Purdue University Purdue e-Pubs

Timber Reports

Department of Agricultural Communication

2004

2004 Indiana Forest Products Price Report and Trend Analysis

William L. Hoover

Greg Preston

Follow this and additional works at: http://docs.lib.purdue.edu/timber

Recommended Citation

Hoover, William L. and Preston, Greg, "2004 Indiana Forest Products Price Report and Trend Analysis" (2004). *Timber Reports.* Paper 9.

http://docs.lib.purdue.edu/timber/9

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

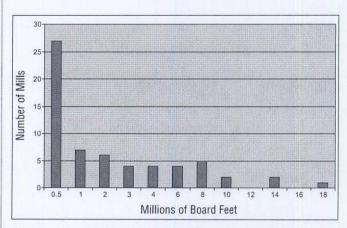
PURDUE EXTENSION

FNR-177-W

2004 Indiana Forest Products Price Report and Trend Analysis

William L. Hoover, Professor of Forestry, Department of Forestry and Natural Resources and Greg Preston, State Statistician, Indiana Agricultural Statistics Service

PURDUE UNIVERSITY


Survey Procedures and Response

Data for this survey was obtained by a mail survey of all known mills in Indiana who buy logs. This list is maintained in cooperation with the Forest Products Forest Resources Information Program, Indiana Division of Forestry. The prices reported are for logs delivered to the log yards of the mills who responded to the survey. Approximate stumpage prices can be obtained by subtracting logging and hauling costs (Table 4) from the delivered sawlog and veneer log prices; however, see **Caution** below.

The survey was sent to 235 mills. Sixty-two mills reported useable data, compared to 82 last year. Another 16 responded in some form, but provided no data. This makes the overall response rate 33 percent, below last year's return of 52 percent. After the initial mailing and one reminder post card enumerators employed by the Indiana Agriculture Statistics Service personally contacted a portion of the nonrespondents. The Department of Forestry and Natural Resources pays for this assistance using funds provided by the John S. Wright Endowment.

The number of mills contributing price data for a specific product is shown in the fourth column in Tables 2 to 5. Forty-three mills reported their 2003 total board foot production, compared with 59 reporting 2002 production. The distribution by production categories is shown in Figure 1. The total production for these mills was 204 million board feet. The smallest mills, custom mills, reported production of 0.5 MBF or less. The largest mill produced 18 million board feet in 2003. The price statistics don't include much data from these small custom mills (left bar in Figure 1) because most do not buy logs. They

report the cost of custom sawing. Thus, the custom sawing costs reported in Table 4 do not reflect the operating cost of large mills.

Figure 1. Distribution of the 43 mills reporting 2003 production levels.

Caution

Caution: This report is intended to be used as an indication of price trends, not for the market appraisal of logs or stumpage. This data is collected only once a year and log prices are constantly changing. Proper appraisal techniques by those familiar with market conditions on a day-by-day basis should be used to obtain estimates of current market values for particular stands of timber or lots of logs. Because of the small number of mills reporting logging costs, stumpage prices estimated from delivered log prices by deducting the average logging and hauling costs must be used with caution.

Hardwood Lumber Prices

Hardwood lumber prices, Table 1, for the premium species were higher through July of this year compared to July of 2003. Hickory and yellow poplar were the only species showing declines in lumber prices. The non-premium species were unchanged. Hard maple and black cherry prices continued to trend upward at 3 and 2 percent respectively for the July 2003 to July 2004 period for the highest grade of lumber, Firsts ad Seconds (FAS), plus the premium for bundles of FAS only. FAS soft maple increased 13 percent over this period. FAS white oak increased 18 percent, while red oak increased only 4 percent. Walnut was up 3 percent for FAS steam treated. These price increases are an indication of strong underlying demand that translated into higher prices for logs. Higher prices for lower grades of lumber should help utilization of lower grade logs. Increased demand for hardwood flooring at the expense of carpeting is a big

Sawlog Prices

Sawlog prices reflect lumber price trends (Table 2). In general sawlog prices increased. This year cottonwood was the only species for which prices declined for all four grades of logs. Beech also declined in the upper two log grades. Basswood prices were up slightly despite lower lumber prices. Ash prices were up for the three lower grades. Demand has apparently caught up with any increased harvest due to ash dieback. The sanitation cuts for emerald ash borer control are not likely to increase log supply because the logs produced can't be moved out of the quarantined area where the trees are cut. Elm prices increased despite constant lumber prices.

Black cherry's steady march upward continued this year with a 14 percent increase for the lowest grade but only 0.7 percent for the highest. Hard and soft maple were also up, although prime soft maple declined. The oaks were up in the lower grades but down in the prime grade. Black walnut was up except for No. 2 sawlogs, most likely a statistical anomaly.

