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ABSTRACT

Culhane, William John IV PhD, Purdue University, May 2015. Optimal “Big Data”
Aggregation Systems – From Theory to Practical Application. Major Professor:
Patrick Eugster.

The integration of computers into many facets of our lives has made the collection

and storage of staggering amounts of data feasible. However, the data on its own is not

so useful to us as the analysis and manipulation which allows manageable descriptive

information to be extracted. New tools to extract this information from ever growing

repositories of data are required.

Some of these analyses can take the form of a two phase problem which is easily

distributed to take advantage of available computing power. The first phase involves

computing some descriptive partial result from some subset of the original data,

and the second phase involves aggregating all the partial results to create a combined

output. We formalize this compute-aggregate model for a rigorous performance analysis

in an effort to minimize the latency of the aggregation phase with minimal intrusive

analysis or modification.

Based on our model we find an aggregation overlay attribute which highly affects

aggregation latency and its dependence on an easily findable trait of aggregation. We

rigorously prove the dependence and find optimal overlays for aggregation. We use

the proven optima to create simple heuristics and build a system, NOAH, to take

advantage of the findings. NOAH can be used by big data analysis systems.

We also study an individual problem, top-k matching, to explore the effects of

optimizing the computation phase separately from aggregation and create a complete

distributed system to fulfill an economically relevant task.
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1 INTRODUCTION

It is fair to call this the advent of the age of information. The sheer amount of data

available dwarves that of even a generation ago, and the rate at which new data is

generated and collected is only increasing. Data in itself is typically only a tool in a

process to understand phenomena, so increased storage capabilities are insufficient to

fully utilize this vast increase in available data. It is necessary to also progress our

tools for analysis and processing to distill the data to their actionable core.

1.1 Distributed Big Data Processing

There is an obvious need for systems which have high availability, simplified service

capabilities, and higher computational power than single machines [1]. Furthermore,

the economics have increasingly pushed toward large scale datacenters [2].

Approaches to distributed data processing including Microsoft’s LINQ [3] and

Yahoo!’s Pig Latin [4] allow the user to not only define the structure of the data, but

also to attempt to instruct the program with some guidance on program flow. This

requires more effort on the part of the programmer and produces more specialized

implementations. This is certainly manageable for some processes, but isn’t always as

scalable or simple to use.

Another idea is to create simplified data abstraction for creating powerful pro-

grammable and, more importantly, reusable frameworks. Because the process for

distilling data depends on the desired outcomes and the nature of the data itself,

frameworks including the Hadoop [5] implementation of MapReduce [6] create intuitive

data models to allow the user to abstract the data into more manageable chunks.

In the case of the MapReduce model this is via organizing the data via key-value

pairings, in which keys are descriptive attributes for partitioning the data via mapping
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for processing, or reducing, value data items which should be processed together.

Intelligently placing data for processing in this manner allows local computations

when doing the brunt of the calculations, which is dersireable for both latency and

memory access reasons [7]. The frameworks themselves are flexibile enough for users

to program in their familiar environments while expending little extra effort to use

an efficient and robust distribution system.

For users who cannot afford to maintain their own large distributed system there

are an increasing number of cloud services available for deploying these solutions [8–10].

The additional on-demand computing power with no hardware maintenance worries

creates and attractive draw for many users [11].

1.2 Top-k Matching

Many times a user or process needs a list of items which fulfill a set of criteria, but

the full result set is much larger than what is needed, or even potential what can be

used. To solve this problem top-k matching attempts to return subset of results of a

given size k such that the returned items fit some definition of “best” matching. Fagin

explored this problem extensively on specialized databases [12–14], and subsequent

research has pointed out the need for it in various web based services [15, 16].

In order to perform a top-k matching algorithm requires some function to score

potential entities for the final list and determine which ones are the best match. Any

matching model must be clear in what it allows both for clarity to the user and to set

limits on the algorithm. More expressive models allow users to create more precise

definitions of “best”, but they often do so at the expense of disallowing performance

enhancing shortcuts in the matching algorithm.

Scoring all entities and sorting them is tremendously time consuming when datasets

get too large, which negatively impacts a system which is expected to be responsive.

Thus a more efficient algorithm is necessary which works within the confines of the

matching model.
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1.3 Limitations of Current Art

Existing frameworks, especially MapReduce implementations, have proven wildly

popular in practice. According to Jeff Dean in September of 2009 Google ran 3467K

MapReduce jobs on 544PB of input data, a more than 100× increase over the

numbers from 5 years prior, and the numbers were still growing [17]. The data and

computational model is easy to manipulate to solve many problems for which it is

not suited for efficient computation [18]. For example, consider the top-k problem.

Mappers can find their top-k matches locally, then a reducer uses all the local results

to find the top-k of the sets it receives. However, the scores from the local results are

used to filter out items from other local result sets, so a single reducer is required to

make sure the filtering comes to the correct result [19]. This mitigates some of the

use of distribution because the second phase has to be performed at a single location.

Thus it makes sense to introduce frameworks with new distributed computation

models which provide users with intuitive high level abstractions for segmenting and

combining data. Rather than having only a single tool available, a user should be able

to choose among multiple tools to create a system which is best suited to the type of

computation being done without having to worry about implementing the distributive

properties that are reused on multiple problems.

Another limitation of many aggregation specific systems is their adaptive nature,

which means they are more reactive than predictive. Several current systems use

metrics to determine places in the overlay which are ripe for local tuning and apply

it [20–22]. While this is good for log lived systems with changing workloads, it typically

does not do the best job of global tuning, and it requires some amount of activity

before local optimization can be effective.

Likewise, the top-k matching solutions are very good at performing the tasks for

which they were specifically designed. However, as the data collection mechanisms

available grow there are several underaddressed areas the model for matching can

be expanded. Current approaches typically limit matching to attributes which are
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universally available, and limit the scoring function to only allow monotonic score

changes. In some tasks where top-k matching makes sense, such as advertisement

serving on a web platform, different pieces of data will be available for different users

based on usage history, applicable laws on data collection, and privacy concerns. In

those same applications some traits will be seen as positive and others as negative

when creating a truly targetted match.

1.4 Our Solution

In this dissertation we approach both the problem of distributed computation and

top-k matching from the model point of view first. We create mathematically rigorous

definitions of the problems at hand. Based on these definitions we can clearly state

our assumptions and the goals of our work in relation to the relevant variable.

In the case of distributed data aggregation the goal is minimal latency of a general

purpose aggregation (sub)system for use by big data analysis engines. Through our

slightly simplified model we create we are able to clearly identify the attributes of

aggregation functions which affect the latency in a general purpose system without

need for in depth analysis of each aggregation function. By fully exploring the model

we find provably optimal aggregation overlays for a variety of cases.

The next step creates a usable system based on the provably optimal overlays. We

introduce NOAH which trims the use cases down to a minimum to create heuristics

for building very good aggregation overlays. NOAH also incorporates several practical

mechanisms to maintain the base assumptions as much as possible and maintain

overlays efficiently after the initial aggregation is completed.

Finally we build a full top-k matching system with NOAH. The aggregation

happens after initial computation, we note that the two phases can be independently

optimized. We expand the top-k matching model over the prior art to allow better

use of the type of data that may be available in current applications and introduce
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the FX-TM algorithm to efficiently match data in this expanded model. FX-TM is

run within NOAH to create a full distributed top-k matching system.

1.5 Problem Statement

There are classes of distributed data analysis models which are underdefined and

thus poorly addressed for optimized running by current solutions. Top-k matching

algorithms need to be more expressive to deal with new data models. This includes

obtaining all data available for more targetted matching than limit matching to

attributes which are universally available and allowing entities to weight attributes

positively and negatively.

1.6 Thesis Statement

This dissertation presents a mathematical model for the compute-aggregate class

of distributed data problems and finds provably optimal aggregation overlays. The

optima are distilled into heuristics for a practical general purpose system to create

on-demand aggregation overlays. A distributed top-k matching system is created with

this system and a novel, more expressive, top-k matching approach.

1.7 Organization

In Chapter 2 we precisely define the compute-aggregate family of problems and

rigorously prove optimal aggregation overlays. In Chapter 3 we distill heuristics from

the optimal overlays and use them to create a system called NOAH for general

purpose aggregation in a larger big data analysis framework. In Chapter 4 we create

an algorithm for use with top-k matching and integrate it into NOAH, resulting

in a distributed top-k matching system. Chapter 5 discusses the related work, and

Chapter 6 concludes the dissertation.
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2 THEORETICALLY OPTIMAL AGGREGATION OVERLAYS

This chapter lays out the theoretical model for our aggregation work and proves

the optimalilty of a targetted overlay approach. With the exception of portions of

Section 2.3.2 the contents of this chapter chapter are c©2015 IEEE. Reprinted, with

permission, from William Culhane, Kirill Kogan, Patrick Eugster, and Chamikara

Jayalath, Optimal Communication Structures for Big Data Aggregation, INFOCOM,

April 2015 [23].

2.1 Overview

Big data processing underpins many efforts of modern computing usage. Given

the size of data and the amount of resources that go into processing them, there is a

decided motivation to optimize the processing as much as possible.

We consider compute-aggregate problems, which can be broken into an initial

computation phase on data distributed across a set of nodes and an aggregation phase

to collect and process the results of the computation phase. An example is word count,

where counts from all nodes can be aggregated by summing the counts for each word.

A natural choice is to aggregate results along a communication structure such as

a tree connecting leaf nodes (where original computations occur) to a root (where the

final result will be available). It becomes clear that there are simple customizations

to such aggregation trees created for a broad range of aggregation functions. Exactly

which customizations are applicable – most prominently affecting fan-in of the tree –

depends on how the input data is to be processed: at once on an entire “block” or in

a stream of chunks, and the characteristics of the aggregation function which affect

the size of the data.
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Intuitively, aggregation can be considered the “inverse” of multicast: in the latter,

data is typically propagated along a tree, and a function applied at every node. The

function may simply copy input to all outgoing links; in more complex cases nodes may

run transformation functions on data prior to forwarding (e.g., for interoperability),

or collect acknowledgements or negative acknowledgements (for reliability).

Much effort has been invested in optimizing multicast spanning trees, but aggre-

gation is less studied. In practice aggregation is very common, especially with the

advent of the big data era. While the familiar problems – e.g., merging sorted lists

or combining word counts – have outputs at least as large as each input, the average

MapReduce job at Google [6] and the common “aggregate” jobs at Facebook and

Yahoo! [24] decrease the size of data. Despite the large potential performance impact

of simple traits of aggregation trees, most systems described in literature performing

aggregation are agnostic to them.

The contributions of this chapter are as follows:

• We identify and define a model for a class of problems termed compute-aggregate

whose distributed execution is optimized by manipulation of an underlying

aggregation tree without requiring revision to applications themselves.

• Within the compute-aggregate subset we identify two distinct input models

requiring different optimizations – (a) aggregation of a single block and (b)

streaming input.

• We identify parameters for aggregation trees with respect to both problem

variants and prove their optimal values via mathematical models for various

cases.

• We provide mechanisms to reduce the physical overhead or increase the band-

width over a naïve implementation with streaming input. These mechanisms are

particularly useful for the common real-world applications which decrease data

size during aggregation.
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• We evaluate the accuracy of our models with microbenchmarks performed in

the Amazon Elastic Compute Cloud (EC2) and measure the actual impact that

aggregation tree decisions make in practice, confirming our models.

2.2 Model Intuition and Definitions

In this section we explain the compute-aggregate model and what it means to

have blocks versus streaming input.

2.2.1 Compute-Aggregate

Compute-Aggregate is a straightforward family of problems where computation

is applied to multiple subsets of an input dataset, presumably in parallel, and the

outputs from those computations are aggregated to create the final output. This is

formally defined in Definition 2.2.1 and illustrated in Figure 2.1.

Definition 2.2.1. Compute-aggregate runs on decomposable input z = z1, . . . , zn to

produce desired output h(z) when h(z) can be decomposed into a computation on

subsets of the data, c (z1) , . . . , c (zn), and function a () can operate on those results

such that h(z) ≡ a (c (z1) , . . . , c (zn)).

Each computation node contains some subset of the intial data. After computation

(c), a system aggregates (a) the results along an aggregation tree (or henceforth

simply tree) communication structure to create the final output. With the exception

of passing the results of the computation to the aggregation tree the two phases are

independent from each other. At each leaf, data z is in memory prior to computation,

and computation applies function c such that x = c(z), where x is data formatted for

aggregation. There is no requirement on the type or complexity of the computation.

It can be as simple as reading data from a source, such as a log file.

We consider optimizating the aggregation phase. Optimizing computation requires

knowledge about the data, data structures, and algorithms for each specific problem.
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Figure 2.1.: Visual representation of the computation and aggregation phases.

We show optimizing the tree often only requires knowing very basic information about

the aggregation function.

Often the initial computation reduces the size of the data for aggregation signifi-

cantly because the analysis is interested in some feature of the data rather than the

data itself. A user, for instance, might want to find the entries in a log pertaining to

a particular bug, retrieve the number of references to a set of websites, or reduce the

data to a finite number of clusters for a machine learning algorithm. The application

must analyze all data, but the output from each slice of data is smaller than the data

itself.

Aggregation can be triggered by the completion of the computation phase or

run periodically on the current state of the data, as long as the data is formatted

for aggregation. Aggregation applies some function a to all of the outputs of the

computation nodes, a (c (z1) , . . . , c (zn)). This does not have to be done in a single step.

