a fundamental shift in consumer preferences, especially in commercial construction. FAS with the premium is down 22 percent from the \$1,275 high in the first half of 1995. No. 1C is down 12 percent from the \$800 high in second and third quarters of 1993. No. 2A is down 18 percent from the \$485 high in the third quarter of 1993. Log prices were down from 7 to 18 percent, indicating that log supplies remain tight even relative to the decline in demand.

Black oak log prices were down somewhat less in the upper grades and down somewhat more in the lower grades.

Tulip (yellow) poplar lumber prices, Figure 12, have recovered slightly after hitting a cyclical bottom in the winter of 1995. They, however, remain well below the highs of the 1993-94 period. Sawlog prices were down 5 to 8 percent, except No. 3's which held steady.

Sycamore lumber prices, Figure 13, have held steady at the record high levels first reached in the second quarter of 1994. Log prices were unexplainablely mixed

with Prime and No. 2's down by 4 and 9 percent, but No. 1 and 3's up by 11 and 13 percent.

Black walnut lumber prices, Figure 14, continued to fall significantly, except 2A which held steady. After holding at a high of \$1,615 from August 1993 to April 1995, FAS is down to \$1,440, an 11 percent decline. No. 1C is down 9 percent while No. 2A has held steady since 1987. Note that 2A price levels are the same as other species. The market pays no premium. Sawlog prices were down significantly, from a high of 24 percent for No. 2's to 12 percent for No. 3's. Prime and No. 1's were down an average 16 percent. Obviously the bloom is off this

rose. The only exception is very high grade veneer. The price differential between prime walnut logs and prime black cherry is \$91. The differential is \$127 compared to red oak.

Softwood prices were reported only for red cedar. Although pine lumber is produced in Indiana the volume is small and limited primarily to custom sawing for local use and pallets. Harvest restrictions in the West have reduced the volume of western cedar species available. This has increased harvests of the eastern species for cedar particleboard and lumber for novelty items.

Activity in this species has even led to some interest in plantation establishment and management in Indiana.

Table 2. Prices paid for delivered sawlogs by Indiana sawmills, May 1995 and May 1996.

	ede:	No. R		Mear	1 (s.e.)1	Median		Chan	ge (%)
Species/Grade	-	1995	1996	1995	1996	1995	1996	Mean	Median
White Ash	(\$/MBF)			(\$/MBF))	((\$MBF)		11100101
Prime	300-800	24	21	642	576	650	600	-10.3	-7.7
				(16.4)	(23.8)			10.0	7.1
No. 1	250-680	24	21	459	409	500	400	-10.9	-20.0
				(16.6)	(25)			1015	20.0
No. 2	100-400	22	19	285	234	265	210	-17.9	-20.8
				(20.1)	(19.1)				20.0
No. 3	100-230	16	17	179	161	180	160	-10.1	-11.1
				(12.4)	(10.6)				11.1
Basswood									
Prime	200-450	15	14	283	308	250	313	8.8	25.2
				(30.4)	(23.4)				20.2
No. 1	140-360	18	16	238	243	200	250	2.1	25.0
				(19.8)	(15.1)				
No. 2	100-400	17	16	184	184	200	190	0.0	-5.0
	* W. L. 2002 - Tarana 2002			(10.8)	(18.7)				JT. JE.JT.
No. 3	100-200	13	14	149	144	150	155	-3.4	3.3
				(8)	(10.5)				17.1171
Beech									
Prime	100-300	14	15	207	201	200	200	-2.9	0.0
** .	ware or			(11.3)	(14.3)				
No. 1	100-300	14	13	175	171	170	160	-2.3	-5.9
NT 6	222 200			(9.4)	(13.9)				
No. 2	100-200	15	13	155	139	150	130	-10.3	-13.3
37 .				(10.5)	(10.8)				
No. 3	100-200	12	14	150	150	155	155	0.0	0.0
				(9)	(10.4)				
Cottonwood									
Prime	100-200	7	11	134	133	140	120	-0.8	-14.3
				(6.9)	(10.3)				
No. 1	100-160	8	8	133	119	140	110	-10.5	-21.4
NI O	100 000			(6.2)	(8.5)				
No. 2	100-200	7	10	130	125	140	110	-3.9	-21.4
N. O		Africa		(6.5)	(10.9)				
No. 3	80-200	7	13	139	141	140	140	1.4	0.0
				(9.4)	(12.2)				

 $^{^{1}}$ Standard error of the mean is given in parentheses below the mean.

Table 2. Prices paid for delivered sawlogs by Indiana sawmills, May 1995 and May 1996, continued.