Softwood Sawlogs

Interest in softwood timber continues to increase, see the bottom of Table 2. Five mills reported purchasing pine logs. The average pine price was \$221, an increase from \$218 per thousand board feet (MBF) Doyle log scale last year. The average cedar price was \$358 per MBF this year, compared to \$311 last year. Demand for Eastern red cedar is increasing throughout its range. Southern Indiana is the northern end of its natural range. The largest mills are in Alabama and surrounding states and in Missouri. It's used for lumber, chips for animal bedding, chip board for

lining closets, among other uses. Most logs are delivered to buyers by landowner who harvest trees from their own lands.

Veneer Log Prices

The number of mills reporting veneer log prices increased this year (Table 3). The largest increases were for the select grade of black walnut logs over 24-inches diameter inside bark (dib). The price for smaller logs decreased in the range of 3 to 12 percent. The difference in the price changes between small and large logs indicates increased demand overall, but also an increased availability of larger logs as the walnut timber inventory matures. The assumption is that over a period of a year or more mills offer higher prices for larger logs only if this results in an increased supply.

Prices for prime white oak logs increased for the larger sizes. No comparison for select logs in 2004 and 2003 is reported because only one mill reported select prices in 2003. It can be assumed, however, that prices were up. Red oak prices were also up, but only slightly. Hard maple prices were up, except for the small prime category. Yellow poplar veneer prices were up slightly.

Implications

Although the rate of economic expansion is not as high as expected at this point in a business cycle, demand for hardwood timber is strong. Housing starts remain high because mortgage rates remain low by recent historical standards. Timber offered for sale gets a good response from buyers if any quality is offered.

Many readers of past reports have noted that the log prices reported are below the stumpage prices reported elsewhere by consulting foresters on bid sales. Bid sales make up about 15 percent of total timber volume sold. The other 85 percent is purchased primarily by direct contact between a timber buyer and a landowner. The estimated weighted average price for logs delivered to mills from an average stand of timber is estimated to be \$452 per MBF in 2004 (Table 8, column 3). If we assume that the average cost of delivered logs reported here is actually the average stumpage price, the average cost of delivered logs would be \$672 per MBF, assuming \$220 per MBF for logging and hauling. With the assumed mix of 15 percent bid and 85 percent negotiated, the average cost of delivered logs would be \$485, determined as $0.15 \times $672 + 0.85 \times 452 . An economist would refer to this as the current equilibrium price. If all timber was purchased at this assumed bid price, making the cost of delivered logs \$672, a mill's cost of logs would increase by 38.6 percent. Mills could not absorb such an increase, and they could not pass it on to their customers. If the volume of timber purchased on

bid were to increase, the average price for bid sales, and negotiated sales, would have to decrease to keep log costs near the equilibrium price. Thus, the typical landowner who sells at negotiated prices is in effect "subsidizing" those who sell on bids.

Our competitive market system requires mills to purchase timber at the lowest cost possible to acquire the mix of logs needed. A very common type of market failure exists here: imperfect information. The goal of economic equity would call for the government to intervene by making all landowners aware of the advantage of selling by bid when there is more than one potential buyer. Given

that over time the average price would have to return to its equilibrium level of \$485, there would be no net gain to society from public expenditures to educate all landowners. If bid sales were required by law the increased overhead cost to mills would be reflected in lower bids, causing a net loss to the economy.

If bid sales were required by law, there would be no need for a price reporting system since the bidding would set a competitive price for each spot market, i.e., each sale. In a market dominated by negotiated prices, at a minimum landowners need access to basic market price data.

Table 1. Hardwood Lumber prices, \$'s per MBF, 4/4 Appalachian unless otherwise indicated (Hardwood Market Report, Memphis, Tenn.)