Aggregation can be applied to the results of previous aggregation. When aggregation

begins, each output from a leaf is sent to a single aggregation node. The aggregation is
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(a) Fan-in = 2 (b) Fan-in = 4

(c) Fan-in = 16 (d) Fan-in = 2 & 8

Figure 2.2.: Four balanced aggregation trees with 16 leaves.

applied to all inputs received at the node, and the node outputs the aggregated result.

The outputs from those nodes, if there are indeed multiple such nodes, are in turn

aggregated. The final aggregate result contains exactly one path to each leaf, so each

computation output is included exactly once, resulting in an explicit tree structure.

Figure 2.2 shows how 16 leaf nodes can be placed in two different trees with fan-ins of

2 and 16. These are the extreme scenarios, and it is possible to use any fan-in between

the two values, although such fan-ins will not result in full trees unless the number of

leaf nodes is a power of the fan-in.

Later in Section 2.3.2 we discuss the idea of “implicit” aggregation. If portions

of the data do not interact with each other, like subsequent chunks n-gram counting

with no overlapping n-grams, but have an implicit order based on their locations in

the input streams the tree may aggregate them separately without explicitly requiring

them to be aggregated through the same channels as long as the ordering is maintained.

2.2.2 Single Block

The first case we consider is input processed in a single block, and each aggregation

results in a single block of its own. This means all of the data is available and computed

at a single step at the leaves, then the aggregation tree reads the entire results and

outputs a single output without natural breaks which can be used to distribute the

work.
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In this case we are concerned with the optimal latency of processing the block.

The number of inputs – including the direct outputs from the computation phase and

aggregations of them – that can be aggregated at each node in the tree is variable, as

long as each result from the computation phase is included exactly once. Reducing the

fan-in means increasing the number of siblings in the tree, which in turn means that

more aggregation is done in parallel at each level. However, subsequent levels have to

repeat some of the work their children did. Therefore the optimal fan-in depends on

the ratio of work that is repeated to the amount of parallelism gained.

2.2.3 Streaming

While the trees we will propose for single blocks of input are provably good, they

only use one level of the aggregation tree at a time. Thus we consider a second case

of input using multiple levels at a time. In order to do this we split the input into

chunks according to rules laid out later in this section. By splitting the input we allow

aggregation on some segment of the input data to be propagated up the tree while

aggregating the next chunk at the lower levels. Thus we utilize more nodes in parallel.

While this approach may recompute portions of the aggregation in a way that was

avoided in the single block case, the additional parallelism can overcome that.

Rather than consider optimal latency per chunk we note that for any sufficiently

large finitely sized input the optimal latency will be on a tree which has the highest

bandwidth of processing the chunks. Of course, this extends to infinitely sized input

as well, i.e. continuous input, and incrementally updated data where the results of the

aggregation are updated, or even fed back into the original data for reaggregation.

We note that if a single block of input is sufficiently large it may be chunked and

turned into a streaming problem if the data is amenable to such an operation, which

means the input follows rules we define later in this section. In practice the input

must be sufficiently large to overcome the warmup and cooldown times of the tree,
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and for the increased parallelism used to increase the bandwidth of the streaming

situation to overcome the reduction in latency with respect to one block.

2.2.4 In-Memory Data

Like the recent big data processing methods in our prior art search, we use in-

memory computation (and aggregation). Because we are worried about high perfor-

mance, disk accesses are a significant penalty on today’s hardware. In addition, mixing

RAM and disk swapping leads to unpredictable latencies which can differ by orders

of magnitude.

RAM constraints may be one thing that forces the use of the streaming model

in practice. If the input size is too large to fit on a single machine, it will require

chunking. Even if there are not enough chunks to overcome the warmup and cooldown

phases, this may be preferable to requiring disk access.

2.2.5 Notation and Assumptions

We rely on several assumptions to calculate optimality. These do not affect the

correctness of the output. Table 2.1 shows the notation used to rigorously define our

assumptions and prove optimal fan-ins for the trees.

We assume time complexities of aggregation functions depend solely on input

size. Some aggregation algorithms have time complexities expressed in terms of the

fan-in and the size of individual inputs, e.g. O(fan-in × log (average input size)).

Our experiments show this deviation is a small factor.

We model communication time as linear on the amount of data transferred.

Contemporary streams to a node share bandwidth, so the communication time at a

node is the same as long as all children start sending data before the node finishes

receiving the data from any set of other nodes. Communication at a node can be

affected by other nodes on the network, especially when TCP incast is present [25].

We assume that TCP incast is resolved on the TCP level as in [26] or communication
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Table 2.1.: Aggregation model notation.

Token Meaning
n Number of computation/leaf nodes.
f Fan-in of the tree, making the height logf n.
a (x) The aggregation function for a set of inputs x.
at (x) Returns the time taken for a (x) (with communication).
c() Initial computation function.
h() (Composed) function transforms original input to final output.
t Time per unit of data for linear at (x) and at (∅) = 0.
z Data prior to computation.
x Data formatted for aggregation.
x0 Output from a computation node. This is a special case of z.
y Ratio of output sizes of consecutive levels.
y0 Ratio of the final aggregate output size to |x0|.
r(a, b) TRUE iff item b follows item a with ordering function r ().
m A single chunk in a streamed input.

time is relatively inconsequential. We wait for all streams when aggregating at a node

to avoid higher programming complexity to account for locking and race conditions.

These assumptions require, performance-wise, a pseudo-synchrony which requires a

degree of homogeneity among nodes of a level. Heterogeneity may exist across levels.

We do ignore some of the other complexities that can be associated with communi-

cation, especially with regard to node location on the network and shared resources or

conflicts. We are considering mostly the case of using third party cloud offerings, which

often hide such things from the user. As such we consider the network architecture a

black box best approximated in the average case as mostly uniform.

Homogeneous hardware is a fair premise when datacenters mass order standard

hardware, and cloud services provide tiers of service based on performance. The minor

service variations can be unpredictable. Homogeneous input follows from our model
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for data distribution. If aggregation time depends on the data traits other than size

(e.g., element order), those traits must be distributed. We find the leeway in synchrony

and the impact of tree customization mask enough hetergeneity in practice.

Aggregation costs are modeled as monotonically increasing on input size, and are

zero for no input. Modeling non-linear setup overheads complicates analysis, and the

practical impact of these overheads are very small. When aggregation changes the size

of the data we model ratio of output to input at each level to be the same. This is or

can be made to be true for many applications. In many other cases the ratio stays

within a range, e.g. below 1, and the optimal fan-in is unaffected.

We assume the same ideal fan-in is used at all levels of the tree as possible. Without

a rigorous proof of this, we note that once y is applied to the first level the optimal

remaining fan-in is essentially being applied to 1
f
nodes with input different by a factor

of y, which is essentially the same problem.

We model full and balanced trees. Fulfilling fullness for arbitrary numbers of leaves

can be difficult, as it requires the fan-ins at each level to multiply to the number of

leaves. It is simple to balance within a level, however, and fullness and balance follow

when the number of leaves is a power of fan-in.

2.2.6 Function Requirements

We consider aggregation functions which take x1 . . . xi and output an aggregate

x1..i, i.e., x1..i = a(x). Functions must be able to handle any number of inputs in order

for the increased fan-in to be effective, as there is no advantage to having multiple

inputs available it they cannot be used.

Functions are cumulative, commutative, and associative. This essentially means

inputs may be aggregated in any order with any group of inputs, including those which

are outputs of non-root nodes of the tree. Definitions 2.2.2, 2.2.3, and 2.2.4 capture

the properties more precisely. Definitions require equivalency (≡), not necessarily

identical output. For example, if a system is supposed to output the single word with
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the maximum number of occurrences (word count) and two words are tied for that

distinction, either word may be returned.

Definition 2.2.2 (Cumulative Aggregation). a (a (x) , a (x′)) ≡ a (x, x′)

Definition 2.2.3 (Commutative Aggregation). a (x′, x) ≡ a (x, x′)

Definition 2.2.4 (Associative Aggregation). a (a (x, x′) , x′′) ≡ a (x, a (x′, x′′)) ≡

a (x, x′, x′′)

Because our streaming model outputs results before receiving the entirety of the

input, there are additional rules on the inputs which must be satisfied. This applies

both to the original input and the output of nodes which is used as input higher in

the tree. The inputs must all use a known ordering function, and side effects can only

propagate from earlier chunks of data to later chunks rather than the opposite way

around, as one would expect. Definitions 2.2.5, 2.2.6, and 2.2.7 define these in more

rigorous language. We also provide counterexamples to each rule using a word count

application.

Definition 2.2.5 (Known Ordering). ∃ some known transitive function r on pairs of

keys s.t. for any pair k1 6= k2 of keys r (k1, k2) returns TRUE iff k1 ≤ k2.

Counterexample If the input is a hashmap with string:key mappings, the ordering

of a traversal of the list of entries is not a lexical ordering of the keys, but a numerical

ordering of the hashes of the keys. The programmer must understand the datastructure

and account for this.

Definition 2.2.6 (Consistent Ordering). ∀ keys k1, k2 such that k1 precedes k2 in

ordered list ci used as input for aggregation function a (x0, . . . , xd), if k1, k2 ⊂ xj =⇒

rj (k1, k2) = TRUE.
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Counterexample One list could be derived from a hashmap, ordered on the hashes

of the keys. Another list may have been processed to follow lexical ordering of the

keys or be sorted on the number of occurrences of each string.

Definition 2.2.7 (Unidirectional Side Effects). In aggregation function a (x0, . . . , xd),

list xi can be decomposed into concatenated lists x0
i · x1

i · x2
i and xj into x0

j · x1
j · x2

i for

i 6= j such that for any element l0 ⊂ x0 and l1 ⊂ x1, r(l0, l1).

If aggregation function a () is applied to chunks x0
i and x0

j to create output x0
a,

∃ items k0
1, k

0
2 ⊂ x0

a such that r (k0
1, k

0
2) = TRUE, then a

(
x0...2

i , . . . , x0...2
j

)
contains

k0
1, k

0
2 ⊂ x1...2

a such that r (k0
1, k

0
2) = TRUE.

Counterexample If the output is ordered on the number of occurrences of each

string, but string s occurs in x1
i and x2

j , the value used in the ordering of s, and thus

the ordering of s relative to other elements, can change when x2
j is aggregated with

the output from the original aggregation.

2.3 Optimality Proofs and Mechanisms

2.3.1 Single Block Optima

Here we prove theoretical (near-)optimality of the fan-in f for minimizing latency

given n and at (x) for several cases of y0 when there is a single block of input at each

tree leaf.

Lemma 2.3.1. The total aggregation time with linear at (x) and y0 6= 1 is g (f, n, y0) =
t|x0|f(y0−1)

logf n
√

y0−1 , and
∂

∂f
g(f, n, y0) = t|x0|(y0−1)ylogn d

0 −(1+ log y
log n

ylogn f)
(y

logn f
0 −1)2 .

Proof. For aggregation linear on input size, the time at a level is constant t × (the

input size at the level). Initial input size is |x0|, and size changes by a factor of y at

each of the subsequent logf n levels. Thus total aggregation time is ∑logf n
z=1 tfyz−1x0.

Pulling out the constants gives tf |x0|
∑logf n

z=1 yz−1 = tx0fy
logf n−1

y−1 . Recalling y = logf n
√
y0

gives t|x0|f(y0−1)
logf n
√

y0−1 .
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Lemma 2.3.2. The total aggregation time with y0 = 1 is at (f |x0|) logf n.

Proof. Reusing the logic from Lemma 2.3.1 without introducing y0 gives us∑logf n
z=1 at (f |x0|). This simplifies to at (f |x0|)

∑logf n
z=1 1, and then to at (f |x0|) logf n.

Theorem 2.3.3. The optimal fan-in is 2 when y0 < 1 and at (x) is linear or

superlinear.

Proof. By Lemma 2.3.1, the total aggregation time taken is g(f, n, y0) = tf |x0|(y0−1)
logf n
√

y0−1 ,

and ∂
∂f
g(f, n, y0) is t |x0| (y0 − 1) y

logn f
0 −(1+y

logn f
0 logn y0)

(y
logn f
0 −1)2 . 0 < logn f ≤ 1 for 2 ≤ f ≤ n,

so ∂
∂f
g(f, n, y0) > 0 for 0 < y0 < 1.

∴ The optimal f is 2.

We assumed at (x0) + . . .+ at (xz) = at (x0 + . . .+ xz). As f grows there are more

inputs and input size is reduced less, and at (x0) + . . .+at (xz) < at (x0 + . . .+ xz) for

superlinear at (x), so superlinear at (x) is more sensitive to f than linear at (x).

∴ This result holds for superlinear at (x).

Theorem 2.3.4. The optimal fan-in is e when y0 = 1 and at (x) is linear.

Proof. With at (f |x0|) logf n from Lemma 2.3.2 and linear at (x), g (f, n, y0) =

f |x0| t logf n. ∂
∂f
g(f, n, y0) = |x0|t(log f−1) log n

log2 f
, which is 0 iff f = e. ∂2

∂f2 g(f, n, y0) =

− |x0|t(log f−2) log n

f log3 f
. At f = e, ∂2

∂f2 g (f, n, y0) > 0, so this is a minimum.

∴ The optimal f is e.

Theorem 2.3.5. The optimal fan-in is [2, e) when y0 = 1 and at (x) is superlinear.

Proof. By Lemma 2.3.2 the total aggregation time is glin. (f, n, y0) = at (f |x0|) logf n.