Species/Grade	Range	No.]	Respon.	Me	an (s.e.)1	N	1 edian	Cha	nge %
Cherry	(\$/MBF)	1995	1996	1995	1996	1995	1996	Mean	Median
		00			MBF)	(\$.	/MBF)		
Prime	500-1050	23	21	817	736	800	700	-9.9	-12.5
NT. 1	100 000	2.3		(29.9)	(30.9)				
No. 1	400-800	24	21	591	514	600	450	-13.0	-25.0
NT 0				(29.7)	(29.9)				
No. 2	150-540	22	19	360	316	325	280	-12.2	-13.9
				(31.3)	(27.5)				10.5
No. 3	100-250	17	18	194	173	200	175	-10.8	-12.5
-				(12.2)	(12.1)			10.0	12.5
Elm									
Prime	100-250	7	13	176	162	180	160	-8.0	-11.1
				(18.2)	(13.1)		100	-0.0	-11.1
No. 1	100-250	10	13	169	166	170	160	-1.8	-5.9
				(13.9)	(14.6)	1,0	100	-1.0	-3.9
No. 2	100-200	7	12	154	142	160	155	70	2 1
			1.710000	(10.7)	(10.4)	100	133	-7.8	-3.1
No. 3	100-220	8	15	149	146	155	150	2.0	0.0
			10	(9.9)		133	150	-2.0	-3.2
S. Hickory				(3.3)	(10.8)				
Prime	100-750	15	19	239	200	200	222		
111110	100-750	13	19		280	200	250	17.2	25.0
No. 1	100-350	16	10	(17.3)	(34.4)				
140. 1	100-330	16	19	207	213	200	200	2.9	0.0
No. 2	100 270	1.0		(15)	(15)				
NO. Z	100-270	16	18	161	161	155	160	0.0	3.2
Nr. 2	100 000	14.4	9/1001	(10.2)	(11.8)				
No. 3	100-220	11	17	140	147	150	150	5.0	0.0
T 136 1				(8)	(10.4)				
Hard Maple									
Prime	400-700	20	19	505	542	500	550	7.3	10.0
				(27.4)	(21.8)			7.5	10.0
No. 1	200-600	23	20	374	393	350	390	5.1	11.4
				(27.1)	(26.9)	220	370	3.1	11.4
No. 2	125-400	21	19	247	244	250	210	1.0	16.0
				(16.7)	(22)	250	210	-1.2	-16.0
No. 3	100-230	17	18	158	156	150	155		
		**	10	(9.1)		150	155	-1.3	3.3
oft Maple				(9.1)	(11.2)				
Prime	160-400	18	18	270	205	250		200 7991	
111110	100-400	10	10	279	285	250	300	2.2	20.0
No. 1	160.210	20	10	(19.6)	(12.1)		512		
110. 1	160-310	20	19	219	226	200	220	3.2	10.0
No. 2	100 000	00		(15.1)	(11.4)				
No. 2	100-220	20	18	171	163	170	170	-4.7	0.0
37				(9.3)	(9.5)				9,20,75
No. 3	100-220	13	17	142	149	150	160	4.9	6.7
				(7.6)	(9.7)		No. of the Control of		

1 Standard error of the mean is given in parentheses below the mean.

Table 2. Prices paid for delivered sawlogs by Indiana sawmills, May 1995 and May 1996, cont.

			espon.	Mean	(s.e.)1	Median		Chan	ge (%)
Species/Grade White Oak	Range (\$/MBF)	1995	1996	1995 (\$/MBF)	1996	1995 (\$/MBF)	1996	Mean	Median
Prime	200-900	23	22	648	612	600	(00		
			22	(17.9)	(31.1)	600	600	-5.6	0.0
No. 1	250-680	24	21	469	438	500	450		81.1
		21	21	(20.4)		500	450	-6.6	-10.0
No. 2	150-400	25	20	310	(23) 268	200	205		
			20	(21.6)	(19.2)	300	295	-13.6	-1.7
No. 3	100-240	18	18	181	162	180	160	10.5	
				(8.7)	(11.3)	160	160	-10.5	-11.1
Red Oak				(0.7)	(11.5)				
Prime	500-800	23	22	755	700	700	700	7.2	0.0
				(14.5)	(16.3)	700	700	-7.3	0.0
No. 1	250-700	24	21	564	519	550	550	0.0	0.0
				(21.4)	(26.3)	330	330	-8.0	0.0
No. 2	150-500	25	20	368	301	350	200	10.0	
				(27.4)	(21.5)	330	300	-18.2	-14.3
No. 3	100-250	19	18	184	167	200	160	0.0	
			10	(8.9)	(12.8)	200	160	-9.2	-20.0
Black Oak				(0.5)	(12.0)				
Prime	400-800	20	20	682	636	700	625	6.7	10.5
				(14.7)	(19.4)	700	023	-6.7	-10.7
No. 1	250-700	23	21	494	460	500	450		10.0
				(20.7)	(21.9)	300	450	-6.9	-10.0
No. 2	125-350	23	20	312	261	300	200	46.4	
			20	(22.6)	(15.5)	300	300	-16.4	0.0
No. 3	100-220	16	17	176	154	180	160	40.5	20.0
		10	17	(9.1)	(10)	180	160	-12.5	-11.1
Fulip Poplar				(5.1)	(10)				
Prime	300-450	24	21	413	384	400	400	7.0	
			21	(14.2)	(10.3)	400	400	-7.0	0.0
No. 1	200-350	24	21	289	265	200	275	0.0	
		21	21	(13.3)	(11.2)	300	275	-8.3	-8.3
No. 2	100-250	22	19	199	189	200	200	5 0	
			17	(9.3)	(10.1)	200	200	-5.0	0.0
No. 3	100-220	14	18	150	151	150	1.55		2.2
	100 220	. 1	10	(7)		150	155	0.7	3.3
ycamore				(7)	(9.4)				
Prime	120-200	16	14	188	101	200	200		
	120 200	10	14		181	200	200	-3.7	0.0
No. 1	120-250	15	13	(13.1) 153	(7.3)	150	166		200
		15	13		169	150	160	10.5	6.7
No. 2	100-200	15	12	(8.8) 148	(10.5)	150	405	20.00	
= 103 (조)	200 200	15	12		135	150	135	-8.8	-10.0
No. 3	100-220	13	14	(11.5)	(10.4)	150	4.66	200	
	100 220	13	14	138	156	150	160	13.0	6.7
Standard error				(8.5)	(11.5)				

¹ Standard error of the mean is given in parentheses below the mean.

Table 2. Prices paid for delivered sawlogs by Indiana sawmills, May 1995 and May 1996, continued

			espon.	Mean	(s.e)1	Median	(SE) 1	Chan	ge (%)
		1995	1996	1995	1996	1995	1996	Mean	Median
Species/Grade	Range								21200101
Sweetgum	(\$/MBF)			(\$/MBF)		(\$/MBF)			
Prime	140-250	14	11	195	194	190	180	-0.5	-5.3
				(12.2)	(12.2)			0.0	0.5
No. 1	130-200	15	11	165	166	160	160	0.6	0.0
				(9.1)	(6.1)				0.0
No. 2	100-200	15	11	145	143	150	140	-1.4	-6.7
				(7.8)	(9.2)				0.7
No. 3	100-200	12	13	139	152	150	160	12.2	6.7
Black Walnut				(7.9)	(11.2)				
Prime	500-1050	20	17	973	827	1000	800	-15.0	-20.0
				(53.7)	(42)		17.17.17.1	10.0	20.0
No. 1	400-850	22	19	741	615	775	650	-17.0	-16.13
				(45.2)	(33.4)				10.15
No. 2	150-550	22	17	461	350	400	400	-24.1	0.0
				(46.9)	(32.9)			4733.63	0.0
No. 3	100-400	17	17	210	184	200	180	-12.4	-10.0
EV ASS				(23.9)	(15.8)				
Softwood									
Pine		1		240		240			
Red cedar		1	1	400	350	400	350	-12.5	-12.5

1 Standard error of the mean is given in parentheses below the mean.

Table 3. Hardwood Lumber prices, 4/4 Appalachian unless otherwise indicated (Hardwood Market Report, Memphis, Tenn.), \$\\$ per MBF.