the control of the second		Jan	July	Jan	Jul	Jan.	Jul.	Jan	July
	Lumber Grade	2001	2001	2002	2002	2003	2003	2004	2004
Ash	FAS + Prem.	945	825	770	730	745	745	780	800
	No. 1C	650	570	510	480	480	520	580	630
	No. 2A	355	315	290	280	280	330	370	415
Basswood	FAS + Prem.	810	740	730	730	730	745	745	760
	No. 1C	405	390	370	370	370	405	405	415
	No. 2A	225	210	210	210	210	210	210	210
Beech	FAS	465	465	465	465	465	465	465	465
	No. 1C	405	405	405	405	405	405	405	405
	No. 2A	330	330	330	330	330	330	330	330
Cottonwood	FAS	600	600	600	600	600	600	600	600
(Southern)	No. 1C	400	400	400	400	400	400	400	400
ì i a thillig s	No. 2A	220	220	220	220	220	220	220	220
Cherry	FAS + Prem.	2375	2375	2375	2455	2545	2545	2575	2590
	No. 1C	1115	1075	1060	1115	1185	1400	1530	1575
	No. 2A	575	470	450	430	450	615	720	775
Elm	FAS	355	355	355	355	355	355	355	355
(Southern)	No. 1C	335	335	335	335	335	335	335	335
ì i de la company	No. 2B	270	270	270	270	270	270	270	270
Hickory	FAS + Prem.	810	645	620	715	800	865	865	825
	No. 1C	575	500	485	540	580	630	630	610
	No. 2A	340	285	285	300	310	350	350	330
Hard Maple	FAS + Prem.	1565	1470	1485	1420	1405	1405	1415	1445
unselected	No. 1C	965	965	990	990	1000	1000	1030	1115
	NO. 2A	500	490	475	425	425	435	505	565
Soft Maple	FAS & F1F + Prem.	1045	1005	990	1030	1120	1195	1255	1345
	No. 1C	670	625	580	550	560	600	630	750
	No. 2A	340	300	295	270	270	290	310	385
White Oak -	FAS + Prem.	945	875	860	860	885	975	1110	1155
Plain	No. 1C	525	495	480	470	530	600	700	730
	No. 2A	370	350	350	365	440	480	555	565
Red Oak-Plain	FAS + Prem.	1220	1120	1110	1125	1175	1260	1280	1310
	No. 1C	780	730	720	710	740	800	845	865
	No. 2A	495	480	480	495	555	575	635	635
Yellow Poplar	FAS + Prem.	790	630	640	710	730	730	705	690
	No. 1C	460	390	380	395	405	415	395	395
	No. 2A	300	280	275	290	300	310	310	310

Table 1. (Continued)

	Lumber Grade	Jan 2001	July 2001	Jan 2002	Jul 2002	Jan. 2003	Jul. 2003	Jan 2004	July 2004
Sycamore	FAS	455	455	455	455	455	455	455	455
(Southern	No. 1C	435	435	435	435	435	435	435	435
(Southern Plain)	No. 2A	375	375	375	375	375	375	375	375
Black Walnut	FAS	1470	1565	1640	1705	1745	1860	1885	1915
steamed	No. 1C	785	785	805	845	860	900	930	950
Steamed	No. 2A	325	380	400	420	425	480	505	520

Table 2. Prices paid for delivered sawlogs by Indiana sawmills, May 2003 and May 2004.

		No. R	espon.	Mean	(s.e.) ¹	Me	dian	Chan	ge (%)
Species/ Grade	2004 Range	2003	2004	2003	2004	2003	2004	Mean	Median
White Ash	(\$/MBF)			(\$/N	(IBF)	(\$N	fBF)		
Prime	350-800	33	25	512 (16.54)	508 (20.49)	500	500	-0.8	0.0
No. 1	250-550	37	28	386 (13.01)	394 (14.91)	350	400	2.1	14.3
No. 2	200-450	37	27	273 (9.37)	295 (11.34)	250	300	8.3	20.0
No. 3	130-300	35	22	193 (6.79)	217 (9.89)	200	200	12.6	0.0
Basswood				La Company					
Prime	150-600	24	18	350 (27.78)	357 (27.92)	400	400	1.9	0.0
No. 1	150-500	26	20	288 (17.70)	301 (19.86)	300	300	4.3	0.0
No. 2	150-350	25	18	231 (10.38)	241 (12.41)	230	250	4.1	8.7
No. 3	150-300	24	16	188 (8.15)	212 (11.31)	200	200	12.5	0.0
Beech									
Prime	150-350	22	19	250 (11.76)	238 (12.66)	250	235	-4.9	-6.0
No. 1	150-300	21	17	236 (7.12)	226 (10.40)	250	210	-4.4	-16.0
No. 2	150-285	22	15	212 (9.03)	214 (9.47)	200	200	1.1	0.0
No. 3	150-285	25	14	203 (7.28)	215 (10.38)	200	200	5.7	0.0
Cottonwood									
Prime	130-200	15	9	178 (9.82)	166 (8.99)	160	150	-7.0	-6.3
No. 1	130-200	12	8	172 (8.15)	166 (10.17)	170	150	-3.3	-11.8
No. 2	130-200	12	8	168 (7.70)	166 (10.17)	160	150	-1.0	-6.3
No. 3	130-200	19	8	173 (8.20)	166 (10.17)	160	150	-3.9	-6.3
Cherry						7744			
Prime	1000-2000	32	21	1355 (57.52)	1364 (59.68)	1400	1475	0.7	5.4
No. 1	700-1500	33	24	985 (47.35)	1061 (44.17)	1000	1000	7.7	0.0
No. 2	180-950	33	23	592 (31.99)	632 (42.54)	550	600	6.7	9.1
No. 3	150-600	30	21	260 (13.92)	296 (24.93)	245	293	14.0	19.4
Elm									
Prime	180-300	17	12	225 (13.56)	238 (12.15)	200	245	5.7	22.5
No. 1	180-300	14	11	220 (8.64)	232 (11.78)	200	240	5.6	20.0
No. 2	180-285	14	10	201 (5.29)	220 (11.89)	200	200	9.2	0.0
No. 3	150-285	17	11	200 (7.15)	219 (13.07)	200	200	9.3	0.0
S. Hickory			A A CLU						
Prime	130-550	29	20	410 (18.26)	388 (22.54)	400	400	-5.4	0.0
No. 1	125-500	30	23	325 (13.03)	338 (19.01)	325	313	4.1	-3.8
No. 2	125-370	30	22	249 (7.91)	255 (13.31)	250	250	2.6	0.0
No. 3	100-285	31	20	195 (6.06)	208 (9.58)	200	200	6.7	0.0

¹ Standard error of the mean is given in parentheses beside the mean.