As shown in Theorem 2.3.4, limat(x)→linear is e. We can assume ∂2

∂f2 gsuperlin. (f, n, y0) >
∂2

∂f2 glinear (f, n, y0). Thus ∂2

∂f2 glinear (f, n, y0) > 0 for f ≥ e =⇒ ∂2

∂f2 gsuperlin. (f, n, y0) >

0. Thus any minimum occurs at f < e.

∴ The optimal value of f is in the range [2, e).

Theorem 2.3.6. The optimal fan-in is (1− logn y0)− logy0 n when 1 < y0 < n and

at (x) is linear.
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Proof. From Lemma 2.3.1, the amount of time taken to aggregate is g(f, n, y0) =
tf |x0|(y0−1)

logf n
√

y0−1 , and
∂2

∂f2 g (f, n, y0) = t|x0|(y0−1)

(y
logn f
0 −1)2

(
y

logn f
0 −

(
1 + y

logn f
0 logn y0

))
. For y0 > 1,

t|x0|(y0−1)

(y
logn f
0 −1)2 > 0, so the expression is 0 iff y

logn f
0 =

(
1 + y

logn f
0 logn y0

)
, which happens

at f = (1− logn y0)− logy0 n.
∂2

∂f2 g (f, n, y0) = t|x0|(y0−1)ylogn f
0 log y0(log n+log y0−(log n−log y0)ylogn f

0 )
f log2 n(y

logn f
0 −1)3 . Because

t|x0|(y0−1)ylogn f
0 log y0

f log2 n(y
logn f
0 −1)3 > 0, ∂2

∂f2 g (f, n, y0) > 0 iff log n+log y0−(log n− log y0) ylogn f
0 > 0.

Substituting the extrema value for f gives y
− logy0 (1−logn y0)
0 −1

y
− logy0 (1−logn y0)
0 +1

− logn y0 < 0. To prove this

we fix n and find y0 to maximize h (f, y0) = y
− logy0 (1−logn y0)
0 −1

y
− logy0 (1−logn y0)
0 +1

− logn y0. ∂
∂y0
h (f, y0) =

2 log2 n+log2 y0−4 log n log y0
y0 log n(log y0−2 log n)2 .

∂
∂y0
h (f, y0) > 0 for 1 < y0 < n. Thus max (h (n, y0)) occurs at limy0→n, and

limy0→n h (n, y0) < 0. The extrema of g(f, n, y0) is a minimum.

(1− logn y0)− logy0 n > n =⇒ d > n, which is impossible. Since the only local

extrema is a minimum, ∂
∂f
g (f, n, y0) < 0 for f =

[
2, (1− logn y0)− logy0 n

]
, so the

optimal fan-in is the largest possible value, i.e. n, in this case.

∴ The optimal f is min(n, (1− logn y0)− logy0 n).

Theorem 2.3.7. The optimal fan-in is n when y0 ≥ n.

Proof. The time taken by the root node is at
(
ylogf n |x0|

)
. y0 ≥ n =⇒ y ≥ f and

logf n ≥ 1, so this is minimal at logf n = 1. In addition, for f < n the rest of the tree

takes non-zero time.

∴ The optimal f is n.

Table 2.2 summarizes the results from our proofs for single blocks of input. There

are still unproven cells where the degree of sub- or superlinearity of the aggregation

is required to find the optimal value. There is always an aspect of linearity to at (x)

due to communication time, so it makes sense to use the results from the linear cases

on the sublinear cases, which would fill most of the table.
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Table 2.2.: The optimal value for f to minimize the latency of a single input block
and the applicable proof when available.

y0 Model
Runtime

Optimal Fan-in Sublin.
at ()

Linear
at ()

Superlinear
at ()

y0 < 1 t|x0|f(y0−1)
logf n
√

y0−1 2 unproven Thm. 2.3.3 Thm. 2.3.3

y0 = 1 tf |x0| logf n e unproven Thm. 2.3.4 Thm. 2.3.5
*near optimal

1 < y0 < n t|x0|f(y0−1)
logf n
√

y0−1 min(n,
(1− logn y0)− logy0 n)

unproven Thm. 2.3.6 unproven

y0 ≥ n t|x0|f(y0−1)
logf n
√

y0−1 n Thm. 2.3.7 Thm. 2.3.7 Thm. 2.3.7

2.3.2 Streaming Optima

The case for streaming input is different than a single block. In this case we are

worried about the bandwidth instead of the latency. As such, we explore the tree which

can process subsequent input chunks the fastest. Intuitively this means finishing the

initial processing of the current chunk the fastest so the tree can start processing the

next chunk.

To achieve this we make an additional assumption about the tree. The first is that

we can predict a single layer which is the bottleneck for the system. The rest of the

tree can process its input faster than the limiting level, which we refer to as “keeping

pace”. Assuming keeping pace simplifies finding the optima because we just have to

minimize the latency of the bottleneck level.

Trees for problems with y0 ≤ 1, which, as mentioned in the introduction, account

for most of the aggregation seen in real world usage, intuitively have a bottleneck at

the first level of aggregation. When y0 < 1 they reduce the size of the data and thus

the amount of time required at levels above. When y0 = 1 the amount of data at each

level is the same, so aggregation time should be roughly the same.
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Theorem 2.3.8. For y0 ≤ 1 The maximal bandwidth for streaming input when the

entire tree keeps pace with the first level of aggregation happens when the f = 2 at the

first level.

Proof. Bandwidth is throughput per time unit. Assuming the rest of the aggregation

tree keeps pace with the lowest level, we only have to consider the bandwidth of the

lowest level. The throughput is equal to the amount of input, which is |m| at each

of n nodes. The latency of the first level is at (x) where |x| is f ×m. This makes the

bandwidth n|m|
at(x) . By definition at (x) monotonically increases with input size, so for a

given m the the denominator is minimized by minimizing f .

∴ The optimal f at the lowest level of aggregation is 2.

It is interesting to know that while this result is independent of the degree of

function at (x), there is an additional implied optimization that is possible in the case

the function is not linear on |m|. Because the numerator is linear on |m|, sublinear

occurrences in the denominator mean that |m| should be maximized. Similarly |m|

should be minimized when the aggregation cost function is superlinear on |m|. In the

case the function is linear, |m| does not affect optimality.

As long as y0 ≤ 1 an entire tree with f = 2 will keep pace with the first level:

simply create the rest of the tree with f = 2 as well. Since the output of each level is

not growing, each level has no more aggregation work to do than the level below it.

Thus no level is a bottleneck compared to its level below.

If y0 > 1 this does not work. In fact the top level of aggregation is the bottleneck,

as the amount of work increases at each level and culminates at the final level.

Theorems 2.3.9 and 2.3.10 cover these cases. Table 2.3 summarizes the results from

all our proofs for streaming input.

Theorem 2.3.9. For 1 < y0 < n and linear or superlinear at (x) the maximal

bandwidth for streaming input happens when the f = 2.

Proof. Bandwidth is throughput per time unit. Assuming the output grows at sub-

sequent levels, the final level of aggregation is the bottleneck for the bandwidth. The
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throughput is equal to the amount of original input for the chunk, n× |m|, divided by

the time to process the input at the final level, at(f |m| y#of previous levels). For linear

at (x) and substituting y = logf n
√
y0 this becomes B(y0, n, f) = n|m|

y

(logf n)−1
logf n

0 f |m|t

for some

constant t, and |m| factors out.
∂

∂f
B(y0, n, f) = y

logn f−1
0 n

tf2 ( log y0
log n
− 1). For y0 < n this is always negative, indicating

that bandwidth decreases as f increases for this range, making the minimal fan-in the

maximal bandwidth.

∴ the optimal f is 2.

This analysis finds that the increased parallelism dominates the increased time at the

final level. Therefore when the increase in time is more pronounced with respect to f

in the case of a superlinear at (x) the increase in parallelism continues to dominate.

∴ this result holds for superlinear at (x).

Theorem 2.3.10. For y0 > n and linear or sublinear at (x) the maximal bandwidth

for streaming input happens when the f = n.

Proof. Bandwidth is throughput per time unit. Assuming the output grows at sub-

sequent levels, the final level of aggregation is the bottleneck for the bandwidth. The

throughput is equal to the amount of original input for the chunk, n× |m|, divided by

the time to process the input at the final level, at(f |m| y#of previous levels). For linear

at (x) and substituting y = logf n
√
y0 this becomes B(y0, n, f) = n|m|

y

(logf n)−1
logf n

0 f |m|t

for some

constant t, and |m| factors out.
∂

∂f
B(y0, n, f) = y

logn f−1
0 n

tf2 ( log y0
log n
− 1). For y0 > n this is always negative, indicating

that bandwidth increases as f increases for this range, making the maximal fan-in the

maximal bandwidth.

∴ the optimal f is n.

This analysis finds that the increased time at the highest level dominates the increase

parallelism. Therefore when the increase in time is less pronounced with respect to f

in the case of a sublinear at (x) the increase in parallelism is even less significant.

∴ this result holds for sublinear at (x).
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Table 2.3.: The optimal value for f to maximize the bandwidth of streaming input
and the applicable proof when available.

y0 Bottleneck
Level

Model
Bandwidth

Optimal
Fan-in

Sublin.
at ()

Linear
at ()

Superlin.
at ()

y0 ≤ 1 Lowest n|m|
tx 2 Thm. 2.3.8 Thm. 2.3.8 Thm. 2.3.8

1 < y0 < n Highest n|m|

y

(logf n)−1
logf n

0 f |m|t

2 unproven Thm. 2.3.9 Thm. 2.3.9

y0 ≥ n Highest n|m|

y

(logf n)−1
logf n

0 f |m|t

n Thm. 2.3.10 Thm. 2.3.10 unproven

In the case that the lowest level is the bandwidth bottleneck each level takes

longer than the level below it, so input will buffer in ever increasing amounts between

levels. Eventually it will be necessary for lower levels to wait to send the next because

the levels to which they are sending will not be able to store it. We propose two

mechanisms to better use the computational power of the tree.

Modifying Chunk Size

The first mechanism prevents buffering which could lead to buffer overloads when

y0 > 1 and ameliorates some warmup and cooldown inefficiencies: rather than fixing

|m|, we change the size of each chunk. If each subsequent chunk is a factor of y larger

each level takes as long to aggregate a chunk as the next level up takes to aggregate

the previous chunk.

In practice it is impractical to increase the size of chunks indefinitely. Therefore

we suggest specifying a minimum and maximum chunk size. If y0 > 1 start with the

minimum chunk size. Chunk sizes are increased until the maximum size is encountered,

which will take logy
MAX(|m|)
MIN(|m)) iterations.

The tree requires the occasional cooldown period clear to let the largest chunk

propagate through the tree before the aggregation power is available to the next
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chunk. There is also a warmup period when the first chunk, or the smallest chunk

when the chunk size is reset, propagates through the tree. When the chunk size is reset

these two periods can overlap, but the warmup phase cannot overtake the cooldown

phase because the hardware is not available. It is not necessary to know the exact

value of y a priori in this case. The first level of aggregation can use the size that it

is outputting for a chunk divided by the original size of the input for that chunk.

Since the tree must still wait when resetting the size of the chunks this is not

perfectly ideal. However, the waiting is predictable rather than occurring whenever the

buffers happen to fill up. In addition, since it handles several chunks before bogging

down it may be sufficient for bursty streams.

Modifying Fan-in
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Figure 2.3.: Fractional fan-in through buffer transport.

When y0 < 1, aggregation happens faster higher in the tree due to decreasing input

size. Levels of the tree above the first are underutilized after finishing aggregation

but before receiving the next chunk. The previous mechanism shifts this wait time to

when chunk size resets, but does not alleviate it completely. Since we are using the

proven optimal bandwidth in this case, there is no opportunity to improve bandwidth.

Rather, this suggests that we can get comparable performance with less hardware.

To address this we consider how to implement higher fan-ins, even fractional fan-

ins. This is not possible with single chunks because there is no way to break up a
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chunk in the middle. However, with streaming input we already have natural breaking

points. Figure 2.3 shows how we can use these to move aggregation to different points

in the tree. In the figure the lower level aggregates 3 inputs, and the higher level

aggregates the results from those two nodes. Assume the higher level is completing

its work faster than the lower level. As a response it takes a chunk away from one of

its children. As a result, in the i+ 1 step the top node has more aggregation to slow

it down, and the child only has two inputs for that chunk, speeding it up. This means

that the higher level has a higher effective average fan-in than the original 2, and the

child which transferred a chunk has a lower one that the original 3.

There are a couple of caveats to making this mechanism work well. Nodes should

take chunks in equal amounts from each child. Using this to approach the optimal

fan-in is not intuitive, especially as the mechanism propagates down the tree. To solve

both these problems we suggest exercising transfers on demand. When a node detects

it is running low on buffered chunks, it asks a child to transfer one. It asks the child

which seems to be the furthest behind, since this will speed up the subtree of that

child. This dynamically balances the tree.

Another limitation is that the requested chunk cannot be aggregated as it is

received. Rather, the chunk must be buffered until the other chunks from the ith step

are received. This means that the speed up or slow down at a node from sending or

receiving a chunk will not be seen immediately.

Initial input chunks can be filtered immediately into the tree, and the full tree

may be fully utilized as soon as the initial warmup phase is complete. This does

open the possibility of fan-ins below 2 at the lowest level, which would theoretically

decrease per-chunk latency and increase bandwidth. Perhaps a user could actually

specify a number of available nodes and increase bandwidth by creating an effective

fan-in below 2 at the lowest level, but we do not explore this.