	Lumber	Jan. 1993	July 1993	Jan. 1994	July 1994	Jan 1995	June 1995	Jan 1996	July 1996
A _1_	Grade								1,,,0
Ash	FAG . B								
	FAS + Prem.	830	860	860	870	935	970	925	84
	No. 1C	485	545	565	630	695	725	680	60
Basswood	No. 2A	220	265	285	330	365	380	360	32
245511004	FAS + Prem.	655	675	675	600	710	710		
	No. 1C	310	320	320	690	710	710	710	71
	No. 2A	190	225	225	335 225	350	350	350	35
Beech	F. 1.11. = 3.5	170	ha ha J	223	223	225	225	220	19
	FAS	335	385	395	425	440	440	440	40
	No. 1C	295	345	355	385	400	440	440	43
	No. 2A	235	275	285	315	325	400 325	400	39
Cottonwood (Southern)			2,5	203	313	323	323	325	320
	FAS	480	515	555	625	635	625	605	600
	No. 1C	315	340	380	430	435	425	405	400
	No. 2A	170	220	240	260	255	240	220	220
Cherry							210	220	220
	FAS + Prem.	1,400	1,495	1,510	1,585	1,685	1,725	1670	1670
	No. 1C	850	1025	1040	1,040	1,040	990	845	84:
	No. 2A	450	575	590	590	590	550	445	445
Elm (Southern)									
	FAS	335	340	345	355	355	355	355	355
	No. 1C	315	320	325	335	335	335	335	335
	No. 2B	215	260	265	270	270	270	270	270
Hickory	FAS	355	395	405	445		120		
	No. 1C	335	375	405 385	445	455	455	455	455
	No. 2A	210	240	245	425 265	435	435	435	435
Hard Maple		210	240	243	203	265	265	265	265
•	FAS + Prem.	940	1,075	1,030	1,015	1,015	1,015	000	1000
	No. 1C	650	760	750	730	675	660	990 625	1060
	NO. 2A	415	495	485	475	425	400	370	635
Soft Maple					175	723	400	370	370
	FAS + Prem.	680	805	815	825	825	760	700	715
	No. 1C	495	590	600	610	600	560	500	500
	No. 2A	320	395	405	410	400	365	325	325
White Oak -Plain							505	323	343
	FAS + Prem.	1,010	955	880	880	975	990	1005	1005
	No. 1C	540	540	535	535	565	585	600	600
	No. 2A	320	390	340	325	315	315	315	305
Red Oak-Plain					2.50	510	313	313	303
	FAS + Prem.	1,065	1,140	1,140	1,170	1,275	1,265	1130	1010
	No. 1C	780	800	780	750	740	735	705	705
	No. 2A	400	485	455	420	400	400	400	400
Tellow Poplar						100E S.			100
	FAS + Prem.	570	615	710	750	750	685	625	650
	No. 1C	320	420	425	425	420	365	330	355
	No. 2A	215	315	310	305	275	240	235	250

Table 3. Hardwood Lumber prices, 4/4 Appalachian unless otherwise indicated (Hardwood Market Report, Memphis, Tenn.), \$ per MBF. cont.

	Lumber Grade	Jan. 1993	July 1993	Jan. 1994	July	Jan.	June	Jan.	July
Sycamore	Grade	1773	1993	1994	1994	1995	1995	1996	1996
(Southern, Plain)									
	FAS	340	365	415	445	455	455	455	455
	No. 1C	320	345	395	425	435	435	435	435
	No. 2A	280	305	350	370	375	375	375	375
Black Walnut									0,0
	FAS	1,605	1,605	1,615	1,615	1,615	1,600	1535	1455
	No. 1C	855	855	855	855	855	855	810	780
	No. 2A	290	290	290	290	290	290	290	290

VENEER LOG PRICES

The number of reporting mills decreased. In addition, the number of mills reporting prices for large logs decreased, reflecting the scarcity of veneer logs in the 20-inch dib and larger size category for most species.

If only one mill reported a price for a given species and grade the price is not shown to avoid misrepresenting the market.

The tables show very large price changes for some log categories. Note that in most cases this resulted from the reduction in the number of mills reporting a price for that category. In such cases the changes should be given little significance.

Table 4. Prices paid for delivered veneer logs by Indiana veneer mills, May 1995 and May 1996.