Table 2. (Continued)

		No. R	espon.	Mear	ı (s.e.) ¹	Me	dian	Change (%)	
Species/ Grade	2004 Range	2003	2004	2003	2004	2003	2004	Mean	Median
Prime	600-2000	34	24	876 (24.36)	887 (58.66)	900	800	1.2	-11.1
No. 1	300-1200	36	26	646 (23.94)	657 (36.42)	625	600	1.7	-4.0
No. 2	250-650	35	25	395 (18.56)	432 (25.97)	400	400	9.4	0.0
No. 3	150-400	35	24	216 (8.79)	245 (13.39)	200	250	13.5	25.0
Soft Maple									66.66
Prime	150-600	32	20	428 (23.11)	394 (28.69)	400	400	-7.9	0.0
No. 1	150-500	33	25	340 (17.39)	348 (19.95)	340	350	2.2	2.9
No. 2	130-400	32	23	255 (7.70)	265 (12.96)	250	295	4.0	18.0
No. 3	100-385	34	18	197 (8.00)	208 (15.40)	200	200	5.8	0.0
White Oak	(\$/MBF)		- 3		MBF)	(\$N			
Prime	400-1050	35	23	677 (20.57)	677 (33.54)	700	665	-0.1	-5.0
No. 1	300-700	36	26	482 (15.82)	511 (21.88)	500	500	6.1	0.0
No. 2	200-500	36	26	320 (11.57)	360 (15.67)	300	360	12.4	20.0
No. 3	100-350	34	23	206(7.90)	244 (13.87)	200	235	18.5	17.5
Red Oak	100 330	3.1	23	200(7.90)	211 (13.07)	200	255	10.5	17.5
Prime	550-1100	37	25	856 (16.80)	831 (25.50)	835	800	-2.9	-4.2
No. 1	450-930	37	26	649 (16.39)	681 (21.02)	650	700	5.0	7.7
No. 2	200-650	38	26	441 (17.49)	450 (20.24)	400	450	2.1	12.5
No. 3	150-400	36	25	236 (9.8)	265 (13.11)	240	278	12.3	15.6
Black Oak	150 100	30	23	230 (3.0)	203 (13.11)	210	270	12.5	13.0
Prime	400-1100	31	23	759 (23.96)	743 (34.19)	750	750	-2.0	0.0
No. 1	300-900	32	25	544 (20.91)	595 (27.14)	500	600	9.4	20.0
No. 2	200-650	35	26	381 (19.73)	393 (21.04)	350	400	3.2	14.3
No. 3	100-350	30	23	217 (9.10)	248 (13.92)	200	240	14.4	20.0
Tulip Poplar		30	23	217 (5:10)	210 (13.72)	200	210	11,1	20.0
Prime	300-550	32	25	436 (11.05)	407 (14.24)	450	400	-6.7	-11.1
No. 1	200-450	34	26	334 (8.61)	320 (12.17)	300	300	-4.3	0.0
No. 2	200-350	32	23	255 (8.61)	245 (8.75)	250	250	-4.0	0.0
No. 3	100-300	32	20	194 (7.40)	198 (11.67)	200	200	1.8	0.0
Sycamore	100 000		20	151 (7:10)	150 (11.07)	200	200	1.0	0.0
Prime	160-350	22	18	245 (12.86)	247 (13.28)	245	250	0.8	2.0
No. 1	180-350	21	14	228 (10.17)	237 (13.09)	220	225	3.9	2.3
No. 2	150-285	20	12	207 (8.60)	212 (11.44)	200	200	2.5	0.0
No. 3	150-285	27	13	198 (8.52)	216 (11.15)	200	200	9.0	0.0
Sweetgum				150 (0.02)	210 (11.13)	200	200	5.0	0.0
Prime	150-450	20	13	207 (11.06)	226 (21.65)	200	200	9.3	0.0
No. 1	150-300	19	11	205 (8.73)	212 (12.20)	200	200	3.3	0.0
No. 2	150-280	19	10	202 (8.76)	201 (10.16)	200	200	-0.5	0.0
No. 3	150-280	23	11	194 (8.66)	206 (10.64)	200	200	6.4	0.0
Black Walnu	1				200 (10.01)	200	200	0.1	0.0
Prime	800-2000	31	22	1174 (41.27)	1209 (57.98)	1200	1200	3.0	0.0
No. 1	600-1500	32	24	900 (30.39)	948 (40.32)	975	1000	5.4	2.6
No. 2	350-920	32	23	614 (31.43)	605 (33.76)	600	600	-1.4	0.0
No. 3	150-550	28	19	272 (16.43)	316 (29.31)	265	280	16.3	5.7
Softwood				2,2 (10,15)	310 (27.31)	203	200	10.3	3.1
Pine	175-300	5	5	218	221 (23.79)	200	200	1.4	0.0
Red cedar	250-450	4	6	311	358 (33.76)	300	375	15.0	25.0