A more practical use of this is choosing a size of tree which has different fan-ins

at each level and balancing the effective fan-in at each level with this mechanism. We

can thus create trees which have effective fan-ins of exactly the calculated optimum,
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even if that optimum is fractional. This means having a complete and fully utilized

tree, giving us the performance which can match the performance of a fan-in of 2 at

the lowest level with the lowest number of nodes, thus decreasing the cost to maintain

a system implementing this.

This approach allows the rest of the tree to keep pace with the lowest level even

for y0 > 1 if one additional property is met: aggregation must include no side effects,

as precisely captured by Definition 2.3.1. This is reasonable for applications such as

n-gram counting and merging time sorted lists where chunking is done on preselected

time values.

Definition 2.3.1 (No Side Effects). In aggregation function a (x0, . . . , xf ), list xi can

be decomposed into concatenated lists x0
i · x1

i · c2
i and xj into x0

j · x1
j · x2

i for i 6= j where

the chunking happens on some delimiter s.

If aggregation function a () is applied to chunks x0
i and x0

j to create output x0
a,

then x1
i and x1

j to derive output x1
a, and a () is applied separately to only x1

i and x1
j to

derive output x′1a , x1
a ≡ x′1a .

With this we can build side-by-side trees to handle different chunks. For example,

one tree may take even numbered chunks, and another take the odd chunks, reducing

the work of a tree by a factor of two. The order of the chunks imparts an implicit

aggregation that requires no work to maintain explicitly.

2.4 Evaluation

To evaluate the model we run several microbenchmarks on a set of m1.medium

nodes in an Amazon EC2 datacenter. We run a tightly controlled compute-aggregate

solution compare the results against the modeled expectations. The compute phase

consists of randomly generating a set size of integers. The aggregation at each node

receives a set of lists from its children and performs some rather intensive computation

which takes time which is almost perfectly linear on the total input size to produce
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an output list of integers which is a factor of the given y different from the average

size of its inputs.

2.4.1 Single Block
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Figure 2.4.: Microbenchmark results.

Figure 2.4 shows the latency of running our microbenchmarks for a single block

of input on 16 nodes with an initial input size of 100000 items. We vary the fan-in

from the minimum value of 2 to the maximum value of n. We use a bottom-to-top
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greedy algorithm to assign node placement. That is, the bottom most level is filled

up as much as possible from left to right. When there are no more nodes to act as

children at that level, we move to the next level up.

Each graph has a line of “Predicted values” which is a line generated by the

appropriate mode with the constants set so it goes through the point when f = 16.

In general, the trends predicted by the model are seen in the data. The minima occur

close to the predicted places. We note that the actual optima do vary from 2 to n

depending on y0, so there is no constant optima. The difference in choosing the optimal

fan-in and the worst case scenario is always at least 40%, and the predicted optima

always the experimental optimum in these conditions. We use 3 to approximate e.

We only include the points in the graph which have full and balanced trees, as

well as when d = 3 when the predicted optimum is e. We use a bottom up greedy

approach to fill the tree. Nodes at one level are grouped together with one parent until

no nodes at the lowest level remain. The process is then repeated with the parent

nodes. This means that for a fan-in of 8 the lower level has the appropriate fan-in,

but the top level only has a fan-in of 2. We note that this is still balanced. For other

fan-ins this approach creates high levels of imbalance. Algorithms which strive for

balance by starting top down appear to be possible, but they are more involved to

implement than our greedy approach.

16 nodes is not a lot in cloud computing systems. Figure 2.5 extends the results

for y0 = 1 to 96 nodes, which is more realistic. In these results we see an even bigger

penalty for choosing a non-optimal fan-in. The difference beween the optimal fan-in

and a fan-in of 64 is 500%. So choosing an optimal fan-in is more important for larger.

We omit the data point for d = 96 because at the input was not able to fit in memory

at the root, and latency increased by almost an order of magnitude due to the time

required for disk access. This just reinforces the idea of using a streaming model when

possible with big data to avoid such problems.
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Figure 2.5.: Scalability test with y0 = 1 and n = 96.

2.4.2 Streaming
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Figure 2.6.: Streaming time of lowest level vs. fan-in.

Figure 2.6 shows the latency of the lowest level of aggregation only for one chunk

in streaming input when the lowest level is the bottleneck. We remind the reader that

as the fan-in increases there is no change the size of the output per set of chunks read

in, so this merely increases the time unit. Thus the increase in latency corresponds
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directly to a decrease in bandwidth, and it is clear the optimal bandwidth occurs with

minimal fan-in at the first level of aggregation.
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For the streaming experiments with y0 ≤ 1 and fan-in of 2 at the lowest level of

aggregation, an entire tree with fanout 2 sufficient to keep up. Figure 2.7a shows the

number of nodes needed in total for such a tree with 32 at the lowest level as the

naïve approach. The second line in the graphs shows the number of nodes needed if

we instead use the approach in Section 2.3.2 to create a variable fan-in tree.

Fractional fan-in above the first level is calculated based on y0 with minimal

overhead to implement the chunk transfer function. We then determine the minimal

number of nodes to implement that fan-in. Since we must have at least enough capacity

to handle the flows, rounding is done up.

Near y0 = 1, there are no potential node savings. Removing a single node reduces

the capacity of the tree to the point that the tree cannot keep up with its first level.

As the output size of the first level decreases with respect to its input size the rest

of the tree does not need as much computational ability to keep up to the extreme

the point that it can use a single node. This reduces the number of nodes required by

nearly a factor of two, although all the bottom level nodes are still required. This is

beneficial for cost and maintenance savings.
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With y0 > 1, variable fan-in does not help unless Definition 2.3.1 is satisfied and

the system can create parallel trees with implied ordering to handle different chunks of

input. If that is not the case, we have to use decreasing chunk sizes with the occasional

pause to allow the tree to cool down and warm up again as chunk size hits its limit

and is reset.

Figure 2.7b shows the impact of this approach with 32 nodes at the lowest level of

aggregation. The top line is based on experiments were the first level of aggregation

continues uninterupted, and the results are thrown away – the theoretical bandwidth

limit. The bottom line shows the opposite approach. At each level of the tree, the

aggregation is paused until the next level up is ready to process the last chunk to

be completed by the level. Because the output size grows at each level, every level is

waiting for the level above it. The bandwidth essentially becomes constrained by the

root node.

The middle line comes from varying |m|. Maximum and minimum chunk sizes are

chosen with a ratio of 1000:1. As the bottom level outputs an aggregated chunk, it

reads a new chunk the same size as its output, which is a factor of y times larger than

the previous chunk. When the maximum chunk size is hit, the tree simultaneously

cools down and warms up the new smallest chunk using the same pausing strategy

as used in the case with fixed chunk size. Each level waits until the level above it is

ready to continue before continuing itself.

Especially when y0 is not very large, this approach is better than using a single

size chunk. However, there is still a penalty suffered from not having a tree which is

able to keep up with the lowest level. This may be enough to handle bursty traffic

where the cooldown and warmup may initiated early done during lapses in input.

Otherwise this suggests a user should make efforts to abide by Definition 2.3.1 and

build parallel aggregation structures when possible.
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3 A HEURISTICS BASED AGGREGATION OVERLAY SYSTEM

In this chaper we extend the theory contributions from the previous chapter into

a practical system, NOAH. A preliminary version of this work was published in

HotCloud [27].

3.1 Overview

The most intuitive and widely used approach to big data problems is splitting

data across nodes and computing relevant information from subsets of the data before

aggregating the partial results. In practice, almost every existing big data processing

framework aggregates along a one-size-fits-all “overlay” instead of tailoring the overlay

structure – typically a tree – to the individual semantics of aggregation functions in

order to minimize execution latency.

Without the benefit of an analysis as to which form of tree provides less latency,

many systems choose a one-size-fits-all approach which is inefficient for a problem it

will encounter. For instance, an overlay with a fan-in of 2 (e.g., Presto [28]) is not

ideal for sorting as we end up comparing same items at multiple levels. Conversely, a

system with a fixed single coordinator performing all aggregation (e.g., a specialized

top-k matching system [29]) has non-optimal latency for executing top-k matching

since part of the aggregation job could have been parallelized.

Given that any one-size-fits-all aggregation overlay is sub-optimal for some set

of applications, choosing an overlay per-application makes more sense if it can be

done without resource-intensive analysis of an application. In the previous chapter,

we proposed an analytically provable way to do this using a single value – the ratio of

the size of an aggregated output to the size of one input – which is easily known for

many functions, and varies drastically for different functions. For instance, in top-k
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matching, the overlay filters multiple lists of k items into a list of the k top scoring

items, so the output is the same size as one input – a ratio of 1. The ratio for merging

sorted lists is higher because the output is the combination of all incoming lists.

Table 3.1 shows some common aggregation problems organized by the relevant ratio.

In this paper we describe how we have put into practice our theoretical results [23]

in building a system called NOAH capable of executing near-optimal aggregating

overlays. In particular, we contribute the following:

• Distill the theoretical optima into simple heuristics.

• Introduce a mechanism to balance an overlay with a given fan-in to reduce

the latency of the slowest branch; imbalance causes a non-ideal performance

because branches with more nodes in an unbalanced overlay take more time than

branches with less nodes since they have more input, causing a performance

skew.

• Introduce novel mechanisms to (i) dynamically add new nodes to the overlay, and

(ii) co-locate overlay nodes on the same virtual machine when the underlying

dataset is dynamic, as in incremental computations. Both mechanisms take

advantage of already executed aggregations on existing nodes to save time wasted

on performing re-aggregations in all nodes. In addition, the last mechanism helps

release unused or under-utilized machines. By co-locating nodes we can save

more than 95% on maintenance costs while reaggregating in 80% less time when

only a single leaf node is changed.

• Via microbenchmarks and real world compute-aggregate tasks in Amazon EC2

we show NOAH can improve latency by more than 75% over a one-size-fits-

all aggregation tree, even without synthetically enforcing the assumptions of

the model. We show the relevance of this improvement in iteratively computed

problems and as part of a system involving more general workloads.

Like other recent work in big data processing [30] NOAH works in-memory. This

reduces latency by a significant factor and reduces the unpredictable timing due to
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Table 3.1.: Some common aggregation functions.

Common Problems Output to
input size ratio

Average MapReduce jobs at Google [6], average “aggre-
gate” jobs at Facebook and Yahoo! [24], finding unique
occurrences

< 1

Top-k match, word count with a fixed dictionary, multiply-
ing square matrices, k-means clustering

= 1

Sort, concatenate, word count with mismatched dictionar-
ies

> 1

random disk accesses. In fact, many “big data” sets are small enough to fit in memory

without processing on a small number of machines, but are distributed to take advan-

tage of greater parallelism [31]. NOAH is thus a parallel and distributed sub-engine

that can be used within a big data analysis framework. We run microbenchmarks and

real world tasks on our system in Amazon EC2 and show NOAH can improve latency

by more than 75% over a one-size-fits-all aggregation tree. Our node co-location

mechanism can improve that time by 80% when results are reagregated after changing

data at a single leaf node.

3.1.1 System Comparison

In this section, we compare (Table 3.2) the implementation capabilities of NOAH

to a representative sample of existing big data analysis systems.

MapReduce [6] is the de factor standard for much big data processing. The fan-in

is configurable in the sense that the programmer can choose the number of reducers

through choosing keys. This works very well for problems like word count where

data can be partitioned independently. However, in the case of problems like top-k

matching, where all results have to be directly compared to filter each other out, there

are problems. The programmer must either use a single reducer (effective fan-in of
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Table 3.2.: Aggregation system comparison.

System Fan-in In-
Mem

Aggregation
Limitations

Data For-
mat

NOAH Adaptive &
Balanced

X Total
Aggregation

Java
Collections

LOOM [27] Adaptive X Total
Aggregation

Java
Collections

Presto [28] 2 X None Distributed
Arrays

Spark [32] Configurable X By Partition or
Add-only semantics

Key-Value

MapReduce [6] Configurable By Partition Key-Value

n) or run iterations of the problem to prune data at the cost of remapping at each

iteration.

Spark [32], in addition to using an in-memory model for lower latency, adds an

additional aggregator functionality to the MapReduce model. This allows aggregation

information to be compiled across multiple reducers. However, these aggregators

require “add-only” semantics. This means they can only be used to track variables in

which all changes are additive. This is insufficient for problems like top-k matching

which require filtering. As a result, Spark is also limited to an effective fan-in of n

or the extra overhead of remapping intermediate results when implementing certain

problems.

Presto [28] is a system based on the parallelization of R and array based analysis.

A master node splits work across worker nodes and manages the workflow. In practice

aggregation happens pairwise, creating a one-size-fits all aggregation overlay with

fan-in 2.

Our initial efforts with LOOM and our refined work with NOAH consider the

aggregation function and create a near optimal aggregation overlay. However, there

is an inefficiency for problems like word count which can be intelligently partitioned.
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These systems explicitly aggregate at each level regardless of how data is distributed,

and are thus unable to take advantage of intelligent partitioning.

Ostensibly, these systems use different data types, but there is a degree of flexibility

within them. For instance, a Java Collection may contain exactly one item of any

type, and the keys of a key-value pair may be ignored when a single reducer is required

to compare results from all mappers, such as with top-k matching.

Key-value mapping is a great advantage when data can be partitioned intelligently

to avoid complete aggregation. It is worth noting that this may require extra effort to

the programmer. For instance, if a user wants all items in sorted order by an integer

value the high order bits may be used as a key, and the reducers may sort based on

the low order bits. When the reducers produce their sorted output the results will

already be in sorted order with other reducers. Without this insight (or in the case

that order can only be determined by comparison rather than bits) all values must

be sent to a single reducer.