52 F 67		No. R	espon.	Mean	(s.e.)1	Me	dian	Chan	ge (%)
Species/Grade/Log Dia.	r 1996 Range	1995	1996	1995	1996	1995	1996	Mean	Median
Black Wal	nut			(\$/MBF)		(\$/MBF)			
Prime				(WINIDI)		(4/MIDI)			
12-13	1500-1500	8	3	1750	1500	1750	1500	-14.3	-14.3
				(277.7)	(0)	1700	1300	-14.5	-14.3
14-15	1500-2500	8	3	1833	2000	2250	2000	9.1	11.1
				(401.1)	(288.7)	2200	2000	9.1	11.1
16-17	2500-3000	8	3	2775	3000	2750	3000	8.1	9.1
				(526)	(288.7)	572 (STEERS)		0.1	7.1
18-20	3000-5000	7	2	3729	4000	3000	4000	7.3	25.0
				(917.2)	(1000)			7.0	23.0
21-23	4000-6000	6	2	3600	5000	2500	5000	38.9	100.0
				(1219.8)	(1000)				100.0
24-28	0-0	6	0	4017		2750			
925				(1388.6)					
*28	0-0	6	0	4183		2750			
2.2				(1445.1)					
Select									
12-13	1200-1200	5	1	1080		1400			
				(217.7)					
14-15	1500-2000	5	2	1400	1750	1400	1750	25.0	25.0
				(356.4)	(250)				
16-17	2500-3000	5	2	1540	2750	1400	2750	78.6	96.4
				(446.8)	(250)				
18-20	4000-4000	4	1	1800		1200	4000		
				(743.9)					
21-23	5500-5500	4	1	1800		1200	5500		
04.00				(743.9)					
24-28	0-0	4	0	2050		1200			
400	0.0			-991.2)					
*28	0-0	4	0	2300		1200			- 1
				(1239.6)					

 $^{^{1}}$ Standard error of the mean is given in parentheses below the mean

Table 4. Prices paid for delivered veneer logs by Indiana veneer mills. May 1995 and May 1996 cont

Table 4. Pric		No. R	espon.		(s.e.)1	Med			ge (%)
Species/Grade		1995	1996	1995	1996	1995	1996	Mean	Median
Log Dia.	Range								701-71 C. 2010 0000
White Oak	(\$/MBF)			(\$/MBF)		(\$/MBF)			
Prime									
13-14	800-1500	7	4	1129	1238	1200	1325	0.8	10.4
				(114.4)	(151.9)				
15-17	1000-2100	7	4	1336	1650	1350	1750	23.5	29.6
				(206.7)	(253.3)				
18-20	1800-2750	7	4	1721	2263	1750	2250	31.5	28.6
				(223)	(219.2)				
21-23	2400-3000	6	4	1992	2850	2000	3000	43.1	50.0
				(316.3)	(150.0)				
24-28	3000-3000	5	1	1940	31 32	2000			
				(365.5)					
*28	4000-4000	5	1	2040		2000			
				(382.9)					
Select									
13-14	700-1200	3	2	767	950	800	950	23.9	18.8
				(33.3)	(250)				10.0
15-17	800-2000	4	3	963	1333	900	1200	38.4	33.3
				(143.4)	(352.8)				00.0
18-20	1500-2250	4	3	1175	1916	1250	1500	63.1	20.0
				(197.4)	(268.2)				20.0
21-23	1500-2250	3	3	1317	2000	1500	2000	51.9	33.3
				(316.7)	(220.5)			01.7	55.5
24-28		3	0	1317		1500			
				(316.7)		100 M 100 M			
*28		3	0	1417		1750			
				(358.6)		1,00			

 $^{^{1}}$ Standard error of the mean is given in parentheses below the mean.

Table 4. Prices paid for delivered veneer logs by Indiana veneer mills, May 1995 and May 1996, cont.

		No. R	espon.	Mean	(s.e)1	Med	ian	Chan	ge (%)
Species/Grade/		1995	1996	1995	1996	1995	1996	Mean	Mediar
Log Dia.	Range								.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Red Oak	(\$/MBF)			(\$/MBF)		(\$/MBF)			
Prime									
16-17	1300-2200	5	3	1260	1733	1100	1700	37.5	54.55
				(163.1)	(260.3)				0 1100
18-20	1300-2500	5	3	1380	1867	1200	1800	35.3	50.0
				(220)	(348.0)		57.55.7	5015	50.0
21-23	1300-2500	4	3	1225	1867	1100	1800	52.4	63.6
				(201.6)	(348.0)			02,1	05.0
24-28	1300-1300	4	1	1225	No de l'estate	1100			
				(201.6)					
*28	1300-1300	4	1	1225		1100			
				(201.6)					
Select				3					
16-17	1200-1450	2	2	850	1325	850	1325	55.9	55.9
				(50)	(125)	55.5	1020	55.7	33.9
18-20	1200-1500	2	2	850	1350	850	1350	58.8	58.8
				(50)	(150)		1000	50.0	30.0
21-23	1200-1500	2	2	700	1350	700	1350	92.9	92.9
				(200)	(150)	,	1550	12.5	72.7
24-28	0-0	2	0	950	X-10-17	950			
				(50)					
*28	0-0	2	0	950		950			
				(50)		700			

 $^{^{1}}$ Standard error of the mean is given in parentheses below the mean.

Table 4. Prices paid for delivered veneer logs by Indiana veneer mills, May 1995 and May 1996, cont.

		No. R	espon.	Mean	(s.e.)1	Med	ian	Char	ige (%)
Species/Grade/	1996	1995	1996	1995	1996	1995	1996	Mean	Mediar
Log Dia.	Range							1110411	Wicala
Hard Maple	(\$/MBF)			(\$/MBF)		(\$/MBF)			
Prime									
16-20	1500-2700	4	3	1163	2233	1250	2500	92.0	100.0
				(279)	(371)			72.0	100.0
*20	3000-3000	4	1	1013	X	800			
				(349)					
Select				` /					
16-20	1000-1200	3	2	683	1100	600	1100	61.1	83.3
				(164.1)	(100.0)	000	1100	01.1	63.3
*20		2	0	450	(200.0)	450			
				(0)		150			
Tulip Poplar				(-)					
Prime									
16-20	400-600	4	3	500	500	475	500	0.0	5.0
				(35.4.)	(57.7)	175	300	0.0	3.0
*20	400-500	4	2	563	450	550	450	-20.1	-18.2
			_	(65.7)	(50)	550	430	-20.1	-18.2
Select				(05.7)	(30)				
16-20	300-600	3	2	383	450	400	450	17.5	10 5
			_	(44.1)	(150)	400	430	17.3	12.5
*20	300-300	2	1	425	(130)	425			
	0.02535074		•	(25)		443			

 $^{^{1}}$ Standard error of the mean is given in parentheses below the mean.