¹ Standard error of the mean is given in parentheses beside the mean.

Table 3. Prices paid for delivered veneer logs by Indiana veneer mills, May 2003 and May 2004.

Species/	real the holding		espon.		(s.e.) ¹		dian		ge (%)
Grade/Log Dia.	2004 Range	2003	2004	2003	2004	2003	2004	Mean	Median
Black Walni	39			(\$/N	MBF)	(\$/N	/BF)		
Prime			L						
12-13	1200-3850	10	16	2150 (130.17)	2050 (168.76)	2000	2000	-4.7	0.0
14-15	1750-5070	13	17	2746 (234.14)	2669 (190.54)	3000	2675	-2.8	-10.8
16-17	2000-6350	14	17	3589 (305.18)	3621 (259.49)	3625	3750	0.9	3.4
18-20	2000-8000	14	15	4521 (324.66)	4777 (440.37)	4500	4500	5.7	0.0
21-23	2000-8000	12	12	5208 (428.43)	5408 (510.56)	5500	6000	3.8	9.1
24-28	4000-12000	10	9	5550 (450.00)	6722 (821.21)	6000	6500	21.1	8.3
*28	4000-12000	7	8	5429 (493.15)	7250 (920.99)	6000	8000	33.5	33.3
Select								NO ENGL	
12-13	1000-2000	5	9	1560 (280.36)	1367 (136.42)	1500	1300	-12.4	-13.3
14-15	1000-3500	3	10	1333 (166.67)	1960 (248.19)	1500	2000	47.0	33.3
16-17	1100-4000	4	10	2700 (700.00)	2610 (280.65)	2000	2500	-3.3	25.0
18-20	1100-5000	4	10	2750 (684.96)	3310 (335.81)	2100	3500	20.4	66.7
21-23	1100-6000	4	8	3175 (804.54)	3638 (497.47)	2600	4000	14.6	53.8
24-28	1100-8000	3	7	2500 (288.68)	4300 (798.51)	2500	4000	72.0	60.0
*28	1100-8000	3	6	2833 (166.67)	4683 (1010.19)	3000	4000	65.3	33.3
White Oak									
Prime								er militare i	1.5
13-14	600-1700	9	11	1361 (101.99)	1277 (105.18)	1500	1425	-6.2	-5.0
15-17	800-3000	13	16	1535 (142.03)	1628 (145.7)	1500	1600	6.1	6.7
18-20	1200-3250	15	15	1973 (175.72)	2153 (177.51)	2000	2250	9.1	12.5
21-23	1500-4500	11	12	2277 (234.27)	2567 (233.33)	2000	2500	12.7	25.0
24-28	1500-4500	11	10	2491 (276.82)	2940 (318.40)	2500	2500	18.0	0.0
*28	1500-5000	7	8	2171 (306.06)	3000 (400.89)	2000	2500	38.2	25.5
Select									
13-14	500-1250	2	7	575 (225.00)	971 (103.43)	575	925	68.9	60.9
15-17	600-1500	1	9		1072 (99.69)		1000		
18-20	1000-2000	1	9		1306 (126.50)		1100		
21-23	1000-2500	1	6		1633 (202.76)		1500		
24-28	1000-3500	1	6		2083 (351.58)		2000		
*28	1000-3500	1	6		2250 (381.88)		2000		
Red Oak									
Prime									
16-17	800-1830	13	15	1320 (74.74)	1342 (85.20)	1500	1350	1.7	-10.0
18-20	1000-1830	13	14	1376 (73.16)	1402 (79.31)	1500	1400	1.8	-6.7
21-23	1000-2000	11	13	1447 (94.25)	1487 (86.11)	1500	1500	2.8	0.0
24-28	1000-2000	9	11	1511 (103.34)	1594 (115.30)	1600	1600	5.5	0.0
*28	1000-2000	6	7	1417 (140.04)	1629 (147.50)	1500	1700	14.9	13.3
Select									
16-17	800-1200	1	6		1000 (51.46)		1000		
18-20	800-1500	1	6		1117 (110.81)		1000		
21-23	1000-1600	1	6		1200 (126.49)		1000		
24-28	1000-1600	1	6		1283 (127.58)		1000		
*28	1000-1600	1	4		1425 (143.61)		1500		