3.2 Heuristics and Mechanisms

Table 3.3.: Relevant notation reprisal.

Token Meaning

n Number of computation/leaf nodes.

f Fan-in of the overlay, making the height logd n.

x Data formatted for aggregation.

y0 Ratio of sizes for final output to one aggregation input.

c() Initial computation function.

a() Aggregation function.

h() (Composed) function transforms original input to final output.

In this section, we first provide a definition of the two phase compute-aggregate

data processing family of problems our system handles. We then explain heuristics

and their intuitions of why and how overlay structures affect latency of such problems.
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Finally, we introduce our novel mechanisms for balancing, and incremental updating

of an overlay tree. Table 3.3 reprises the relevant notation.

3.2.1 Heuristics and Their Intuitions

The overlay aggregates the outputs from all the computation nodes, and the two

phases can be optimized independently. The aggregation function is determined by

the problem at hand, but the fan-in, f , can be chosen to minimize the aggregation

time for a number of leaves, n.

The ratio of the size of the aggregated output to the size of one input is y0.

While the exact value may vary slightly based on the input, we have found that most

individual aggregation functions are fairly predictable and stay within ranges that use

the same heuristic.

The aggregation time at a single node depends on the size of all the inputs at that

level. Each level of aggregation changes the size of the data processed at the next

level while taking some time to run the transformation. At lower levels there is more

parallelism because of the branching factor of the tree, but subsequent levels may

have to redo some of the work. For instance, in merging sorted lists each element is

considered at each level.

Intuitively, smaller fan-ins increase the work done in parallel because there are

more active branches further down the tree. Unfortunately, the parallelism may

not be productive if work is recomputed at multiple levels. For instance, when an

aggregation function adds occurrences from words mapped to occurrences in a word

count application, it considers each word once and adds the values from all maps. With

a small fan-in the lowest levels combine more maps in parallel, but each level considers

each word again. The value of y0 determines if the time saved by the parallelism offsets

the time required by extra levels.

While these values are not proven for all aggregation functions, particularly

those whose run time are related to some combination of variables (e.g. f and |x|
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Table 3.4.: The heuristics for f .

y0 fan-in Heuristic

y0 < 1 2
y0 = 1 3

1 < y0 < n min(n, d(1− logn y0)− logy0 ne)
y0 ≥ n n

independently) rather than directly to total input size, we empirically show the values

are still practically reasonable. In doing so we also reduce the variables needed to only

y0, thus simplifying the input needed from the user.

We use the nearest integer to implement the fractional fan-ins suggested by the

proofs. In particular, e rounds to 3, and values of (1− logn y0)− logy0 n can likewise

require rounding. Our only remaining assumption is that y0 is known. Other assump-

tions made by our model are either mitigated by system design or are shown to be

experimentally negligible.

3.2.2 Balancing Mechanism

Our heuristics are based on a model where all overlay trees are perfectly balanced.

This often requires fractional tree heights, which are of course not possible. Hence,

in order to put our heuristics into practice, we first need to lift this assumption. We

note there is no advantage to increasing fan-in, which increases the time at each node,

unless a discrete change in height offsets it.

If, for instance, we have 25 leaf nodes and a fan-in of 6 there are 2 levels of

aggregation. However, some nodes have their full complements of children while

others do not. The branches with more nodes take longer than those with less because

they have larger amounts of input. The slowest branch determines the latency of the

system.
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If we change the fan-in to 5 we have a perfectly balanced overlay with the same

height. This reduces the performance skew between branches by balancing the work

done, and the slowest branch is made faster by shifting work to other branches with

available resources without increasing the length of the longest branch.

To implement this, we create a balancing mechanism. First we find the actual

(non-fractional) height of a tree created by the overlay implementing the heuristic.

For a heuristic i this is simply dlogi ne.

We next look to see if another fan-in gives a more balanced overlay of the

same height. We note that a smaller fan-in creates a more balanced overlays, so

we inductively reason we should find the smallest fan-in which creates an overlay with

the same height as the heuristic. To find this smallest value we take the log of the

number of nodes divided by the height found earlier. This value must be rounded up

because we do not allow fractional fan-ins, and any smaller fan-in results in an overlay

of greater height.

Therefore the balancing mechanism uses the fan-in determined by the equation

d log n/dlogi nee when i is the value returned by the original heuristic.

This only affects 1 ≤ y0 < n; there is no fan-in less than 2, and any fan-in less

than n results in greater tree height.

3.2.3 Incremental Update Mechanisms

In this section, we augment our heuristics, which are good for creating one-shot

overlays to aggregate all data, with two practical mechanisms to efficiently maintain

overlays beyond their initial aggregation phase.

Adding New Nodes

Many big data problems deal with datasets which are growing, and it is necessary

to update the final output as new data enters the system. There are basically two

options on how to handle this, as shown in Figure 3.1.
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(a) Recompute the overlay (b) Use the prior in-memory result

Figure 3.1.: Maintaining results to avoid reaggregation.

Simply reusing the heuristics, as shown in Figure 3.1a, creates a new overlay with

the expanded set of leaf nodes and reaggregates the entire set of inputs. A large part of

the new overlay redoes work done by the previous overlay to obtain results which are

already available in memory, which is highly unproductive. By reusing the previous

result and simply aggregating it with the new incoming data, as shown in Figure 3.1b,

we can not only save a lot of time wasted on reaggregation but also focus the freed up

resources on performing only the new aggregation for a double boost in performance.

This refined approach can be extended to adding multiple new nodes at once.

Rather than compute an overlay with all leaf nodes an overlay can be established with

all new leaf nodes and the previous root node. All leaf nodes and intermediate nodes

of the previous tree would be explicitly omitted because they are implicitly included

with the previous root node.

If the entire overlay is expected to be reused, such as when the underlying data

at several nodes are changed in a real time monitoring system, there is a tradeoff

between total reaggregation and the and refined solution. The refined solution is much

faster and resource efficient for integrating the data from the new nodes because it

is not taking the time to reaggregate anything from the existing nodes, but if the

resulting overlay is used again the result will be suboptimal for those future uses of

the overlay. In practice append only data is the norm for some applications [33], and

HDFS even makes files append only [34]. If data is only appended without updates

or deletions this tradeoff is never encountered.
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Thus if NOAH is configured to use append only data, the overlay is updated by

pairing the old root with new nodes. If the data may be changed at any node then

adding new nodes triggers a recomputation of the overlay and reaggregation of the

existing data.

Co-locating Nodes

(a) Update Path (b) Virtual and Physical Overlays

Figure 3.2.: Exploiting the update path for lower maintenance with infrequent updates.

We can only exploit the parallelism of multiple machines while there is work to

be done. If updates to existing data are expected to be infrequent it makes sense to

colocate aggregator nodes to fewer machines. Unused machines may be released so

the user does not have to pay for them. There is an additional trait of the aggregation

overlay which makes this more useful. When the data at a leaf node is changed it

only affects the aggregation along its path to the output. Figure 3.2a shows the

reaggregations that must happen if a change occurs at the data in one leaf.

The shaded nodes run sequentially, not in parallel, and unshaded nodes need not

run at all. There is no penalty to colocate nodes along the path, as they do not

compete for computational power at the same time. Furthermore, multiple update

paths do not conflict until the paths merge.

Rather than maintain separate machines for each node, nodes may be virtually

moved to the same machine. Figure 3.2b shows 3 machines with 7 nodes. Boxes

represent physical machines containing nodes. The overlay is shown in dashed lines,
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and solid lines show the communication lines. Each machine has a communications

manager (CM) to handle communication for the nodes on the machine.

The CM has a few jobs. One is ensuring communication is still valid. If it receives

communication meant for a node which has moved, it forwards the packets and informs

the sender of the updated location. Another job is to control network access. If a

communication arrives at the CM and is meant for another node on the same machine,

the CM sends the communication directly to the recipient without using the network.

This is similar to what is exploited in previous works on high performance distributed

computing networking research [35]. The speed difference between RAM and the

network saves significant time.

When the system controller selects a node to move the CM serializes it and forwards

the node to the CM at the destination. It informs the CMs of nodes which communicate

with the moving node of the new location. If the node is the last node on a machine

the CM waits a set period of time to intercept and forward any communications

started before knowledge of the move propagated, then shuts down the machine.

A node needs the inputs from each of its children in the hierarchy to aggregate.

Thus each node keeps copies of the latest input from each child for future use. When it

receives a new input from a child it replaces the copy of the input from the appropriate

child and runs the aggregation with all available inputs before forwarding the result.

Colocation uses fewer machines, reducing system maintenance costs. When nodes

are placed to avoid conflicting update paths the aggregation can also be faster due to

the use of RAM for communication instead of the network.

This is different than traditional multi-tenency in which multiple virtual machines

are placed on a physical machine. Cloud providers often mask virtual machine place-

ment, so we cannot rely on preformance gains from traditional multi-tenency without

full control over placement on the network and hooks into the networking layer via

our CM. Even then there would be no reduction in virtual machines, so there would

be no cost savings.
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3.3 Experiments

Here we empirically show the performance of NOAH via microbenchmarks and

real world problems. We show the effects of changing the fan-in and the accuracy of

the heuristics. We also note how one-size-fits-all overlays such as those used by other

systems would fare.

3.3.1 Setting

For our experiments we use nodes in a single Amazon EC2 datacenter. Unless

noted otherwise the experiments use m3.medium nodes. While we did see measurable

difference if we terminated a set of nodes and reran an experiment on a new set,

probably due to different placement in the network, the differences were not significant.

Thus we consider it sufficient to obtain average readings for each set of experiments on

a single set of instances rather than capturing averages across multiple deployments,

which would hide the variability in EC2 performance.

When isolating the aggregation phase we wait for the leaves to complete their

computation and inform the controller. The controller then sends a signal to begin

aggregation and times how long it takes from that point to receive the final result from

the root. On the other tests we start timing from the beginning of the computation

phase.

3.3.2 Microbenchmarks

Our first set of tests are microbenchmarks with varying values for y0, the variable

used to choose the fan-in, to validate the heuristics. In the computation phase leaf

nodes generate random lists of integers of a given size. Aggregators generate a series

of random numbers proportional to the size of their inputs and prune the list to the

size dictated by y. Thus y0 is maintained perfectly.
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We use 25 leaves. For every fan-in from 2 to 25 we show two overlays. The

unbalanced overlay assigns children to aggregators until the prescribed fan-in is hit,

then continues with the next node until all nodes are included. The balanced overlay

first determines the lowest fan-in with the same height as the given fan-in to build

the most balanced tree with the same height.

We also project the aggregation time from three points across the graphs. The red

dashed line is the aggregation time of the balanced overlay when the fan-in equals the

heuristic for the given value of y0, which corresponds to the overlay NOAH builds.

The other two projections are the aggregation times for one-size-fits-all aggregation

trees with fan-ins of 2, such as that used by Presto, and n, such as that used by Spark

or MapReduce when a single reducer has to compare all items to filter them.

Figure 3.3 shows the microbenchmark results. In Figures 3.3a-3.3c predictable

trends in the non-balanced overlay emerge, and the balanced version remains steady

for all values with the same height as expected. The balanced overlay regularly

outperforms the unbalanced one, sometimes quite significantly. In the rare cases the

balanced overlay underperforms it does so only very slightly. The heuristic choices of

2, 3, and 4 are close to the experimental optima – both in the value of the fan-in and

in the resulting relative performance.

In Figure 3.3d there are noticeable peaks and valleys in the unbalanced overlay’s

performance as the overlay gets closer and farther from balanced. The balanced overlay

performs much better in general, although the two approaches reconverge at fan-in

25, which is the heuristic fan-in and experimental minimum.

In Figures 3.3a and 3.3d the heuristic aligns with different one-size-fits-all overlays.

In the first case it is with the fan-in 2 preferred by Presto. In the latter case it is with

the fan-in of n required by Spark when all data must be compared to each other.

Additionally, in 3.3b the overlay with fan-in 2 performs very close to the heuristic.

The more interesting results in Figure 3.3c show both one-size-fits-all approaches

underperforming the heuristic significantly.
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Figure 3.3.: Microbenchmarks for various values of y0. The legend in Figure 3.3d
applies to all.

We also consider the effects of the number of leaf nodes and the size of the input

data even though they are not controlled by the aggregation overlay. In this way we can

understand how NOAH responds to different loads. For each of the microbenchmarked

values of y0 we use NOAH and vary n and input size independently while keeping the

other fixed. n is varied from 3 to 30, and input size is varied from 25000 elements per

leaf to 200000.

Figure 3.4a shows the effect of changing input size on 25 nodes using the same y0

values as the earlier experiments. The final two points for y0 = n are omitted as the
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Figure 3.4.: Effects of variables other than fan-in on aggregation latency.

memory required at the root exceeds the available RAM, and the latency increases

dramatically with disk accesses. In all other cases the latency is very predictably

linearly correlated with the input size.

Figure 3.4b shows how the number of leaves affects the latency of the system for

a given input size at each leaf and the heuristic fan-in. In the case of y0 = n the

relationship is predictably linear. Smaller values of y0, which have smaller fan-ins and

thus higher parallelism, are less sensitive to changes in the number of nodes, but the

latency still grows.