CUSTOM COSTS AND MISCELLANEOUS PRODUCTS

The few mills reporting custom costs and prices for minor forest products makes analysis difficult.

Custom Costs

Custom costs in 1996 were about the same as 1995. An exception is hauling cost which continued the decline reported in 1995. Haul distance continued to increase, but reported cost per MBF was down slightly. Like last year, this is likely due to the use of larger trucks and elimination of on-board loaders.

Table 5. Custom costs reported by Indiana mills, May 1995, and May 1996.

			Me	an	Median		
	No.	1996					
	Responses	Range	1995	1996	1995	1996	
Sawing (\$/MBF)	10	100-200	179	169	180	180	
Logging (\$/MBF)	3	75-120	94	98	78	100	
Hauling (\$/MBF)	4	12.5-100	68	56	65	55	
Distance (Miles)	6	10-80	46	48	35	50	
\$/MBF/Mile	4	0.56-2.00	1.28	1.22	1.40	1.30	

Miscellaneous Products

Prices for miscellaneous products, Table 6, generally increased. The price for pallet logs was somewhat higher reflecting steady industrial output in the midwest region. Markets for bark for mulch also remain strong.

Table 6. Prices of miscellaneous products reported by Indiana mills, May 1995 and May 1996, fob the producing mill.

	No. Responses	1996 Range	Mean		Median	
			1995	1996	1995	1996
Pallet logs, \$/MBF	14	100-340	180	181	170	180
Pulp Chips, \$/ton	15	6.15-21.00	12.98	13.60	12.75	13.75
Sawdust, \$/ton	12	0.50-20.00	5.71	6.00	5.00	5.13
Bark, \$/ton	16	5.00-40.00	10.30	14.70	10.00	9.30

Handle and Container Veneer Logs

Handle log prices were generally lower, Table 7. The number of mills reporting handle log prices decreased from five to three. All the mills reporting were handle mills. One mill reported container veneer log prices. They were paying \$250 for all grades of soft maple, sycamore, cottonwood, and gum. They also purchased poplar for \$400, 350, and 300 for Prime, No. 1 and No. 2 grades, respectively.

Table 7. Prices paid for handle logs by Indiana mills, May 1995 and May 1996, fob mill.

			Mean	
	No. Responses	1996 Range	1995	1996
White Ash			(\$/MBF)	(\$/MBF)
No. 1	3	600-550	633	600
No. 2	3	350-500	483	417
No. 3	2	250-400	275	325
Hickory				323
No. 1	1	300-300	250	300
No. 2	1	250-250	290	250
No. 3	1	200-200		200
Sugar Maple				200
No. 1	2	400-550	600	475
No. 2	2	300-350	400	325
No. 3	1	250-250	200	250

INDIANA TIMBER PRICE INDEX -- UPDATE

The delivered log prices collected in the Indiana Forest Products Price Survey are used to calculate the delivered log value of typical stands of timber. provides trend-line data that can be used to monitor long-term price trends for timber. The species distribution used to calculate the weighted averages are presented in Table 8. The log quality weights used are presented in Table 9. These weights are based primarily on the 1967 Forest Survey of Indiana. The weights will be adjusted in the future to reflect changes in species composition and timber quality as reflected in the 1986 Forest Survey.

The nominal (not deflated) price, columns 3 and 6 of Table 10, are a weighted average of the delivered log prices reported in the price survey. The price indexes, columns 4 and 7, are the series of nominal prices divided by the price in 1957, the base year multiplied by 100. Thus, the index is the percentage of the 1957 price. For example, the average price in 1996 was 615 percent of the price in 1957. The real prices, columns 5 and 8 are the actual prices deflated by the producer price index for finished goods with 1982 as the base year, Figure 10. The real price series represents the purchasing power of dollars based on a 1982 market basket of industrial goods. It's this real price trend that is important to long-term investments like timber.

The results for 1995 are different than those reported in the bulletin for 1995. This is because the producer price index for all of 1995 is used to recalculate the

averages for 1995. These recalculations have also occurred in previous years. The changes are usually minor.

Average Stand

The nominal weighted average price decreased from \$354.60 in 1995 to \$341.80 in 1996 for the average stand, Table 10, column 3. This is a 3.6 percent decrease, about the same as the decline from 1994 to 1995. Note that this decline is much less than the 10 percent average decline for oak sawlogs. Price increases for several of the lower valued but abundant species provided a diversify affect.

The real price dropped below the trend line for the first time since 1992, Figure 16. By definition the trend line splits the difference between annual prices above and below the trend line. Thus, further price declines will pull down the trend line. The average annual compound rate of increase for the trend line was essentially the same, 1.10 percent in 1995 to 1.09 in 1996, Figure 16. The new equation for the trend line for the 1957 to 1996 period is,

Avg. Index = $171.51 + 2.34 \times T$, where,

T=1 for 1957, 2 for 1958, etc.

A linear trend line should be used if it's necessary to project timber prices, as discussed in greater detail in Station Bulletin No. 148. Although it's easier to simply plug the average annual compound rate of increase value into the compound interest formula

(exponential rate of increase), projections much over 15 years gives unrealistic results. Real prices can't increase exponentially for long periods of time. Market adjustments, like those observed for black walnut, come into play to retard the increase and eventually reverse it.

Quality Stand

The nominal weighted average price for the quality stand increased by 13.6 percent from 490.1 in 1995 to 553.1 in 1996, Table 10, column 6. The increase was due almost entirely to increases in reported veneer log prices. The increase is probably overstated because of the small number of mills reporting veneer log prices. The averages used may not be representative of overall market conditions.

The average annual compound rate of increase for the trend line stayed the same at 1.81%,

Figure 16, compared to 1.80 in 1995. The equation for the trend line is,

Qual. Index = $194.17 + 5.16 \times T$

Table 8. Species composition of the Indiana timber price index for an average and a uality stand.

