Purdue University Purdue e-Pubs

Timber Reports

Department of Agricultural Communication

2001

2001 Indiana Forest Products Price Report and Trend Analysis

William L. Hoover

Ralph W. Gann

Follow this and additional works at: http://docs.lib.purdue.edu/timber

Recommended Citation

Hoover, William L. and Gann, Ralph W., "2001 Indiana Forest Products Price Report and Trend Analysis" (2001). *Timber Reports*. Paper 12.

http://docs.lib.purdue.edu/timber/12

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

2001 INDIANA FOREST PRODUCTS PRICE REPORT AND TREND ANALYSIS

William L. Hoover Professor of Forest Economics Purdue University

and

Ralph W. Gann State Statistician Indiana Agricultural Statistics Service

September 17, 2001

SURVEY PROCEDURES AND RESPONSE

Data for this survey was obtained by a mail survey of all known mills in Indiana who buy logs. The prices reported are for logs fob the log yards of the reporting mills. Approximate stumpage prices can be obtained by subtracting logging and hauling costs, Table 4, from the delivered sawlog and veneer log prices.

Seventy-eight mills reported some useable data, compared to 68 in 2000. The number of mills contributing price data for a specific product is shown in the product entries in Tables 1 and 2. Forty-eight mills reported their 2000 total board foot production. The distribution by production categories is shown in Figure 1. The total production for these mills was 179 million board feet. The smallest mill, a custom mill, reported production of 150 MBF. The largest mill produced 18 million board feet in 2000.

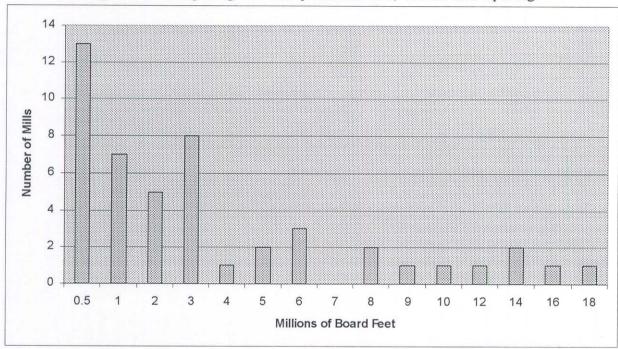


Figure 1. Mills reporting 2000 total production level, 48 mills total reporting.

For the last 16 years at least the Indiana Forest Products Price Survey has been mailed out and responses returned to the Indiana Agricultural Statistics Service (IASS). This year for the third time IASS enumerators were used to contact mills not responding to the mail solicitation.

CAUTION

This report is intended to be used as an indication of price trends, not for the market appraisal of logs or stumpage. This data is collected only once a year and log prices are constantly changing. Proper appraisal techniques by those familiar with market conditions on a day-by-day basis should be used to obtain estimates of current market values.

SAWLOG PRICES

The hardwood lumber industry has felt the affects of the economic slowdown. Most hardwood lumber prices are down significantly from year-ago levels, Table 1. Ash for example is down over 18 percent from July 2000 for the highest grade. The exceptions are black walnut and black cherry. The strength of black walnut results primarily from the long awaited adjustment in inventories and some pick-up in demand. Black cherry is running on continued strong demand, although the price of lower grades is starting to slip. But, these two species account for only a small portion of the total market. Their strength isn't enough to counter declines in the high volume species.

Sawlog prices reflect the decline in lumber prices. Prices for all species except sycamore, black walnut, and black cherry were down overall, Table 2. However, the reported prices for black walnut and black cherry were variable enough to result in a statistical decline in the average price for some log grades. The declines were in the 5 to 10 percent range, depending on species. Further softening of prices is likely given the economic impact of terrorist activities.

VENEER LOG PRICES

The decline in veneer log prices was greater than for sawlogs, Table 3. Declines were typically over 10 percent or more. The only species increasing was white oak for prime grade logs in the smaller size classes.

The strong dollar has reduced export sales of veneer and veneer logs to traditional customers. The veneer industry is also adjusting to a shift in furniture manufacturing to China where inexpensive labor is attractive to manufacturers. Product is still moving to the higher quality domestic furniture manufacturers, but declines in new housing starts has reduced overall demand.

IMPLICATIONS

I suppose this is the fourth or fifth downturn I've discussed in the context of timber product prices and the implications for landowners who may be considering selling timber. I'm not nieve enough to think my comments in this report will affect the decisions of many landowners, but I do take seriously the need to help landowners capture maximimum value for their timber while maintaining a strong lumber and veneer industry in Indiana.

In every downturn there is a shakeout in the industry. The smaller, less efficient, and under capitalized mills cease production for a while, or permanently. Larger mills with well established relationships with their customer base will fare much better and be the major buyers of stumpage and logs. Thus, there is no reason for a landowners to assume that there is no market for their timber. As always the highest demand will be for higher quality timber, especially walnut and cherry. The only way to find out what the market is for your timber is to talk with buyers. The price you get will be determined by how quickly you need to sell and how badly a given mill needs logs. Depend on the bidding and/or negotiation process to get you the best offer possible. Unless you absolutely have to sell now, the trees will still be there when the market improves to a level you are more comfortable with.