3.3.3 Common Problems

Next we evaluate the heuristics with common aggregation tasks. We perform top-k

matching on generated data which, when placed in data structures in memory, take

up a little over 200MB per node. The computation phase prunes this to less than

10MB per node for aggregation. We also run word count and sort applications on a

dataset consisting of log files of Yahoo’s Hadoop clusters [36]. 34MB of input data is

distributed such to each leaf node. In more detail the application are:
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• Top-k match – a simple equation “scores” how well generated entries match a

filter. The k entries with the highest score are returned in sorted order from each

leaf. Aggregator nodes forward the k highest scores across their inputs, which

means y0 = 1. The final aggregate result is the k highest scoring matches from

all generated data. The complexity of our aggregation function is O (|x| log d),

and thus depends on the fan-in and size of input separately.

• Word count – counts the occurrences of each word in the log files at the leaves,

and then sums the results. The final aggregate result is a map of each word in

the logs and the number of times it appeared across all logs. Log entries are not

very disparate, so any word which appears in the logs at one leaf has a high

probability of appearing in the logs at every other leaf, so if y0 is greater than

1, it is negligibly so.

• Sort – Using the scoring mechanism similar to the top-k match, all lines are

scored and sorted on how well they match a filter. All lines are returned in

sorted order, and vertices forward a sorted merging of all inputs, so y0 = n. The

complexity of our aggregation function is O (d |x| log d), and thus depends on

the fan-in and size of input separately as well as together.

We note that the size of the data for the top-k match and word count application

could easily be scaled up at each node at the expense of longer computation phases.

Since both application reduce the size of the data to a reasonably sized data structure

explaining the nature of the data this would not affect the aggregation phase.

Figure 3.5 shows the results from our common aggregation problems on real world

data for a selection of 16 and 64 leaf nodes. Sorting is shown with 16 leaves due

to unpredictable behavior when larger input overflowed the RAM in larger overlays.

We show 16 and 64 nodes for top-k matching to compare scalability. In all cases the

heuristics are close to the experimental optima.

The relative impact of choosing the right fan-in increases as n increases. For the

top-k matching applications with 16 nodes the worst case fan-in takes 247% as much

time as the best case fan-in. When we increase n to 64 that number jumps to 453%.
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(c) Top-k Match, n = 64
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Figure 3.5.: Experiments with aggregation with common real-world problems. The
legend in Figure 3.5d applies to all.

The sorting application in Figure 3.5d sees less improvement. While the heuristic

properly chooses the best fan-in, the latency is only 2.5% faster than the next fastest

point and only 40% better than the worst case. It is worth noting that points in

which the full and balanced assumption is met are at or below the trendline, while the

other points, which have slight imbalances, are above, thus reinforcing our statements
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that the assumptions affect the ability of the model to predict the time accurately,

although all overlays presented correct output.

These tests are also a good indication of why a one-size-fits-all approach does not

work across different problems. We note that while the fan-in of 2 like that used by

Presto performs only slightly worse than overlays chosen by NOAH for top-k matching

and word count in Figures 3.5a-3.5c, it is noticeably slower for sorting in Figure 3.5d–

purely as a result of the aggregation overlay.

Word count would actually be better performed on Spark or another in-memory

MapReduce style system, as the keys would allow data to be partitioned to avoid

complete aggregation. Sort may or may not have that advantage depending on whether

smart partitioning is possible, but at worst it would have a fan-in of n, which is the

heuristic. However, for the top-k matching it is necessary to run a single reducer,

which is effectively the same as an overlay with a fan-in of n in Figures 3.5a and 3.5c.

Based on these experiments such a setup would perform significantly worse than an

overlay with a smaller fan-in, and it appears that it will only get worse as the number

of nodes gets larger, as is the case for many big data applications.

3.3.4 Iterative Computations

NOAH’s in-memory aspect makes it well suited to iterative problems. A good

example of this is k-means clustering, a common machine learning problem. Some

selection of points is chosen for likely centers of clusters. Points are then assigned to

clusters based on the nearest estimated center, and a new cluster center is computed

for each cluster. The process repeats with the new estimates.

To distribute the problem the points are distributed across the leaf nodes. Each

leaf determines its next set of 100 estimated cluster centers and sends that list to its

parent. The parent runs the k-means algorithm on the suggested centers of clusters

to create an aggregate set of suggestions. k is fixed, so y0 = 1. It is worth noting

that the aggregation method is of the order O(k2) because each suggested center is
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tested against all centers from the previous iteration, so this is a superlinear problem.

k-means often does not arrive to a perfect answer, but tends to gets closer with each

iteration [37]. Thus it is advantageous to run as many iterations as possible in a given

amount of time.

We run the k-means test on a set of 3-dimensional road coordinates in Denmark

containing longitude, latitude, and elevation [38]. 400000 entries are distributed across

64 leaf nodes, and we vary the fan-in from 2 to 64. We also project the performance

from the overlay with NOAH’s heuristic and the one-size-fits-all overlays across the

graph for comparison again. After a 2 iteration warm-up phase the times for iterations

stabilize. The results in Figure 3.6a include the stable rates after the warm-up phase is

complete, but the analysis including the warm-up phase is consistent with the results.

This single application is a stark indicator of why one-size-fits-all overlays are

sub-optimal. In this particular case MapReduce and Spark are once again forced to

use a single reducer of fan-in n in order to account for all cluster centers in each

iteration, which is the worst case scenario. The NOAH overlay outperforms that worst

case by 270%, and is within 5% of the experimental optimum of fan-in 4. The overlay

with the heuristic fan-in also outperforms the overlay with a fan-in of 2 favored by

Presto by a less spectacular, but still significant, 26%.

Figure 3.6b shows the cumulative effect of choosing a one-size-fits-all versus the

heuristic based approach on the first 12 iterations. Latency is strongly linear with the

number of iterations, so the absolute difference predictably grows with each iteration.

The figure clearly shows the improvements in absolute time over either one-size-fits-all

overlay, and the difference grows with the number of iterations.

3.3.5 NOAH as a Subsystem

Iterative computation can be viewed as a special case of a more general workflow

containing an aggregation problem (executed iteratively). NOAH is designed precisely

as a subsystem in a larger workflow execution environment when aggregation time is a
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Figure 3.6.: Iterative k-means clustering.

significant contributor to overall latency. To show the impact of this one component we

use NOAH as part of a larger analysis job to find the most active nodes participating

in MapReduce at a datacenter. For the compute-aggregate portion of this problem,

50MB of logs are placed in each of 16 leaf nodes. The compute phase greps the logs for

host names and counts the occurrences in their respective logs. The aggregate phase

sums occurrences across leaves. Finally, a post-aggregation phase takes the result,

sorts it by number of occurrences, and retrieves the top-k active nodes.

We run this problem three times each for fan-ins 2, 3, 4, and 16 and present

the averages for each phase. With the balancing mechanism all fan-ins from [4,15]

effectively become a fan-in of 4. 3 is the heuristic selection for the word count family

of problems, which is the aggregation in this case. The results are shown in Figure 3.7.

It is immediately clear that the only measureable variation between the runs is

caused by the aggregation phase, which is to be expected. The compute phase is the

same for each run, and the top-k phase is working on equivalent input. Aggregation

takes 48-91% of the total time, which is significant. In fact, the minimal latency

happens at the heuristically chosen value of f = 3. There is a modest 47% time
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Figure 3.7.: Impact of NOAH as a subsystem, n = 16

savings in aggregation over the naïve approach of sending everything to a single node,

which corresponds to a 29% lower latency of the system as a whole.

3.3.6 Incremental Overlay Updates

Given the 25 nodes from the microbenchmarks we explore what it would take

to add a single new node. In Figure 3.8a we show the difference between creating a

new overlay with 26 leaves and aggregating from scratch versus simply aggregating

the prior output with the new data. We also include the original aggregation time

for comparison. For both the 25 and 26 leaf overlays the heuristic for choosing the

preferred fan-in for a given y0 is used.

From the graph it is clear that reaggregating takes very slightly longer than the

original aggregation took, as we would expect. Choosing to instead just aggregate

the previous results with the new data is faster in all cases, although the amount of

savings depends on y0, or more specifically, on the size of the output of the previous

data. In the case that y0 = 1
n
the approach of aggregating the prior output with the
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Figure 3.8.: Maintenance mechanism performance.

new data directly is 85% faster than a new overlay. When y0 = n the difference is

only 15% faster.

We note that if the overlay is reused each subsequent time, the second approach

would require time equal to the original aggregation time plus the time to aggregate

those new results with the data from the new node. In all cases that combined time
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is greater than the cost of a new overlay. So it makes sense to use this incremental

approach if the overlay will not be required to reaggregate or perform a new aggre-

gation function, such as would happen if data at a node is modified. However, if the

data is write only this shows a piecemeal approach makes sense.

3.3.7 Node Colocation

Our final experiment combines nodes onto the same machine. To show the behavior

at without the noise of excess data we present only the results from the extremes

– combining 2 nodes per machine and 30 nodes per machine. We also use micro

instances on EC2, which have low priority on the network, and microbenchmarks

that require relatively little computational power, thus exacerbating the effects of

using the network. The same trends hold in other environments where communication

dominates computation. Figure 3.8b shows the results on latency of reaggregation

after updates to the data. Nodes store and reuse the output from unaffected paths,

so reaggregation only recomputes along affected paths. We test updating a single

leaf, updating two sibling leaves, updating two leaves on opposite sides of the tree,

updating every other leaf, and updating all leaves. y0 = 1 for this test.

Combining two nodes per machine always outperforms the original overlay because

of the CM allows data transfer through RAM instead of relying on the network, as

many nodes share a machine with their parent. Others share a machine with a sibling,

causing resource contention, but the significant savings in communication overcome

this.

The higher degree of combination saves even more time when updating a single

leaf. Updating a single node runs a single branch of the tree without conflicts. The

difference between this and a branch of original overlay is the network usage. Thus

the latency difference of 80% between the two physical overlays (while maintaining

the same virtual overlay) is explained by the difference in the traffic over the network.



54

The ideal degree of combination depends on the network attributes, frequency and

number of conflicting updates, and the aggregation method.

We consider two other costs associated with colocation. The first is the time to

move nodes to their new homes, shown in Figure 3.8c. The time taken is not linear.

Nodes, including the stored prior results, are large. Saturation of the network, the

costs of serializing and deserializing multiple streams, and overloaded CMs sending

and processing updates slow things considerably. A better approach is combining

nodes piecemeal rather than all at once.

Lastly we note the cost savings of colocation. As EC2 and other cloud providers

charge per unit time a machine is running, an overlay maintained indefinitely ame-

liorates the cost of the initial aggregation and the cost of the system relates to the

inverse of the degree of combination. Ergo 30 nodes per machine leads to savings of

97%.
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4 TOP-K MATCHING – A PRACTICAL APPLICATION

In this chapter we concentrate on one particular task that can be run on a NOAH

leaf node – top-k matching. We extend the matching algorithm over prior art and

given an efficient solution before creating a distributed solution with NOAH. This

work appeared in Middleware [39].

4.1 Overview

Top-k matching is an important computation problem requiring fast execution [40,

41]. In top-k matching, entities wishing to be matched, e.g. advertisers, request to

add subscriptions to a system, where each subscription corresponds to an advertise-

ment (“ad”). When an event, such as a browser event representing a webpage view,

triggers the matching algorithm, the algorithm finds and returns the k best matching

subscriptions based on the user’s interests and attributes (e.g., sex, age, location,

etc.). Corresponding middleware solutions are widely used for online ads, e.g., text or

banner ads based on user profiles and browsing histories, streaming videos ads, social

network “online deals”, etc.

4.1.1 Expressive Matching

Targeted ads may affect purchasing intent by 65% [42] and click through rates

by 670% [43], so effective matching is vital to advertisers. As online behavior and

personal information are more effectively tracked, especially via social media, using

those data for matching becomes more relevant. In 2011 93% of companies reported

using social media for marketing [44], and not too long ago Facebook announced a

program to serve demographically targeted video ads to its users [45]. Users of social
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media are however quickly deterred by unfocused ads [46]. This can be avoided by

more expressive events, subscriptions, and matching between these.

Consider ad exchanges – marketplaces for ads used by Google, Facebook, Yahoo!,

and others. Ad exchanges can be viewed as networks of processes routing advertisers

to consumers (email users, website visitors, video viewers, etc.). A consumer’s arrival

can be modelled as an event with attribute values determined by scripts (read

from cookies or otherwise inferred). The values of such attributes representing user

information are typically actual values. Some attributes may instead have “undefined”

values or be captured by intervals of values. An example event for a user arrival is

(fName: Jack, lName: UNKNOWN, age: [18..29], state: Indiana).

Advertisers typically do not need individual constraints to match a consumer

entirely. For example, an advertiser for spring break airfares from Chicago to Cancun

submits a subscription with preferences for consumers of the ad, e.g.,

(age ∈ [18,24] ∧ state ∈ {Indiana, Illinois, Wisconsin}). Advertisers

assign a weight to each attribute and request the ad be delivered to consumers with

a significant combined weight of matching attributes. The weight on the attribute

signifies the relevance of serving the ad to the consumer; the advertiser assigns higher

weights to more relevant attributes.

Campaigns have fixed budgets to spend in a specified time period, so there is

an advantage to dynamically adapt the scoring mechanism to fully utilize budgets

without overspending. Consider an ad campaign for a concert with a fixed budget for

a given period of time. The campaign does not want to exhaust the budget within a

day nor serve so few ads as not to use it entirely. Rather than force the campaign’s

owner to monitor progress and change the weights in an attempt to match at the

desired rate, the system can track the budget, the length of the campaign, the desired

rate of matching, and the historical rate of matching to adjust a score multiplier to

achieve the desired matching rate.