Species	Average Stand	Quality Stand	
Veneer species:	(%)	(%)	
White oak	13.4	21.0	
Red oak	15.1	20.0	
Hard maple	9.6	14.0	
Yellow poplar	7.5	9.0	
Black walnut	5.4	5.0	
Nonveneer species:			
White ash	5.8	3.1	
Basswood	1.5	3.1	
Beech	5.6	3.1	
Cottonwood	6.2	3.1	
Black cherry	0.8	3.1	
Elm	1.2	3.1	
Hickory	4.7	3.1	
Soft maple	6.7	3.1	
Black oak	11.4	3.1	
Sycamore	5.1	3.1	

Table 9. Log quality composition of the Indiana timber price index for an average and a quality stand.

	Average Stand		Quality Stand		
Log Grade	Veneer Species	Nonveneer Species	Veneer Species	Nonveneer Species	
Veneer logs	(%)	(%)	(%)	(%)	
Prime	1.0	0.0	7.0	0.0	
Select	3.0	0.0	13.0	0.0	
Sawlogs					
Prime	20.0	24.0	19.0	24.0	
No. 1	26.0	26.0	21.0	26.0	
No. 2	38.0	38.0	33.0	38.0	
No. 3	12.0	12.0	7.0	12.0	

Table 10. Weighted average actual price, price index, and deflated price for an average and quality stand of timber in Indiana, 1957 to 1996.

		Average Stand			Quality St	Quality Stand		
×2	Producer	Nominal	Index	Real	Nominal	Index	Real	
Year	Price Index	Price	Number	Price 1	Price	Number	Price 1	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
1055		(\$/MBF)		(\$/MBF)	(\$/MBF)		(\$/MBF	
1957	32.5	55.6	100.0	171.0	66.5	100.0	204.7	
1958	33.2	54.3	97.7	163.6	66.1	99.4	199.2	
1959	33.1	54.7	98.4	165.2	68.1	102.4	205.7	
1960	33.4	58.0	104.4	173.6	69.9	105.1	209.3	
1961	33.4	59.5	107.1	178.1	70.4	105.9	210.9	
1962	33.5	59.8	107.6	178.4	72.9	109.5	217.5	
1963	33.4	59.4	107.0	177.9	75.3	113.1	225.3	
1964	33.5	60.9	109.6	181.7	75.1	112.9	224.2	
1965	34.1	65.0	117.0	190.7	80.6	121.1	236.3	
1966	35.2	69.7	125.5	198.1	88.0	132.2	249.9	
1967	35.6	71.9	129.4	202.0	89.0	133.7	249.9	
1968	36.6	76.5	137.6	208.9	97.6	146.6	266.6	
1969	38.0	78.7	141.6	207.1	100.0	150.3	263.1	
970	39.3	84.1	151.4	214.0	105.5	158.5	268.4	
971	40.5	87.0	156.6	214.8	109.5	164.5	270.3	
972	41.8	89.8	161.7	214.9	112.8	169.6	269.9	
973	45.6	113.5	204.3	249.0	143.7	215.9	315.1	
974	52.6	135.1	243.2	256.8	175.9	264.4	334.4	
975	58.2	124.9	224.9	214.7	169.9	255.4	292.0	
976	60.8	133.5	240.2	219.5	177.6	266.9	292.1	
977	64.7	143.5	258.2	221.8	194.7	292.7	300.9	
978	69.8	181.7	327.1	260.4	247.6	372.1	354.7	
979	77.6	200.1	360.2	257.9	276.7	415.9	356.5	
980	88.0	208.8	375.8	237.3	326.7	491.0	371.2	
981	96.1	206.6	371.9	215.0	300.2	451.2	312.3	
982	100.0	201.5	362.6	201.5	293.3	440.9	293.3	
983	101.6	201.0	361.8	197.8	278.3	418.3	273.9	
984	103.7	233.6	420.4	225.3	336.7	506.1	324.7	
985	104.7	210.4	378.8	201.0	290.3	436.4	277.3	
986	103.2	224.1	403.4	217.2	331.6	498.4	321.3	
987	105.4	258.0	464.3	244.7	358.4	538.7	340.0	
988	108.0	262.7	472.8	243.2	366.5	550.9	339.4	
989	113.6	288.8	519.9	254.3	445.0	668.9	391.7	
990	119.2	290.5	522.9	243.7	433.4	651.4	363.6	
991	121.7	270.1	486.2	222.0	395.5	594.4		
992	123.2	295.1	531.2	239.5	454.9	683.8	325.0 369.2	
993	124.7	357.1	642.7	286.4	537.8	808.3	431.2	
994	125.5	367.6	661.6	292.9	563.1	846.5		
995	127.9	354.6	638.1	277.2	487.0	732.1	448.7	
996	131.5	341.8	615.1	259.9	553.1	831.3	380.8 420.6	

Actual price deflated by Producer Price Index for Finished Goods, U.S. Dept. Commerce, 1982 base year.

IMPLICATIONS

Hardwood markets are continuously sorting out changes in consumer preferences, resource availability, mill capacities, weather patterns, and many other factors. Despite continuous adjustments, some periods are more stable than others. The last couple of years have seen a larger than usual number of adjustments.

During these times timber owners need to use appropriate marketing strategies, just like timber buyers need to carefully adjust their offering prices to reflect changes in lumber and veneer markets. The prices in this report reflect trends, not current market conditions. It's appropriate to use them to determine if a quoted price is "reasonable," but not to establish the current fair market value of a given stand of timber.

Changes in the relative values of species supports the importance of species diversification in hardwood timber management. The time value of money and long growth period for hardwoods dictates working with the species you have in your stands whenever possible. Keeping a mix of species allows timber owners who have established a regular cutting cycle to capture the value of the species in favor at the time of a timber sale while leaving others for future growth. But, relative values and the need for quality must still be given high priority when marking a TSI or selective harvest.

The trend for the real price of timber on average to increase in the 1 to 2 percent range per year can be expected to continue. Expectations should be realistic, however. Real prices can't go up forever. Walnut prices have taught us a lesson, I hope, about the great capacity of markets to accommodate scarcity.