Table 1. Hardwood Lumber prices, 4/4 Appalachian unless otherwise indicated (Hardwood Market Report, Memphis, Tenn.). \$ per MBF

	Lumber Grade	Jan 1998	July 1998	Jan 1999	July 1999	Jan 2000	July 2000	Jan 2001	July 2001	Sep 200
Ash	Grade									
	FAS +	800	745	735	735	815	945	945	825	77
	Prem.			40000						
	No. 1C	560	560	560	560	590	650	650	570	52
Basswood	No. 2A	310	310	310	310	325	365	355	315	29
Dasswood	FAS +	725	710	710		L				
	Prem.	735	710	710	710	765	810	810	740	65
	No. 1C	360	260	260	260	20.5				
	No. 2A	225	360	360	360	385	405	405	390	37
Beech	110. ZA	223	225	225	225	225	230	225	210	21
20011	FAS	465	465	165	165	165	165			All Electric
	No. 1C	415	415	465	465	465	465	465	465	46.
	No. 2A	335	335	415 335	415	405	405	405	405	40.
Cottonwood (Southern)	110. 211	333	333	333	335	330	330	330	330	33
	FAS	600	600	600	600	600	600	600	600	CO 1
	No. 1C	400	400	400	400	400	600 400	600 400	600	600
	No. 2A	220	220	220	220	220	220		400	400
Cherry		220	220	220	220	220	220	220	220	220
	FAS +	1940	2010	2025	2040	2115	2220	2375	2375	2375
	Prem.				20.0	2115	2220	2313	4313	231.
	No. 1C	895	1065	1120	1135	1135	1135	1115	1075	1060
	No. 2A	475	625	675	690	690	680	575	470	450
Elm (Southern)				107072		070	000	313	470	430
	FAS	355	355	355	355	355	355	355	355	355
	No. 1C	335	335	335	335	335	335	335	335	335
	No. 2B	270	270	270	270	270	270	270	270	270
Hickory	FAS+	755	755	785	880	880	845	810	645	620
	Prem.									-
	No. 1C	510	510	540	620	620	595	575	500	485
T 126 1	No. 2A	300	300	320	385	385	360	340	285	285
Hard Maple										
	FAS + Prem.	1370	1230	1235	1310	1410	1540	1565	1470	1470
	No. 1C	835	845	845	845	875	955	965	965	065
	NO. 2A	560	550	490	435	435	465	500	490	965
oft Maple				.20	133	733	COF	500	490	490
	FAS + Prem.	975	915	845	835	895	1045	1045	1005	990
	No. 1C	650	650	625	590	610	680	670	625	580
	No. 2A	400	400	380	325	325	350	340	300	295

Table 1. Hardwood Lumber prices, 4/4 Appalachian unless otherwise indicated (Hardwood Market Report, Memphis, Tenn.), \$ per MBF, cont.

White Oak -		Jan	July	Jan	July	Jan	July	Jan	July	Sep.
Plain		1998	1998	1999	1999	2000	2000	2001	2001	2001
	FAS+	990	955	920	925	935	935	945	875	860
	Prem.								0,0	000
	No. 1C	595	570	535	530	535	535	525	495	480
	No. 2A	435	380	330	370	370	370	370	350	350
Red Oak-Plain								5,0	550	550
	FAS+	1115	1115	1115	1195	1210	1210	1220	1120	1110
	Prem.						0701	1220	1120	111(
	No. 1C	775	775	775	780	780	780	780	730	720
	No. 2A	560	505	455	485	485	485	495	480	480
Yellow Poplar								,,,,	100	400
	FAS +	680	650	670	815	890	820	790	630	620
	Prem.								050	020
	No. 1C	410	390	380	410	460	460	460	390	380
	No. 2A	295	295	285	285	300	300	300	280	275
Sycamore								500	200	275
(Southern,										
Plain)										
	FAS	455	455	455	455	455	455	455	455	455
	No. 1C	435	435	435	435	435	435	435	435	435
	No. 2A	375	375	375	375	375	375	375	375	375
Black Walnut								5,5	575	515
	FAS	1410	1410	1410	1410	1410	1440	1470	1565	1580
	No. 1C	775	775	775	775	775	785	785	785	795
	No. 2A	290	290	290	290	290	295	325	380	390

Table 2. Prices paid for delivered sawlogs by Indiana sawmills, May 2000 and May 2001.