Table 3. (Continued)

Species/		No. R	espon.	Mean	(s.e.)1	Med	dian	Chan	ge (%)
Grade/Log Dia.	2004 Range	2003	2004	2003	2004	2003	2004	Mean	Median
Hard Maple	(\$/MBF)			(\$/N	ſBF)	(\$/N	(BF)		
Prime									
16-20	1250-4500	11	16	2782 (266.91)	2575 (209.41)	2500	3000	-7.4	20.0
*20	1250-5500	8	12	3000 (340.69)	3113 (305.76)	2750	3000	3.8	9.1
Select		-11 2 -							
16-20	1000-3000	4	9	1563 (413.00)	1778 (188.40)	1500	1750	13.7	16.7
*20	1500-3500	3	7	1583 (506.90)	2357 (282.72)	1500	2250	48.9	50.0
Prime			- 10 m						
16-20	500-700	6	5	567 (65.40)	600 (41.83)	575	650	5.8	13.0
*20	550-750	6	3	583 (58.69)	650 (57.74)	575	650	11.5	13.0
Select									
16-20		1	1						
*20		1	1						

¹ Standard error of the mean is given in parentheses beside the mean.

Custom Costs

The average cost reported for custom sawing was \$243 per MBF in 2004, down \$8 from 2003 (Table 4). The mills reporting are primarily small "local" mills, usually portable. We continue to report custom sawing costs on a per MBF basis. Professor Cassens, however, reports that many of these operators charge by the hour, or by the number of individual boards produced, not board feet. Average logging cost was \$131 per MBF, down \$24 per MBF from 2003. Note that only four mills reported logging cost. The reported cost of hauling more than doubled according to the three mills reporting. The calculated cost per MBF per mile increased from \$0.80 to \$2.00. The reported average logging cost of \$131 per MBF and a hauling cost of \$100 assuming 50 mile haul distance

means that the stumpage value of most of the low values species is negative. This is why it is difficult to find buyers for low value species, even if the timber is of good quality. There is little if any price differential among log grades for gum, sycamore, elm, cottonwood, and beech.

Miscellaneous Products

The average price paid for logs converted to pallet lumber in specialized mills (Table 5) was up \$12 on a MBF basis to \$211, and unchanged at \$29 on a tonnage basis. Pulp chip prices were down, while pulpwood was up \$2. Sawdust prices were down slightly, while bark prices were mixed. The use of bark for landscaping mulch continues to increase with composting operators located throughout the state.

Table 4. Custom costs reported by Indiana mills, May 2003 and May 2004

计算信息包含于中央		Leguesages	M	ean	Median	
	No. Responses	2004 Range	2003	2004	2003	2004
Sawing (\$/MBF)	22	120-500	251	243	225	225
Logging (\$/MBF)	4	80-150	155	131	155	145
Hauling (\$/MBF)	3	50-180	40	93	40	115
Distance (Miles)	7	30-275	50	114	50	75
\$/MBF/Mile	3	0.33-6.0	.80	2.00	.80	3.50

Table 5. Prices of miscellaneous products reported by Indiana mills, May 2003 and May 2004, fob the producing mill.

			Mo	ean	Med	dian
	No.	2004 Range	2003	2004	2003	2004
Pallet logs, \$/MBF	21	160-290	199	211	200	200
Pallet logs, \$/ton	4	25-32	29	29	29	30
Pulpwood, \$/ton	2		26	28	28	28
Pulp Chips, \$/ton	17	3.5-28	18	17	19	18
Sawdust, \$/ton	6	5-9	8	7	8	5.5
Sawdust, \$/cu.yd.	12	1-13	4.2	3	3.00	2.25
Bark, \$/ton	6	3.75-21	10.7	11	10.0	12.5
Bark, \$/cu.yd.	24	2-16.5	8.68	7	6	5
Mixed, \$/ton	0		15.		15	
Mixed, \$/cu. Yd.	0		8.8		7.5	

Indiana Timber Price Index

The delivered log prices collected in the Indiana Forest Products Price Survey are used to calculate the delivered log value of typical stands of timber. This provides trendline information that can be used to monitor long-term price trends for timber. The species distribution used to calculate the weighted averages are presented in Table 6. The log quality weights used are presented in Table 7. These weights are based primarily on the 1967 Forest Survey of Indiana.

The nominal (not deflated) price (columns 3 and 6 of Table 8) are a weighted average of the delivered log prices reported in the price survey. The price indexes (columns 4 and 7) are the series of nominal prices divided by the price in 1957, the base year multiplied by 100. Thus, the index is the percentage of the 1957 price. For example, the average price in 2004 was 813.1 percent of the price in 1957. The real prices, columns 5 and 8 are the actual prices deflated by the producer price index for finished goods with 1982 as the base year (Table 8, column 2). The real price series represents the purchasing power of dollars based on a 1982 market basket of finished producer goods. It's this real price trend that is important to long-term investments like timber.