Figure 1. Ash lumber price, monthly, 1974 to Aug. 1996, 4/4 Applachian, Hdwd. Mkt. Report, Memphis, TN

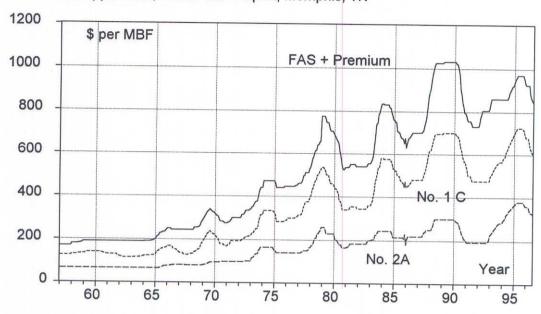


Figure 2. Basswood lumber prices, monthly, 1974 to Aug. 1996, 4/4 Applachian, Hdwd. Mkt. Report, Memphis, TN.

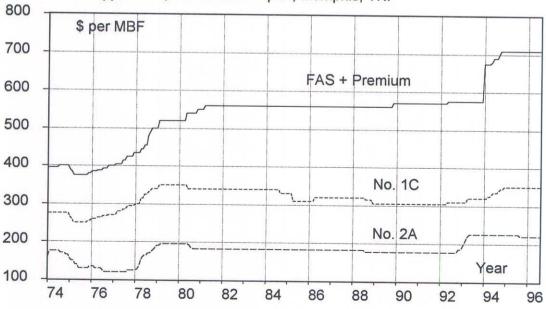


Figure 3. Beech lumber prices, monthly, 1974 to August 1996, 4/4 Applachian, Hdwd. Mkt. Report, Memphis, TN

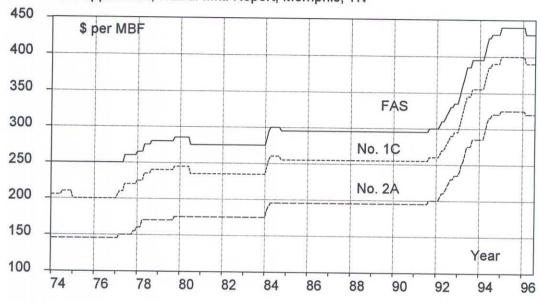


Figure 4. Cottonwood lumber prices, monthly, 1974 to Aug. 1996, 4/4 Southern, Hdwd. Mkt. Rpt., Memphis TN.

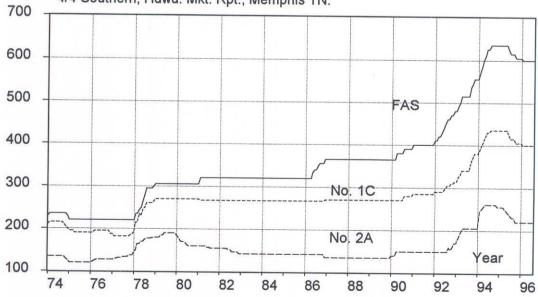


Figure 5. Black cherry lumber prices, monthly, 1974 to august 1996, 4/4 Applachian, Hdwd. Mkt. Report, Memphis, TN.

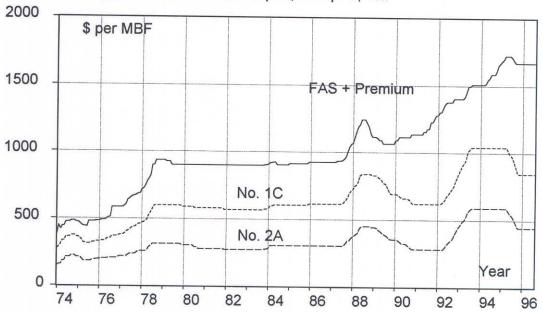


Figure 6. Elm lumber prices, monthly, 1974 to August 1996, 4/4 Southern, Hdwd. Mkt. Rpt., Memphis, TN.

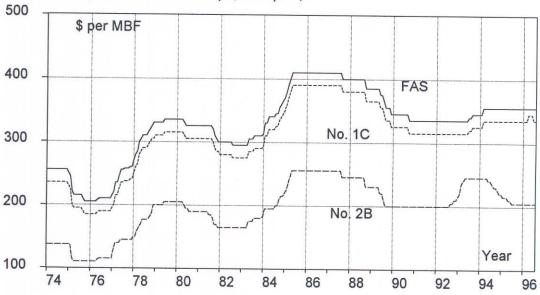


Figure 7. Hickory lumber prices, monthly, 1974 to August 1996, 4/4 Applachian, Hded. Mkt. Report, Memphis, TN.

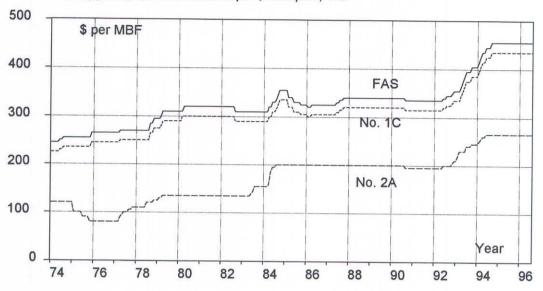


Figure 8. Hard maple lumber prices, monthly, 1974 to August 1996, 4/4 Applachian, Hdwd. Mkt. Report, Memphis, TN.

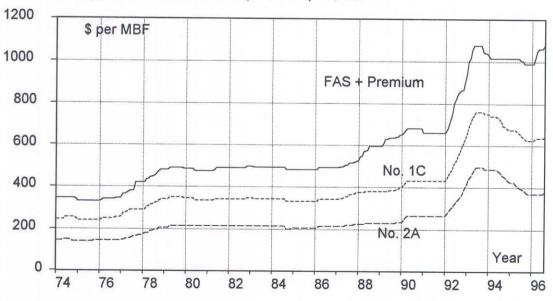


Figure 9. Soft maple lumber prices, monthly, 1974 to August 1996, 4/4 Applachian, Hdwd. Mkt. Report, Memphis, TN.