		No. R	espon.	Mea	a sawmills, N n (s.e.)1		edian		ge (%)
Species/Grade	2001 Range	2001	2000	2001	2000	2001	2000	Mean	Media
White Ash	(\$/MBF)			(\$/MBF)			A) (DE)		
Prime	300-700	33	38	483	564		\$MBF)	120 170 15	
	200 700	33	36	(17.85)	(17.55)	450	585	-14.4	-23.1
No. 1	200-600	37	39	375	432	260	100	12/12/1/21	
	200 000	31	3)	(15.08)	(13.49)	360	400	-13.3	-10.0
No. 2	100-450	34	39	266	300	250	200		W. D. W.
	200120	3.4	37	(13.09)	(14.38)	250	300	-11.2	-16.7
No. 3	100-300	25	34	186	191	200	200		
	100 500	23	34	(10.09)	(9.47)	200	200	-2.3	0.0
Basswood				(10.03)	(9.47)				
Prime	160 500								
Prime	160-500	22	21	335	356	310	400	-5.8	-22.5
NT- 1	160 400			(20.40)	(21.20)				
No. 1	160-400	26	23	256	291	250	300	-12.1	-16.7
NT- 0				(13.43)	(15.05)				
No. 2	100-300	26	21	203	227	200	220	-10.5	-9.1
NI- 2	100 015			(9.14)	(8.76)				
No. 3	100-215	17	20	163	167	160	180	-2.3	-11.1
D 1				(8.41)	(10.35)				
Beech				9					
Prime	100-450	20	24	221	226	218	200	-2.1	8.8
N. 1		90.00		(17.43)	(13.20)				
No. 1	100-350	20	22	202	212	200	200	-4.8	0.0
37. 0				(11.94)	(11.41)				
No. 2	100-300	19	23	189	197	200	200	-4.2	0.0
				(10.99)	(9.78)				
No. 3	100-250	18	26	173	176	170	180	-1.7	-5.6
200				(10.44)	(8.86)				
Cottonwood									
Prime	100-200	11	17	152	159	160	150	-4.5	6.7
				(9.32)	(9.76)				
No. 1	120-200	9	15	151	161	150	150	-6.1	0.0
				(7.9)	(11.02)				12
No. 2	120-160	7	16	147	158	150	150	-6.9	0.0
				(6.06)	(10.13)				
No. 3	100-180	12	20	144	160	150	150	-9.9	0.0
				(6.45)	(8.72)			R. 196	0.0

Table 2. Prices paid for delivered sawlogs by Indiana sawmills, May 2000 and May 2001, contin	Table 2. Price	ces paid for delive	red sawlogs by India	na sawmille May	2000 and Max. 2001	continue 1
---	----------------	---------------------	----------------------	-----------------	--------------------	------------

abit 2. Files		No	Resnon	Me	ean (se)1		Median		nge %
Species/Grade	01 Range	2001	2000	2001	2000	2001	2000	Mean	Median
Cherry	(\$/MBF)			(3	\$/MBF)		/MBF)	TVICATI	iviculan
Prime	700-3000	31	39	1276	1245	1200	1200	2.5	0.0
37				(79.84)	(47.88)			2.0	0.0
No. 1	150-1750	35	39	874	918	850	900	-4.8	-5.6
27. 0	4144 1000000			(50.69)	(34.73)				5.0
No. 2	160-1100	36	38	556	567	500	600	-1.9	-16.7
27.0				(36.83)	(27.20)		Λ.	1.7	10.7
No. 3	100-700	31	36	290	248	250	245	16.7	2.0
Elm				(25.34)	(14.15)			100.00	2.0
Prime	150 200	10	0.1	9/2/2					
Time	150-300	12	21	192	201	180	200	-4.0	-10.0
No. 1	150-220	1.5	20	(13.09)	(13.77)				
140. 1	130-220	15	22	191	190	200	200	0.5	0.0
No. 2	150-230	1.5	0.1	(5.98)	(10.30)				
110. 2	130-230	15	21	183	182	180	180	0.5	0.0
No. 3	120 215	21.7	2.2	(6.09)	(8.61)				
140. 3	120-215	14	23	169	170	160	180	-0.6	-11.1
S. Hickory				(7.34)	(8.88)				
Prime	215 500	0.0	20	200					
Finne	215-500	26	30	341	370	320	350	-8.0	-8.6
No. 1	160 450	2.1	2.2	(15.98)	(18.07)				
140. 1	160-450	31	32	267	289	250	285	-7.6	-12.3
No. 2	100-300	20	20	(10.96)	(13.02)				
110. 2	100-300	28	26	205	227	200	215	-9.6	-7.0
No. 3	100-225	27	20	(7.56)	(9.89)				
110. 3	100-223	21	29	170	175	180	180	-2.6	0.0
Hard Maple				(6.55)	(9.30)				
Prime	450-1200	31	34	7/0	000	2.00			
111110	450-1200	31	34	768	890	800	900	-13.7	-11.1
No. 1	300-1000	25	20	(36.48)	(42.96)				
110. 1	300-1000	35	38	582	642	550	625	-9.3	-12.0
No. 2	100-560	36	27	(31.05)	(25.30)	2.22			
140. 2	100-300	30	37	373	389	350	400	-4.1	-12.5
No. 3	100-300	27	20	(23.13)	(21.30)				
110. 5	100-300	21	36	198	204	200	200	-3.1	0.0
Soft Maple				(11.17)	(10.15)				
Prime	200-600	26	20	262		Carl Survey			
Time	200-000	26	29	362	392	350	400	-7.7	-12.5
No. 1	160-500	32	2.4	(20.18)	(19.47)		200.00000000000000000000000000000000000		
110, 1	100-300	32	34	293	308	250	300	-5.0	-16.7
No. 2	150-350	29	20	(15.96)	(13.75)	200	2 0 0		
110. 2	130-330	29	30	225	224	200	235	0.4	-14.9
No. 3	100-250	21	20	(11.19)	(8.64)	1.60			
110. 5	100-250	21	29	168	176	160	180	-4.6	-11.1
1 Standard error	0.1			(7.99)	(8.58)				

Table 2. Prices paid for delivered sawlogs by Indiana sawmills, May 2000 and May 2001, cont.