For a consumption medium, a number of ads per access should be chosen which is

minimally intrusive and economically viable. Each access generates an event with the
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available known attributes and sends it to the exchange. The exchange returns the k

ads best suited to display for while balancing the advertiser preferences as well.

4.1.2 Fast and Expressive Top-k Matching

One key bottleneck in the design of middleware systems for top-k matching is the

latency of the matching algorithm, i.e, time taken to compute matches for events.

Several specialized approaches have been developed for top-k matching. Examples

are Fagin’s seminal aggregation algorithm [12], SOPT-R Trees and scored segment

and interval trees in combination with Fagin’s algorithm [40], and BE*-Trees [41].

For scalability, a distributed overlay can be used (e.g., [27, 29]). Distributed top-k

matching aggregates and prunes sets from top-k matching at individual nodes, so any

expressiveness desired for the system must be implemented centrally.

Motivated by recent application scenarios, we propose in this paper a more

expressive model of weighted partial top-k matching than considered in prior art,

and an efficient, novel algorithm dubbed Fast eXpressive Top-k Matching (FX-TM)

for implementing it. Our model supports:

(a) explicit handling of interval attributes and optional prorated scoring when there

is partial overlap between subscriptions and events. This corresponds to scenarios

where exact values for user attributes are not known (e.g., targeted age [18,24]

and consumer age [20, 30]).

(b) attribute weight on either the subscription or the event used during aggregation.

For instance, a company may favor experience over applicant location while a

job seeker may prefer proximity over experience requirements. Our model allows

each of these, and can switch between approaches for each matching iteration.

(c) non-monotonic aggregation functions and mixed positive and negative weights

forbidden by some of the state-of-the-art. This is useful when some attribute



58

values are undesirable, e.g. an age range below the voting age, while others, e.g.

income, are desirable.

(d) missing attributes and wildcards, finding matches with the best scores even if a

match is not exact (i.e., does not match all attributes). This is useful as some

groups are more prone to self disclosure [47]. Available data is matched; missing

data does not disqualify a match.

(e) dynamic alteration of scores based upon the rate a subscription is matched to

events and versus its specified preferred rate. This helps an ad campaign match

as many events as its budget allows over a specified period of time without

depleting its budget early.

Our output-sensitive algorithm runs a single match in time O(M log N + S log k)

forN subscriptions,M attributes in the event, and S matching elementary constraints.

The complexities hold regardless of chosen expressiveness options.

The concrete contributions of this chapter are as follows:

• a model of expressive weighted top-k matching with the features outlined above.

• an efficient algorithm FX-TM of our model, including a score adjustment device

to achieve desired matching rates for each subscription.

• a formal complexity analysis of our algorithm qualifying its scalability.

• an implementation of our FX-TM algorithm including its distributed application

over several nodes with subsequent aggregation.

• an empirical evaluation consisting of statistical micro-benchmarks and two

benchmarks derived from real-life data. We show that FX-TM performs at least

as well as state-of-the-art solutions before considering our added expressive-

ness and dynamic score adjustment; when considering these, FX-TM surpasses

existing approaches after attempting to upgrade those.
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4.2 Model

This section defines events, subscriptions, and matching.

4.2.1 Matching Events and Subscriptions

We consider an event e to be a set of attribute/interval pairs {a1 : [v1, v
′
1], . . . , al :

[vl, v
′
l]}. Events are only required to include attributes whose values are known, but

may specify attributes with UNKNOWN. For simplifying presentation and comparison

with predating work, we consider subscriptions to be conjunctions of constraints.

A subscription is thus in the following represented as a predicate φ based on the

following grammar (extended BNF):

Predicate φ := φ ∧ δ | δ

Constraint δ := a ∈ [v, v′] : w

Interval subscriptions are predicates where the only boolean operator is ∈. We call

to subscriptions where predicates have relational operators regular subscriptions. A

predicate x>100 for some integer x is expressed as x∈ [101, MAX_INT]. A predicate for

a single value or member of a set is represented by v = v′ so the “interval” contains

only a single value. Each Constraint has an optional weight w attached.

To support weights in events instead of subscriptions, one can consider the events

being augmented with weights w on attributes, {〈a1 : [v1, v
′
1], w1〉, . . . , 〈al : [vl, v

′
l], wl〉},

which, when they exist, override the weights in subscriptions.

Interval subscriptions are as expressive as regular subscriptions. Matching involves

substitution, i.e., substituting the values of attributes in events into constraints in a

subscription. We denote this for a single constraint by δ(e). For example, if e = {a1 :

[v1, v
′
1], . . . , al : [vl, v

′
l]}, and δ = a ∈ [v′′1 , v′′′1 ], δ(e) = [v1, v

′
1] ∈ [v′′1 , v′′′1 ]. δ(e)

evaluates to true or false. When an attribute for some event is missing or UNKNOWN,
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δ(e) for that attribute evaluates to false, as an unknown value cannot reasonably

match a known interval.

Definition 4.2.1 (Match Score). Given event e and subscription φ= ∧n
i=1 δi : wi,

with δi = ai ∈ [vi, v
′
i], score(φ, e) = ∑n

i=1 wi | δi(e) = true.

For proration, the weight for an attribute is multiplied by the ratio of the size of

the interval intersection to the size of the interval of the event. We note that proration

is used as a confidence metric, and this practice can be extended to other confidence

or similarity metrics.

Definition 4.2.2 (Prorated Match Score). Given event e = {a1 : [v1, v
′
1], . . . , al :

[vl, v
′
l]} and subscription φ= ∧n

i=1 δi : wi, with δi = ai ∈ [v′′i , v′′′i ], score(φ, e) =∑n
i=1 wi ×

(
C + Min(v′′′i ,v′i)−Max(vi,v

′′
i )

v′i−vi

)
| δi(e) = true. C = 0 for continuous

intervals, and C = 1 for discrete intervals to account for the overlapping at the

endpoints.

The top-k matching problem consists in determining the top-k matching set,

defined as follows:

Definition 4.2.3 (Top-k Matching Set). Given a set of subscriptions Θ, and an event

e, the weighted partial top-k matching set Φ ⊆ Θ is defined as Φ =

{φ | score(φ, e) > 0 ∧ score(φ, e) ≥ score(φ′, e) ∀ φ′ ∈ Θ \ Φ} and |Φ| = k.

This definition does not specify handling of ties. For example, if Θ contains k + 1

subscriptions yielding the same score for an event the implementation must pick k of

those subscriptions. The definition also requires at least k subscriptions match each

event with a positive score. Otherwise the implementation chooses between returning

fewer than k results or including some results with scores of 0.

4.2.2 The Budget Window

In some systems which use top-k matching, advertisers specify a budget and a

time period to serve their ads. The goal is to spend as close to the budget as possible
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in the given time when paying per match. If a subscription is matched too often, the

budget is exceeded. If not matched enough, the advertiser is underserved. Bhalgat et

al. [48] explain smooth delivery over the time window is preferred.

Hitting the target budget for a subscription is highly unlikely unless the scoring

mechanism adjusts for the time window and budget. When a subscription is added,

two values accompany it – the length of the window and the budget. The begin time

is when the subscription is added, and amount spent is set to 0. The end time is

begin time + window length. There is an additional optional configuration, g(t),

to specify the preferred matching distribution over time.
∫
g(t) dt must be zero at

begin time and monotonically increase to model ideal spending in the absence of

negative spending. When not specified g(t) defaults to g(t) = 1.

The multiplier must be less than 1 for subscriptions matching too often, and reduce

their likelihood to be in the top-k. The opposite occurs for subscriptions not matching

often enough. This leads to the following definition:

Definition 4.2.4 (Budget Window Score). Given event e, subscription φ, and

score(φ, e)’ from Definition 4.2.2, score(φ, e) = score(φ, e)′ × budget
spent

×
∫ current time

begin time
g(t)dt∫ end time

begin time
g(t)dt

4.3 FX-TM Algorithm

This section presents our novel top-k matching algorithm.

4.3.1 Overview

Some existing approaches, including BE* trees [41], use a single data structure,

and thus exhibit a worst case complexity linear in the number of subscriptions. The

key strategy adopted by FX-TM is partitioning by attribute, i.e., to use one data

structure per attribute (see Algorithms 1 and 2). We assume subscriptions from clients

are stored on a matcher, which is a node to match events to subscriptions. Events

arrive at the matcher which returns k matching subscriptions. A subscription is of the

form φ = δ1∧· · ·∧δn where each δi is on a different attribute ai. Every subscription φ
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Table 4.1.: The data structures used in FX-TM with relevant function call names and
execution time bounds.

Data Structure Insertion Deletion Retrieval
Interval Trees [49] tree-insert: O(log n) tree-delete: O(log n) get-matching-

intervals: O(log n + s)
for s matches

Tree Set [50] treeset-add: O(log n) treeset-remove-min:
O(log n)
treeset-remove-id:
O(log n)

treeset-find-min:
O(log n)
treeset-get-all: O(n)

Hash Map hmap-put: O(1) hmap-delete: O(1) hmap-get: O(1)
get-all-keys:
O(1) (plus traversal)

is uniquely identifiable by sid. Weightings on elementary constraints of the attributes

in the aggregation function can be either specified by subscriptions or specified by the

event, with the latter option taking precedence. Proration can be used in either case.

In this section we refer to three main data structures which are used in FX-TM.

The names of the relevant operations and their complexity bounds are in Table 4.1.

Some interval tree operations may appear faster than the accepted operation, but

they are achievable with some implementations, including that proposed by Arge and

Vitter [49].

4.3.2 Subscription Partitioning

FX-TM employs a two-level index for subscriptions. Constraints on attributes are

grouped together in an attribute-level index. A “master index” (Line 1) maps attribute

names to (pointers to) data structures. Subscriptions are stored on matchers with

predicates split by attribute name. Figure 4.1 shows a visual representation of the

two-level approach. The structure for each attribute contains indexing information

only for subscriptions containing that attribute.

We implement two types of structures for attributes. Attributes with discrete

individual values use a hash map with the values as the keys and a tree set of
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Figure 4.1.: A representation of the two-level index.

matching subscriptions as the values. The tree set is ordered on subscription ids sid

for quick insertion and deletion, but retrieval returns a list of all items in that tree. The

second type of attribute structure is an interval tree for ranged attributes. Attributes

are defined as ranged or exact matching so that the proper structure can be selected,

and the selection must be consistent for all subscriptions with constraints on that

attribute.

For example, a subscription x = ‘Indiana’ ∧ y∈ [60,100] ∧ z ∈ [0,2000] is

partitioned into its elementary constraints by attribute, and each of the constraints is

stored in a separate attribute structure. Finding the structure into which a constraint

on an attribute has to be inserted is done with the master index. Retrieving the top-k

subscriptions that match an event is done by searching each of the relevant structures

(possibly in parallel), and combining the results of the individual subscriptions. Thus,

partitioning can be more advantageous when the matcher executes on multi-core

machines or if each interval tree is on a separate node. Here we only consider single

threaded single compute node matching because most state-of-the-art top-k matching

algorithms do not consider concurrency or distribution; this ensures a fair empirical

comparison of FX-TM against the same.
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Algorithm 1 FX-TM algorithm: adding and removing subscriptions. For simplicity,
checking the attribute for ranged versus discrete values and using the appropriate
structure is omitted in favor of assuming interval attributes.

1: masterIndex← new hash map
2: budgetInfo← new hash map
3: prorate← true/false

4: upon recv(add-subscription, a1 ∈ [v1, v
′
1] : w1 ∧ . . . ∧ an ∈ [vn, v

′
n] : wn, sid) do

5: hmap-put(budgetInfo, sid, φ)
6: for i = 1..n do
7: treei ← hmap-get(masterIndex, ai)
8: if treei 6= ⊥ then
9: tree-insert(root-of(treei), [vi, v

′
i], wi, sid)

10: else
11: treei ←new interval tree
12: tree-insert(root-of(treei), [vi, v

′
i], wi, sid)

13: hmap-put(masterIndex, ai, treei)

14: upon recv(cancel-subscription, a1 ∈ [v1, v
′
1] : w1 ∧ . . . ∧ an ∈ [vn, v

′
n] : wn, sid) do

15: hmap-delete(budgetInfo, sid)
16: for i = 1..n do
17: treei ← hmap-get(masterIndex, ai)
18: tree-delete(root-of(treei), [vi, v

′
i], wi, sid)

19: if sizeof(treei) = 0 then
20: hmap-delete(masterIndex, ai)

4.3.3 Adding and Removing Subscriptions

FX-TM employs one structure per attribute that exists in any subscription. FX-

TM splits a subscription by attribute, and adds each constraint to the corresponding

structure. If an existing subscription at a matcher has a constraint on a given attribute

in a new subscription, then corresponding structure already exists in the master index

(Line 8). The structure is retrieved (Line 7), and the constraint on the attribute is

added (Line 9). If no existing subscription contains a constraint on the attribute,

a new structure is created for the attribute (Line 11 and inserted into the master

index with a corresponding key (Line 13) after adding the weighted attribute-level

constraint to it. Removing subscriptions is similarly straightforward. The structure

corresponding to each attribute in the subscription is retrieved from the master index

(Line 17). Each attribute-level constraint is deleted.
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Empty structures may be removed from the master index. Partial matching only

score attributes which exist in subscriptions and events. If an event contains an

attribute with no existing structure, no subscriptions match on that attribute, so it

does not affect matching.