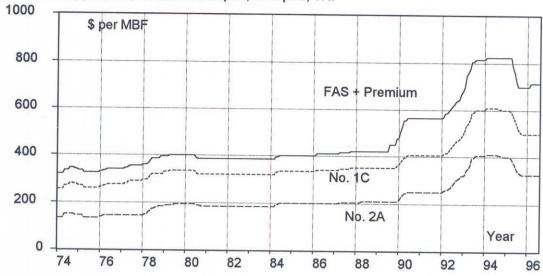


Figure 10. White oak lumber prices, monthly, 1974 to August 1996, 4/4 Applachian, Hdwd. Mkt. Report, Memphis, TN.

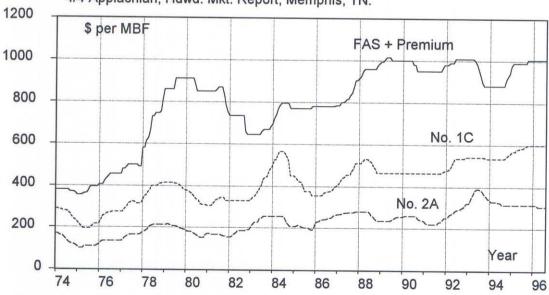


Figure 11. Red oak lumber prices, monthly, 1974 to August 1996, 4/4 Applachian, Hdwd. Mkt. Report, Memphis, TN.

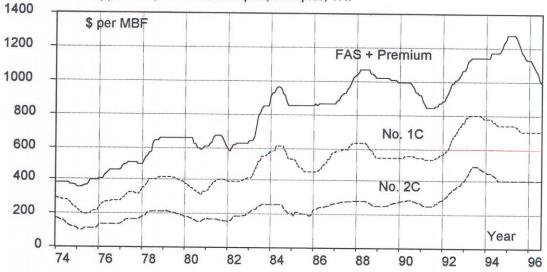


Figure 12. Tulip poplar lumber prices, monthly, 1974 to August 1996, 4/4 Applachian, Hdwd. Mkt. Report, Memphis, TN.

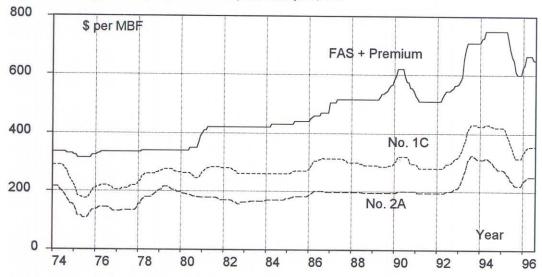


Figure 13. Sycamore lumber prices, monthly, 1974 to August 1996, 4/4 Applachian, Hdwd. Mkt. Report, Memphis, TN.

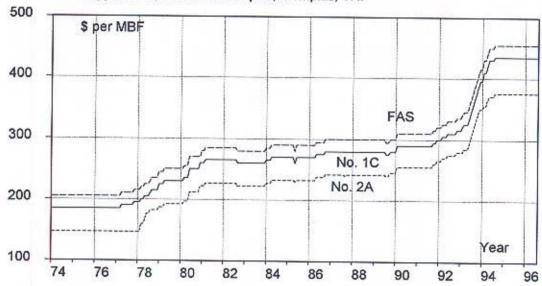
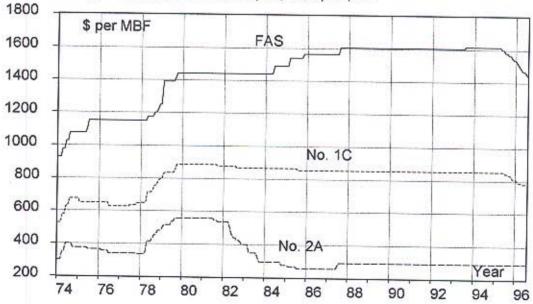
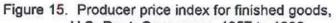




Figure 14. Black walnut lumber prices, monthly, 1974 to August 1996, 4/4 Applachian, Hdwd. Mkt. Report, Memphis, TN.

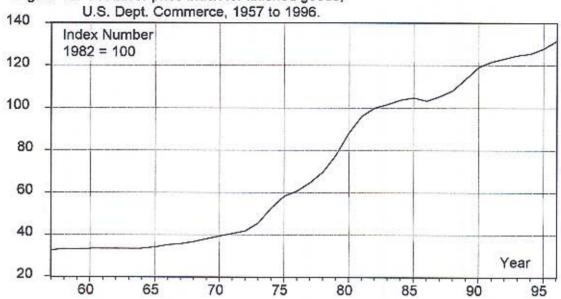


Figure 16. Average stand, nominal, real, and trend line price, 1957 to 1996

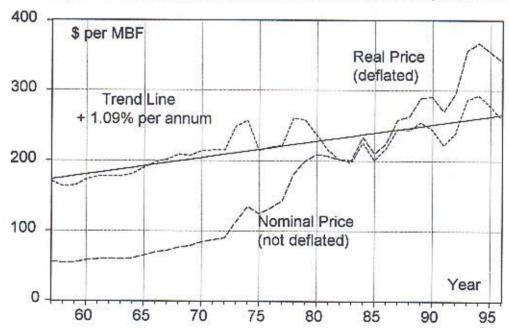
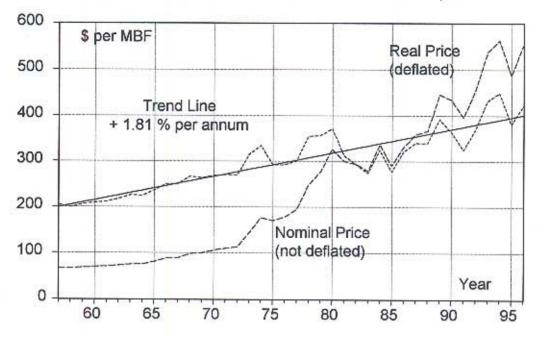



Figure 17. Quality stand, nominal, real, and trend line price, 1957 to 1996