		No. R	Respon.	Mear	(s.e.)1	May 2000 and	lian		ge (%)
Species/Grade		2001	2000	2001	2000	2001	2000	Mean	Media
	Range							TVICUIT	TVICUIE
White Oak	(\$/MBF)			(\$/MBF)		(\$/MBF)			
Prime	450-1000	30	38	674	715	650	700	-5.8	-7.1
				(25.26)	(32.79)		, 00	5.0	-7.1
No. 1	200-650	35	40	469	523	450	500	-10.3	10.0
				(17.34)	(19.33)	430	300	-10.3	-10.0
No. 2	160-475	36	39	299	334	300	300	10.7	0.0
				(12.03)	(13.47)	300	300	-10.6	0.0
No. 3	100-335	25	37	188	194	200	200	2.1	
		20	5,	(9.52)		200	200	-3.1	0.0
Red Oak				(9.32)	(9.68)				
Prime	250-1000	35	40	762	017	000	222		
	220 1000	33	40		817	800	800	-6.8	0.0
No. 1	200-750	39	4.1	(23.42)	(19.43)				
110. 1	200-730	39	41	576	620	600	600	-7.1	0.0
No. 2	160 600	10	10	(17.30)	(17.64)				
110. 2	160-600	40	42	377	403	350	400	-6.6	-12.5
NI- 2	100 100			(15.59)	(15.78)				
No. 3	100-425	34	38	205	212	200	200	-3.3	0.0
				(10.31)	(11.54)				
Black Oak									
Prime	400-1000	29	34	691	763	700	750	-9.4	-6.7
				(32.20)	(24.58)			2,1	0.7
No. 1	200-700	35	39	483	535	500	500	-9.8	0.0
				(22.72)	(16.52)			2.0	0.0
No. 2	160-500	37	40	307	349	300	350	-12.1	-14.3
				(12.40)	(14.70		550	12.1	-14.5
No. 3	100-300	28	36	189	195	200	200	-3.0	0.0
				(9.11)	10/07)	200	200	-3.0	0.0
ulip Poplar					20,07				
Prime	250-550	31	34	380	467	400	500	10.7	20.0
				(14.94)	(10.43)	400	300	-18.6	-20.0
No. 1	180-450	34	40	288	349	200	2.50		127 (21)2
	100 100	31	40			300	350	-17.4	-14.3
No. 2	100-300	32	39	(11.49)	(9.01)	200			
110. 2	100-300	32	39	207	244	200	250	-15.2	-20.0
No. 3	100 250	26	25	(10.82)	(7.03)				
140. 3	100-250	26	35	162	170	160	180	-4 .9	-11.1
ycamore				(9.21)	(7.33)				
	100 250								
Prime	120-350	21	25	213	198	200	200	7.4	0.0
NT 1				(12.50)	(11.42)				
No. 1	120-250	22	24	198	184	200	200	7.6	0.0
				(6.98)	(9.67)				
No. 2	100-230	21	23	176	171	180	180	2.9	0.0
				(7.41)	(8.63)				0.0
No. 3	100-215	19	25	165	166	160	160	-0.9	0.0
				(7.94)	(9.56)		100	-0.5	0.0

Table 2. Prices paid for delivered sawlogs by Indiana sawmills, May 2000 and May 2001, continued

		No. F	Respon.	Mean	(s.e)1	Med	lian	Chan	ge (%)
Part Control		2001	2000	2001	2000	2001	2000	Mean	Median
Species/Grade	2001						2000	Wican	iviculati
	Range								
Sweetgum	(\$/MBF)			(\$/MBF)		(\$/MBF)			
Prime	100-250	14	20	179	211	190	200	-15.2	-5.0
				(37.01)	(16.40)			10.2	-5.0
No. 1	100-215	14	20	172	201	180	200	-14.5	-10.0
				(34.37)	(12.73)			11.5	10.0
No. 2	100-230	13	19	169	180	160	200	-6.2	-20.0
				(34.67)	(9.74)			0.2	-20.0
No. 3	100-215	14	20	161	167	160	168	-3.6	-4.8
				(20.32)	10.72)			5.0	-4.0
Black Walnut				3 (2				
Prime	650-1500	27	32	978	1043	1000	1000	-6.3	0.0
				(34.00)	(69.60)		1000	-0.5	0.0
No. 1	200-1200	33	34	760	725	700	800	4.8	-12.5
				(30.37)	(31.08)	, , ,	000	4.0	-12.3
No. 2	160-850	33	34	508	453	500	488	12.1	2.5
				(36.63)	(21.83)		100	12.1	2.5
No. 3	150-600	26	30	270	259	250	225	4.1	11.1
				(19.35)	(24.11)		220	7.1	11.1
Softwood					No. Market				
Pine	125-400	7	4	270	188	300	185	39.3	35.1
Red cedar							105	37.3	33,1
Sawlog		1		400		400			
Chipping		1		175		175			