Note that each year the previous year's numbers are recalculated using the producer price index for the entire year. The price index used for the current year is the last one reported for the month when the analysis is conducted, which is usually August.

Average Stand

The nominal weighted average price increased from \$433.7 per MBF in 2003 to \$452.2 in 2004 for the average stand (Table 10, column 3). Remember, this series is based

on delivered log prices, not stumpage prices. This is a 4.3 percent increase (Figure 2). The deflated or real price increased from \$302.6 per MBF to \$304.3, a 0.6 percent increase (Figure 2). Because this trend is based on 48 years of data, this increase was not enough to make change the real price increase shown by the trend line for the deflated price series.

The new equation for the trend line for the 1957 to 2004 period is as follows:

A linear trend line should be used if it's necessary to project timber prices, as discussed in greater detail in Purdue University Station Bulletin No. 148. Although it's easier to simply plug the average annual compound rate of increase value into the compound interest formula (exponential rate of increase), projections much over 15 years give unrealistic results. Real prices can't increase exponentially for long periods of time. The market adjustments by producing using more substitutes for "real wood" and consumers being willing to accept substitutes.

The real price increase remains at 1.20 percent per annum for the average stand from 1957 to 2004. Thus, the purchasing power of hardwood timber assets exceeds the rate of inflation by over 1 percent.

Quality Stand

The nominal weighted average price for the quality stand increased from \$567.9 in 2003 to \$625.1 in 2004 (Table 8, column 6, and Figure 3). This is a 10.1 percent increase.

The average real price series for the quality stand increased from \$396.3 per MBF in 2003 to \$420.7 in 2004, a 6.2 percent increase.

The average annual compound rate of increase for the trend line held steady at 1.50 percent per annum (Figure 3). The equation for the trend line is,

Qual. Stand Real Price = 196.58 + 4.41 × T

Thus, the contribution of the real price increase to the total financial return on a quality stand continues to be higher than for the average stand of timber in Indiana. The other components of return are volumetric growth of at least 2 percent, and increases in unit values due to improved log quality as crop trees become larger. This assumes the stand is managed to favor crop trees with the potential for value increases.

Forty-eight years of real price increases haven't been sufficient to motivate more than 10 percent of landowners to seriously manage their timber. Maybe it's time for the forestry community to realistically consider what it would take for Indiana's forestland to achieve its potential economic and environmental contribution. An obvious answer is for serious investors to supply the capital needed to bring investment grade timber under management. Institutional capital is flowing into hardwood timber in the northeast where large tracts of well-stocked stands are available. Timber capital won't come to the central states until a way is found to accumulate significant acreages under common ownerships, even if all the parcels aren't contiguous.

Table 6. Species composition of the Indiana timber price index for an average and a quality stand.

Species	Average Stand	Quality Stand
Veneer species:	(%)	(%)
White oak	13.4	21.0
Red oak	15.1	20.0
Hard maple	9.6	14.0
Yellow poplar	7.5	9.0
Black walnut	5.4	5.0
Non-veneer species:		
White ash	5.8	3.1
Basswood	1.5	3.1
Beech	5.6	3.1
Cottonwood	6.2	3.1
Black cherry	0.8	3.1
Elm	1.2	3.1
Hickory	4.7	3.1
Soft maple	6.7	3.1
Black oak	11.4	3.1
Sycamore	5.1	3.1

Table 7. Log quality composition of the Indiana timber price index for an average and a quality stand.

	Avera	age Stand	Quality Stand			
Log Grade	Veneer Species	Non-veneer Species	Veneer Species	Non-veneer Species		
Veneer logs	(%)	(%)	(%)	(%)		
Prime	1.0	0.0	7.0	0.0		
Select	3.0	0.0	13.0	0.0		
Sawlogs						
Prime	20.0	24.0	19.0	24.0		
No. 1	26.0	26.0	21.0	26.0		
No. 2	38.0	38.0	33.0	38.0		
No. 3	12.0	12.0	7.0	12.0		

Table 8. Weighted average actual price, price index, and deflated price for an average and quality stand of timber in Indiana, 1970 to 2004.