Table 3. Prices paid for delivered veneer logs by Indiana veneer mills, May 1999 and May 2000

	ices paid for	No. R	Respon.		n (s.e.)1		dian		nge (%)
Species/Grade Log Dia.	2001 Range	2001	2000	2001	2000	2001	2000	Mean	Median
Black Walnut Prime				(\$/MBF)		(\$/MBF)			
12-13	1200 2500								
12-13	1200-3500	14	12	2207	2208	2000	2000	0.0	0.0
14-15	1000 4070			(181.41)	(241.98)				
14-15	1200-4250	16	11	2663	2882	2825	2500	-7.6	13.0
16.17	1400 7000	2 2	2.2	(223.44)	(323.85)				
16-17	1400-5000	16	12	3453	3521	3125	3000	-1.9	4.2
10.20	1500 0000			(279.41)	(356.83)				
18-20	1500-6750	14	12	4268	4021	4000	4000	6.1	0.0
21.22	2222			(389.12)	(506.08)				
21-23	2000-6750	8	10	4312	4850	4125	4750	-11.1	-13.2
				(610.09)	(547.98)				
24-28	2200-8000	8	9	4746	5333	4510	5500	-11.0	-18.0
				(730.07)	(777.28				20.0
*28	2500-10000	8	4	5034	7000	4010	6500	-28.1	-38.3
				(933.16)	(707.11)				50.5
Select									
12-13	900-2500	6	6	1617	1442	1650	1500	12.1	10.0
				(249.56)	(173.41)	F. A. F. (B.)	1000	12.1	10.0
14-15	1000-3000	6	7	1717	1814	1650	2000	-5.4	-17.5
				(305.96)	(226.18)		2000	5,4	-17.5
16-17	1000-3750	6	6	2008	2417	1650	2250	-16.9	-26.7
				(460.15)	(416.67)	1000	2230	-10.7	-20.7
18-20	1000-4000	5	7	1860	2743	1500	3000	-32.2	-50.0
				(556.42)	(673.96)	1500	3000	-32.2	-30.0
21-23	1000-4000	3	7	2000	3243	1000	3500	20.2	71.4
				(1000.00)	(930.66)	1000	3300	-38.3	-71.4
24-28	1000-4000	3	6	2167	4033	1500	1000	16.2	60.0
		5	U	(927.96)		1300	4000	-46.3	-62.5
*28	1000-4000	3	3	2167	(1373.96)	1.500	# 000		
20	1000-4000	3	3		5333	1500	5000	-59.4	-70.0
Standard err				(927.96)	(2603.42)				

Table 3. Prices paid for delivered veneer logs by Indiana veneer mills, May 1998 and May 1999, cont...

	os paid for t		espon.		ı (s.e.)1	Med			ige (%)
Species/Grade Log Dia.		2001	2000	2001	2000	2001	2000	Mean	Median
White Oak Prime	Range (\$/MBF)			(\$/MBF)		(\$/MBF)			
13-14	1000-2100	12	9	1538 (99.07)	1461 (122.41)	1500	1500	5.2	0.0
15-17	500-4000	15	12	1880 (203.88)	1750	1900	1675	7.4	13.4
18-20	1000-4000	14	12	2207 (197.64)	2100	2200	2100	5.1	4.8
21-23	1400-4000	11	14	2459 (251.07)	2536	2500	2500	-3.0	0.0
24-28	1400-4000	11	9	2618 (278.90)	3172 (280.02	2800	3500	-17.5	-20.0
*28	1400-5000	10	9	2680 (351.76)	3750 (250.00)	2500	3750	-28.5	-33.3
Select				(331.70)	(230.00)				
13-14	500-1000	4	3	800 (108.1)	1083 (220.48)	850	1000	-26.1	-15.0
15-17	500-2500	6	6	1300 (281.66)	1375 (179.70)	1200	1500	-5.5	-20.0
18-20	900-2500	4	6	1600 (389.44)	1558 (281.19)	1500	1650	2.7	-9.1
21-23	900-2500	4	5	1600 (389.44)	1808 (384.36)	1500	1850	-11.5	-18.9
24-28	1000-2500	4	6	1625 (375.00)	2125 (511.49)	1500	2250	-23.5	-33.3
*28	1000-2500	4	4	1625 (375.00)	3088 (784.85)	1500	3800	-47.4	-60.5

Table 3. Prices paid for delivered veneer logs by Indiana veneer mills, May 1998 and May 1999, cont.

g		No. R	espon.	Mea	n (s.e)1		dian		nge (%)
Species/Grade		2001	2000	2001	2000	2001	2000	Mean	Median
Log Dia.	Range								
Red Oak	(\$/MBF)			(\$/MBF)	ì	(\$/MBF)			
Prime									
16-17	800-1700	13	12	1327	1854	1400	1500	-47.4	-6.7
247750				(80.59)	(382.45)				
18-20	800-1800	13	15	1358	1780	1400	1500	-28.4	-6.7
				(88.22)	(345.20)				
21-23	1000-1750	12	13	1363	1873	1325	1500	-23.7	-11.7
				(77.88)	(418.89)				
24-28	1000-1750	11	10	1391	1995	1400	1475	-30.3	-5.1
				(80.57)	(567.28)			50.5	3.1
*28	1000-1700	8	9	1406	2161	1450	1600	-34.9	-9.4
				(86.83)	(623.37)		1000	54.7	-2.4
Select					()				
16-17	750-1100	4	7	963	1287	1000	1400	-25.2	-28.6
				(74.65)	(266.68)	1000	1400	-23.2	-20.0
18-20	750-1100	4	6	963	1517	1000	1400	-36.6	-28.6
				(74.65)	(327.02)	1000	1100	-30.0	-20.0
21-23	850-1000	3	6	950	1400	1000	1600	-32.1	-37.5
				(50.00)	(177.01)	2000	1000	-34.1	-37.3
24-28	900-1000	3	6	967	1483	1000	1700	-34.8	41.2
				(33.33)	(207.23)	1000	1700	-34.0	-41.2
*28	1000	3	4	1000	1637	1000	1700	-38.9	41.0
				(00)	(280.90)	1000	1700	-38.9	-41.2
Ctoudend	Cul			(00)	(200.70)				

Table 3. Prices paid for delivered veneer logs by Indiana veneer mills, May 1999 and May 2000, cont.

		No. R	espon.	Mean	(s.e.)1	Med	ian	Char	nge (%)
Species/Grade, Log Dia.	/ 2001 Range	2001	2000	2001	2000	2001	2000	Mean	Media
Hard Maple	(\$/MBF)			(\$/MBF)		(\$/MBF)			
Prime				(WINDI)		(\$/TVIDI')			
16-20	200-3500	15	12	2260	2288	2400	2000	-1.2	20.0
				(213.54)	(298.11)		2000	1.2	20.0
*20	1400-4750	14	10	2625	2950	2500	2750	-11.0	-9.1
				(205.07)	(338.38)			11.0	2.1
Select									
16-20	1000-2250	6	9	1342	2066	1150	1500	-35.1	-23.3
				(200.17)	(580.47)				20.0
*20	1000-2250	6	5	1425	1900	1400	2000	-25.0	-30.0
				(188.75)	(331.66)				
Yellow Poplar									
Prime									
16-20	400-650	5	6	570	608	600	600	-6.3	0.0
				(46.37)	(23.86)				0.0
*20	500-650	5	5	590	640	600	600	-7.8	0.0
				(29.15)	(43.01)				
Select									
16-20	0	1	3	600	467	600	500	28.5	20.0
				n.a.	33.33				
*20	0	1	2	600	550	600	550	9.1	9.1
				n.a.	50.00				

CUSTOM COSTS

Reported costs were up for custom sawing and logging. The decline in the reported cost of hauling is too small to be statistically significant. Haul distances continue to remain in the 50 mile range because of the large number of mills throughout Indiana. Veneer logs and high quality sawlogs are hauled much greater distances. Kentucky continues to be a woodbasket for Indiana mills because of the greater concentration of speciality mills in Indiana. Speciality mills are those focusing on a particular species and producing speciality products such as quarter-sawn white oak.

Table 4. Custom costs reported by Indiana mills, May 2000, and May 2001.

			M	ean	Median	
	No. Responses	2001 Range	2001	2000	2001	2000
Sawing (\$/MBF)	17	130-500	231	214	200	200
Logging (\$/MBF)	4	100-140	115	105	110	90
Hauling (\$/MBF)	4	30-60	48	50	50	40
Distance (Miles)	10	20-50	38	40	40	40
\$/MBF/Mile	n.a.	n.a.	1.26	1.25	1.25	1.00

MISCELLANEOUS PRODUCTS

The average price paid for logs converted to pallet lumber in bolt mills was up slightly, Table 5, on a MBF basis but down on a tonnage basis. Pulpchip prices were up, as was pulpwood. Sawdust and bark prices were mixed. The small sample size and wide range in reported prices makes it difficult to detect statistically significant changes from year to year.

Table 5. Prices of miscellaneous products reported by Indiana mills, May 2000 and May 2001, fob the producing mill.

		2000 1441180	Mean		Median	
	No. Responses		2001	2000	2001	2000
Pallet logs, \$/MBF	30	100-350	188	185	200	200
Pallet logs, \$/ton	2	24-28	26	30	26	30
Pulpwood, \$/ton	5	5-15	23	22	24	24
Pulp Chips, \$/ton	16	13-40	20	18	18	17
Sawdust, \$/ton	12	1-7	3	7	3	6
Sawdust, \$/cu.yd.	7	2-21	9	2.86	8	2.50

2-6

3-20

3-25

18

9

7

9

7

7.50

5

18

7

6

5

18

8

6.50

8.50

7

2

29

9

1

Bark, \$/ton

Bark, \$/cu.vd.

Mixed, \$/ton

Mixed, \$/cu. Yd.