			Average Stand	· · · · · · · · · · · · · · · · · · ·	Quality Stand				
Year	Producer Price Index	Nominal Price	Index Number	Real Price ¹	Nominal Price	Index Number	Real Price ¹		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
		(\$/MBF)		(\$/MBF)	(\$/MBF)		(\$/MBF		
1970	39.3	83.1	149.4	211.5	103.9	156.0	264.3		
1971	40.5	85.9	154.4	212.0	107.4	161.3	265.2		
1972	41.8	90.2	162.2	215.8	112.2	168.5	268.4		
1973	45.6	112.6	202.5	247.0	139.0	208.8	304.9		
1974	52.6	135.3	243.3	257.3	170.2	255.7	323.7		
1975	58.2	125.1	225.0	215.0	166.3	249.8	285.8		
1976	60.8	133.6	240.2	219.7	172.7	259.4	284.1		
1977	64.7	143.6	258.1	221.9	188.0	282.4	290.6		
1978	69.8	181.7	326.1	260.3	234.9	352.9	336.6		
1979	77.6	201.5	362.3	259.6	260.7	391.6	336.0		
1980	88.0	207.8	373.6	236.1	309.3	464.5	351.5		
1981	96.1	206.7	371.7	215.1	284.9	427.8	296.4		
1982	100.0	196.8	353.8	196.8	277.3	416.5	277.3		
1983	101.6	207.6	373.3	204.3	294.4	442.2	289.8		
1984	103.7	235.8	424.0	227.4	322.7	484.6	311.2		
1985	104.7	210.5	378.5	201.0	274.0	411.5	261.7		
1986	103.2	223.6	402.0	216.6	312.2	468.9	302.5		
1987	105.4	257.3	462.7	244.2	334.6	502.6	317.5		
1988	108.0	262.1	471.3	242.7	345.9	519.6	320.3		
1989	113.6	285.9	514.0	251.6	404.9	608.1	356.4		
1990	119.2	288.3	518.3	241.8	397.9	597.6	333.8		
1991	121.7	268.1	482.1	220.3	362.9	545.1	298.2		
1992	123.2	293.4	527.6	238.2	417.6	627.1	338.9		
1993	124.7	355.2	638.8	284.9	491.2	737.8	393.9		
1994	125.5	364.8	655.9	290.6	507.4	762.1	404.3		
1995	127.9	354.0	636.4	276.7	451.6	678.3	353.1		
1996	131.3	337.7	607.1	257.2	495.4	744.0	377.3		
1997	131.8	357.5	642.7	271.2	448.3	673.3	340.2		
1998	130.7	391.1	703.3	299.3	501.7	753.5	383.9		
1999	133.0	389.2	699.8	292.6	526.3	790.5	395.7		
2000	138.0	426.5	766.9	309.1	617.6	927.5	447.5		
2001	140.7	389.7	700.8	277.0	538.5	808.8	382.7		
2002	138.9	410.7	738.4	295.7	561.2	842.9	404.0		
2003	143.3	433.7	779.7	302.6	567.9	852.9	396.3		
2004	148.6	452.2	813.1	304.3	625.1	938.9	420.7		

¹ Actual price deflated by Producer Price Index for Finished Goods, U.S. Dept. Commerce, 1982 base year.

Figure 2. Average stand of timber, nominal, deflated, and trend line price series, 1957 to 2004.

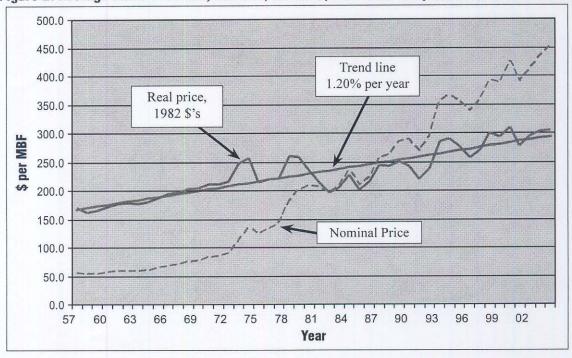
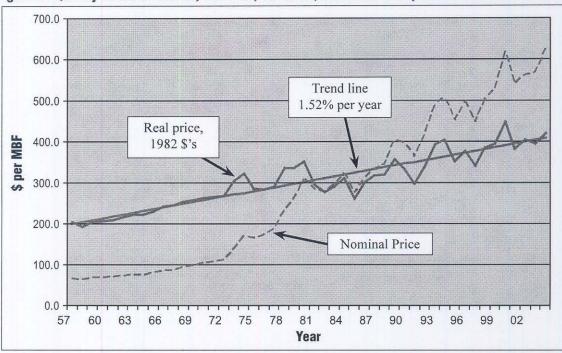



Figure 3. Quality stand of timber, nominal, deflated, and trend line price series 1957 to 2004.

FNR-178-W

2004 Indiana Forest Products Price Report and Trend Analysis

PURDUE EXTENSION

PURDUE AGRICULTURE

NEW 11/04

It is the policy of the Purdue University Cooperative Extension Service, David C. Petritz, Director, that all persons shall have equal opportunity and access to the programs and facilities without regard to race, color, sex, religion, national origin, age, marital status, parental status, sexual orientation, or disability. Purdue University is an Affirmative Action employer. This material may be available in alternative formats.

1-888-EXT-INFO

http://www.ces.purdue.edu/new

Purdue Extension

Knowledge to Go

1-888-EXT-INFO