INDIANA TIMBER PRICE INDEX - UPDATE

The delivered log prices collected in the Indiana Forest Products Price Survey are used to calculate the delivered log value of typical stands of timber. This provides trend-line data that can be used to monitor long-term price trends for timber. The species distribution used to calculate the weighted averages are presented in Table 6. The log quality weights used are presented in Table 7. These weights are based primarily on the 1967 Forest Survey of Indiana.

The nominal (not deflated) price, columns 3 and 6 of Table 8, are a weighted average of the delivered log prices reported in the price survey. The price indexes, columns 4 and 7, are the series of nominal prices divided by the price in 1957, the base year multiplied by 100. Thus, the index is the percentage of the 1957 price. For example, the average price in 2001 was 706.9 percent of the price in 1957. The real prices, columns 5 and 8 are the actual prices deflated by the producer price index for finished goods with 1982 as the base year, Table 8, column 2. The real price series represents the purchasing power of dollars based on a 1982 market basket of industrial goods. It's this real price trend that is important to long-term investments like timber.

Average Stand

The nominal weighted average price decreased from \$426.5 per MBF in 2000 to \$393.1 in 2001 for the average stand, Table 10, column 3. Remember that this series is based on delivered log prices, not stumpage prices. This is a 7.8 percent decrease, Figure 2. The deflated or real price dropped from \$308.9 per MBF to \$276.7, a 10.4 percent decrease, Figure 2. However, because this trend is based on 45 years if data this drop was not enough to make much difference in the trend line for the deflated price series.

The new equation for the trend line for the 1957 to 2001 period is,

Avg. Stand Price = $166.47 + 2.60 \times T$,

where.

T=1 for 1957, 2 for 1958, etc.

A linear trend line should be used if it's necessary to project timber prices, as discussed in greater detail in Station Bulletin No. 148. Although it's easier to simply plug the average annual compound rate of increase value into the compound interest formula (exponential rate of increase), projections much over 15 years gives unrealistic results. Real prices can't increase exponentially for long periods of time. Market adjustments, like those observed for black walnut, come into play to retard the increase and eventually reverse it.

The real price increase based on the trend line is 1.16 percent per annum for the average stand from 1957 to 2001. This figure was 1.17 percent for the 1957 to 2001 period. Thus, the purchasing power of hardwood timber assets is more than keeping up with inflation.

Quality Stand

The nominal weighted average price for the quality stand decreased by 12.2 percent from \$617.6 in 2000 to \$542.5 in 2001, Table 10, column 6, Figure 3. The decrease for the real price series was from \$447.2 per MBF to \$281.8, a 14.6 percent drop.

The average annual compound rate of increase for the trend line declined from 1.52 percent per annum to 1.50 percent Figure 3. The equation for the trend line is,

Qual. Index = $197.12 + 4.38 \times T$

Thus, the contribution of a real price increase to the total financial return on a quality stand is higher than for the average stand of timber in Indiana. The other components of return are volumetric growth and increases in unit values due to improved log quality as crop trees get bigger. This assumes the stand is managed to favor crop trees with the potential for value increment.

Table 6. Species composition of the Indiana timber price index for an average and a quality stand.

of the mantha thineer	price mack i	of all averag		
Species	Average Stand	Quality Stand		
Veneer species:	(%)	(%)		
White oak	13.4	21.0		
Red oak	15.1	20.0		
Hard maple	9.6	14.0		
Yellow poplar	7.5	9.0		
Black walnut	5.4	5.0		
Non-veneer species:				
White ash	5.8	3.1		
Basswood	1.5	3.1		
Beech	5.6	3.1		
Cottonwood	6.2	3.1		
Black cherry	0.8	3.1		
Elm	1.2	3.1		
Hickory	4.7	3.1		
Soft maple	6.7	3.1		
Black oak	11.4	3.1		
Sycamore	5.1	3.1		

Table 7. Log quality composition of the Indiana timber price index for an average and a quality stand.

Log Grade	Aver	age Stand	Quality Stand		
	Veneer Species	Non-veneer Species	Veneer Species	Non-veneer Species	
Veneer logs	(%)	(%)	(%)	(%)	
Prime	1.0	0.0	7.0	0.0	
Select	3.0	0.0	13.0	0.0	
Sawlogs				0.0	
Prime	20.0	24.0	19.0	24.0	
No. 1	26.0	26.0	21.0	26.0	
No. 2	38.0	38.0	33.0	38.0	
No. 3	12.0	12.0	7.0	12.0	

Table 8. Weighted average actual price, price index, and deflated price for an average and quality stand of timber in Indiana, 1957 to 2001.

	D 1		Average Stand			Quality Stand			
Van	Producer	Nominal	Index	Real	Nominal	Index	Real		
Year	Price Index	Price	Number	Price 1	Price	Number	Price		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
1057	00.7	(\$/MBF)		(\$/MBF)	(\$/MBF)		(\$/ME		
1957	32.5	55.6	100.0	171.1	66.6	100.0	20		
1958	33.2	53.7	96.6	161.8	64.0	96.1	19		
1959	33.1	54.8	98.5	165.5	67.5	101.4	20		
1960	33.4	57.5	103.5	172.3	68.7	103.2	20		
1961	33.4	58.9	105.9	176.3	70.0	105.1	20		
1962	33.5	59.6	107.3	178.1	72.3	108.6	21		
1963	33.4	59.3	106.7	177.6	74.5	111.9	22		
1964	33.5	60.1	108.1	179.5	74.4	111.8	22		
1965	34.1	63.6	114.3	186.4	78.5	118.0	23		
1966	35.2	68.8	123.7	195.4	86.0	129.2	24		
1967	35.6	70.1	126.0	196.8	87.2	131.0	24		
1968 1969	36.6	74.7	134.2	204.0	92.7	139.3	25		
	38.0	77.7	139.7	204.5	98.6	148.2	25		
1970	39.3	83.1	149.4	211.5	103.9	156.0	26		
1971	40.5	85.9	154.4	212.0	107.4	161.3	26		
1972	41.8	90.2	162.2	215.8	112.2	168.5	26		
1973	45.6	112.6	202.5	247.0	139.0	208.8	30		
1974	52.6	135.3	243.3	257.3	170.2	255.7	32		
1975	58.2	125.1	225.0	215.0	166.3	249.8	28		
1976	60.8	133.6	240.2	219.7	172.7	259.4	28		
1977	64.7	143.6	258.1	221.9	188.0	282.4	29		
1978	69.8	181.7	326.1	260.3	234.9	352.9	33		
1979	77.6	201.5	362.3	259.6	260.7	391.6	330		
1980	88.0	207.8	373.6	236.1	309.3	464.5	35		
1981	96.1	206.7	371.7	215.1	284.9	427.8	290		
1982	100.0	196.8	353.8	196.8	277.3	416.5	27		
1983	101.6	207.6	373.3	204.3	294.4	442.2	289		
1984	103.7	235.8	424.0	227.4	322.7	484.6	31		
1985	104.7	210.5	378.5	201.0	274.0	411.5	261		
986	103.2	223.6	402.0	216.6	312.2	468.9	302		
987	105.4	257.3	462.7	244.2	334.6	502.6	317		
988	108.0	262.1	471.3	242.7	345.9	519.6	320		
989	113.6	285.9	514.0	251.6	404.9	608.1	356		
990	119.2	288.3	518.3	241.8	397.9	597.6	333		
991	121.7	268.1	482.1	220.3	362.9	545.1	298		
992	123.2	293.4	527.6	238.2	417.6	627.1	338		
993	124.7	355.2	638.8	284.9	491.2	737.8	393		
994	125.5	364.8	655.9	290.6	507.4	762.1	404		
995	127.9	354.0	636.4	276.7	451.6	678.3	353		
996	131.3	337.7	607.1	257.2	495.4	744.0	377		
997	131.8	357.5	642.7	271.2	448.3	673.3	340		
998	130.7	391.1	703.3	299.3	501.7	753.5	383		
999	133.0	389.2	699.8	292.6	526.3	790.5	395		
000	138.1	426.5	766.9	308.9	617.6	927.5	447		
001	ce deflated by Pr	393.1	706.9	276.7	542.5	814.8	381		

Actual price deflated by Producer Price Index for Finished Goods, U.S. Dept. Commerce, 1982 base year.

Figure 2. Average stand of timber, nominal, deflated, and trend line price series, 1957 to 2001.

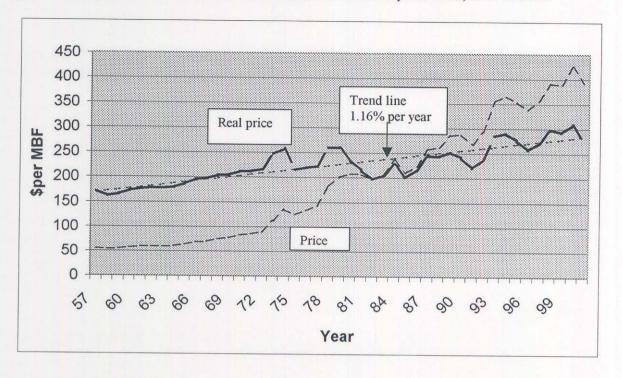
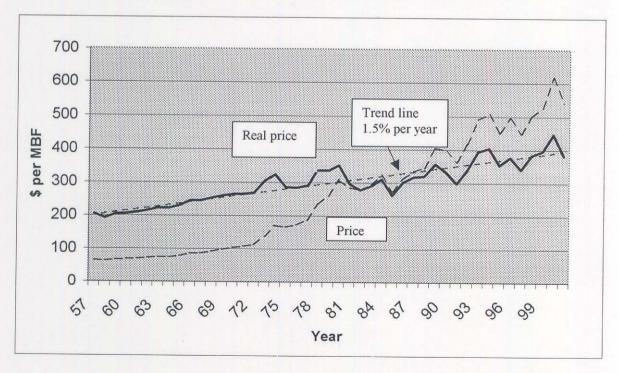



Figure 3. Quality stand of timber, nominal, deflated, and trend line price series 1957 to 2001.