A separate data structure indexed on sid for maintaining the information necessary

to use the budget window multiplier is also updated (Lines 5 and 15).

4.3.4 Matching

We use summation as the aggregation function here, as that makes the most sense

for weighted matching, but FX-TM supports all the aggregation functions of prior

art.

FX-TM uses a hash map (scoremap) to track aggregate scores (Line 22), and a

tree set to maintain a set of subscription identifiers sorted by their scores. FX-TM

retrieves the set of subscription identifiers and weights for constraints matching each

attribute. If proration is being used (Line 35), FX-TM computes the intersection of

the attribute’s value and the value associated with each constraint (Line 36).

The match score for each subscription is updated by querying scoremap with the

subscription identifier and adding the (prorated) weight of the matched constraint

(Lines 37 and 39). After matching all attributes for the event and updating the

scores in scoremap, the entries in scoremap are adjusted by their budget window

multipliers and pruned using the tree set topscores, which is ordered on match scores.

Lines 40-49 show how entries from scoremap are inserted into topscores so that the

size of topscores never exceeds k. Subscription identifiers and their associated match

scores are added to topscores only if the subscription is among the top-k matches

already seen in this phase, thereby ensuring that subscriptions known to not be in

the top-k are never added to topscores. When the size of topscores would exceed k,

the subscription with the lowest score is discarded.
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Algorithm 2 FX-TM algorithm: weighted partial matching of events to subscriptions.

21: upon recv(msg, {a1 : [v1, v
′
1], . . . , an : [vn, v

′
n]}, {a1 : w1, . . . , an : wn}) do

22: scoremap← new hash map {Tracks match scores of partially matched subscriptions}
23: topscores← new tree set {Stores the results}
24: min← 0 {Temporary variable used to store minimum score}
25: for i = 1..n do {Loop through all attributes in event}
26: structurei ← hmap-get(masterIndex, ai)
27: if typeof(ai) = interval then {Get matching interval attribute constraints}
28: matches← get-matching-intervals(structurei, [vi, v

′
i])

29: else {Get matching discrete attribute constraints}
30: matches← treeset-get-all(hmap-get(structurei, vi))
31: for all 〈sid, [vr, v

′
r], wr〉 ∈ matches do

32: if ∃wj 6= 0, 1 ≤ j ≤ n then
33: wr ← wi {If weights are specified on the event, use those }
34: score← hmap-get(scoremap, sid)
35: if prorate = true then
36: pwt← prorate(wr, [vi, v

′
i], [vr, v

′
r])

37: hmap-put(scoremap, sid, score+ pwt)
38: else
39: hmap-put(scoremap, sid, score+ wr)
40: for all sid ∈ get-all-keys(scoremap) do
41: w ← hmap-get(scoremap, sid)
42: if size-of(topscores) < k then {The first k matches are the initial top-k}
43: treeset-add(topscores, sid, w ×BudgetWindowMultiplier(sid))
44: if w ×BudgetWindowMultiplier(sid) < min ∨min = 0 then
45: min← w ×BudgetWindowMultiplier(sid)
46: else if min < w ×BudgetWindowMultiplier(sid) then{New score is > than at least

one top-k previously seen}
47: treeset-remove-min(topscores) {Remove min to maintain max size of k}
48: treeset-add(topscores, sid, w ×BudgetWindowMultiplier(sid))
49: min← treeset-find-min(topscores) {Get min for future comparison}
50: for all sid ∈ get-all-keys(topscores) do
51: send(matched, {a1 : [v1, v

′
1], . . . , an : [vn, v

′
n]}, {a1 : w1, . . . , an : wn}) to

receiver-of(sid)

52: function prorate(w, [vbl, vbr], [vil, vir])
53: return Min(vir,vbr)−Max(vil,vbl)

vbr−vbl
{Fraction of event which overlaps. Add 1 in the case of

inclusive integer intervals.}

54: function BudgetWindowMultiplier(sid)
55: 〈budget, spent, begin time, end time, g (t)〉 ← hmap-get(budgetInfo, sid)

56: return budget
spent ×

∫ current time

begin time
g(t) dt∫ end time

begin time
g(t) dt

When message producers specify weights on attributes, the weights from the

subscriptions are discarded in Line 33. Otherwise the weights from the subscriptions

are used.
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4.4 Complexity Analysis

Here we formally analyze the worst case time and space complexity of FX-TM.

M is the number of attributes in an event or the number of constraints/attributes in

a subscription. We assume M is the same for all N subscriptions and events. When

that is not the case, the largest value for M determines a correct upper bound. We

use interval trees for the analysis as in every case the O() value is at least as large as

the hash map required for discrete attributes.

Theorem 4.4.1. FX-TM handles add-subscription operations in O(M log N)

time.

Proof. From Algorithm 1. Insertion into an interval tree takes O(log N) time

(Lines 9, 12). A subscription is inserted to M interval trees. Operations on

masterIndex (Lines 8, 7,13) take O(1) time. Thus the total time complexity

is O(M log N).

Theorem 4.4.2. FX-TM handles cancel-subscription operations in O(M log N)

time.

Proof. From Algorithm 1. Deletion from an interval tree takes O(log N) time (see

Line 18). The subscription is removed from M interval trees. Operations on

masterIndex (Lines 17,20) take O(1) time. Thus the total time complexity is

O(M log N).

Theorem 4.4.3. FX-TM performs matching in O(M log N + S log k) time.

Proof. From Algorithm 2. get-matching-intervals in Line 28 takes O(log N+si)

time, where si is the number of matching intervals for attribute ai. Let S = ∑M
i=1 si,

i.e., S is the total number of constraints matched across all attributes. To find matching

intervals for each of the M attributes of an event, the total time complexity of querying

the interval tree is thus O(M log N+S). Updating the subscription’s score in scoremap

is O(1) (Lines 37 and 39) as is querying masterIndex for interval trees (Line 26).
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|scoremap| ≤ S. |topscores| ≤ k, so inserting each subscription from scoremap to

topscores takes O(S log k). There may be a maximum of S− k removals and searches

for the tree minimums, which has an additional time complexity bounded by O(S log k).

There are S budget window updates with constant time each for a total of O(S), which

is less than O(S log k). Thus the total time complexity is O(M log N + S + S log k),

i.e., O(M log N + S log k).

Theorem 4.4.4. FX-TM requires O(M N + k) space.

Proof. Each interval tree uses O(N) space [49]. There are M interval trees. Each

scoremap uses O(N) space as no object can appear in it twice. The tree set topscores

uses O(k) space. Thus the total space complexity is O(M N) for subscription storage

and O(N + k) for matching for a total of O(M N +N + k), i.e., O(M N + k).

4.5 Implementation

We outline the implementation of FX-TM in a distributed middleware system.

4.5.1 Local Implementation

A local controller has two input streams – one for subscriptions and one for

events. The controller parses requests (add subscription, remove subscription, get top-

k matches) and the raw data contained within. The controller processes the request by

updating the local data, including updating attribute structures and tracking matches

for budget window calculations, and returning the matches if applicable. The top-k

algorithm component has its own API for managing subscriptions and issuing top-k

matching requests and is interchangeable. Subscriptions and events support lists of

an arbitrary number of discrete and interval attributes.
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Figure 4.2.: Overview of the full distributed system.

4.5.2 Distributed Aggregation Overlay

There are two reasons distribution is desirable. Firstly, it increases parallel com-

putation for lower system latency. Secondly, it allows scalability beyond the memory

limitations of a single machine. We place the local top-k matching implementation

on a set of nodes, then provide NOAH with a list of these nodes and a simple merge

function which combines sets of top-k results from subsets of the data (see Figure 4.2).

NOAH creates an aggregation hierarchy with a heuristically ideal fanout for minimal

system latency based on the properties of the merging function. In this case of top-k

the fanout is 3. The NOAH controller receives events for the system and forwards each

event to every local controller to begin the matching process. The local controllers

forward their results to the aggregation overlay, which returns the aggregate top-k

results of the system. We use a simple script on the NOAH controller to distribute

subscriptions evenly amongst nodes.
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4.6 Evaluation

This section empirically compares the performance of FX-TM to the current

state-of-the-art. FX-TM is at least as expressive as state-of-the-art top-k matching

algorithms, so we emphasize matching time, which is the time taken to retrieve the

top-k subscriptions that match an event. Since our expectation is that the majority

of a system’s workload will be consumed by the matching of events rather than

subscription additions and removals, our algorithm has relatively low theoretical

bounds on addition and removal procedures, and the state-of-the-art alternatives are

tuned for matching times, we focus on the matching time for the empirical evaluation.

4.6.1 Systems Compared and Setup

We test FX-TM against three alternatives. First we present an implementation of

Fagin’s algorithm [12–14]. Summation, our targeted aggregation method, is mentioned

in the literature [12,14], but in the presence of both positive and negative weights, it

is not monotonic and thus not be supported. In our experiments, Fagin’s algorithm

uses max(), which is well covered in Fagin’s literature. For an additional performance

gain we use interval trees instead of a database backend for faster retrieval of stored

constraints which overlap the event intervals. Matching intervals are retrieved from the

trees and sorted in order of weight×prorated value, and Fagin’s algorithm is applied

to the resulting lists.

We also modify Fagin’s algorithm to allow for summation with mixed weights

without breaking monotonicity in an attempt to add greater expressiveness. The

magnitude of most negative weight for each attribute is tracked. When an attribute

is matched, all scores add that magnitude, including subscriptions which are not

matched and have a natural score of 0. Thus no score is below 0, but the list for

each contains all subscriptionsand must be sorted. The time to retrieve matches and

sort the lists is presented as a lower bound on the execution time without actually

matching as this time is already significantly longer than the other implementations.
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Finally, we implement a BE∗ tree structure [41]. Rather than dynamically main-

taining the structure as new subscriptions are added, we add all subscriptions to

a temporary structure and then build the tree for all subscriptions. This creates

a tree structure that has the desired attributes of the BE∗ tree for a static set of

subscriptions. The resulting tree is ideal for lookup purposes. (Additions and removals

after the initial setup, which we do not consider, require a complete rebuild of the

tree.) In addition to the subtrees in a node for intervals which are left, right, and

overlapping the partition value, we also have a subtree for subscriptions which do not

include the partitioning attribute. When matching on intervals we prorate scores from

subtrees with the largest possible intersecting interval in each subtree.

All algorithms are implemented in Java using a single thread. The distributed

data access prior to aggregation assumed by Fagin [12] is easily translated into multi-

threading that is also applicable to FX-TM with an appropriate locking scheme for

concurrent updates and matches. [41] does not detail strategies for applying multi-

threading, so single threaded sequential execution is the fairest comparison.

All centralized evaluations are executed on a machine with an Intel T6600 2.2Ghz

processor and 4 GB of RAM. Each algorithm uses the same set of subscriptions and

events for an experiment. Unless noted otherwise, averages and standard deviations

are calculated from 1000 distinct matches.

Table 4.2.: The default values for the experiments.

Variable Generated Data IMDB Yahoo!

N 100000 100000 10000

k 1% of N
2% of N

1% of N
2% of N

1% of N
2% of N

M 12 per subscription or
event out of 100 available

3 out of 3 5.4 (average)
out of 22202

S/N .22 .14 .11
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Figure 4.3.: Results from varying each variable in the micro-benchmarks.
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4.6.2 Micro-Benchmark Description

The variables which affect matching time of events are (1) the number of subscrip-

tions (N), (2) k, (3) the number of attributes per event (M), and (4) the selectivity

of the events for the subscriptions present. Selectivity is the fraction of subscriptions

where the constraint on at least one attribute matches an event, i.e., S/N . We generate

test data to record the effects of the variables independently. Default values, shown

in Table 4.2, are reasonable but low enough that the effect of altering each variable is

significant. S/N varies per event; the value shown is the average for the experiment.

The generated data contains positive and negative weights, as well as intervals

which may overlap to either side for proration. This implements the full expressiveness

achievable by FX-TM and a modified BE∗. The standard Fagin algorithm uses a

different aggregation method to allow it to run on the same data, so it returns a

different set of top-k results. This is the only viable way to compare performance

given the inherent inability to match the expressiveness.

4.6.3 Micro-Benchmark Results

The results for the micro-benchmarks are shown in Figure 4.3. Figure 4.3a shows

how k affects the algorithms. FX-TM scales very well, which is expected given the

log k term in our theoretical bound. The BE∗ tree also scales well with k, which is

indicative of a similar approach for holding intermediate results in a heap and not

tailoring other parts of the lookup process to k. Compared to FX-TM, the execution

time is still increased by 165% to 200%.

As k impacts the amount of data sorted during Fagin’s algorithm, k is expected to

have a more dramatic affect on its runtime. Initially, that is the case as the execution

time goes from 23% longer than FX-TM as k grows from 1% of N to 120% longer

when k is 10% of N . The trend reverses slightly when k is increased further. This is

because the number of matches per attribute hits a ceiling, limiting the length of the

results to be sorted. The time for the augmented Fagin algorithm hits no such ceiling.
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As long as a single negative score exists in an attribute, the retrieval mechanism sorts

all subscriptions for that attribute. The graph in Figure 4.3a shows this happens

regardless of k, resulting in very slow executions times which are never within 2500%

of FX-TM.

The effects of N on the algorithms are shown in Figures 4.3b and 4.3c. Despite the

logarithmic term in the theoretical bound for FX-TM the results look more linear.

This is because to keep selectivity (S/N) fixed, S increases as well, which affects

execution time. The performance of the BE∗ tree is slightly less sensitive to N and is

190% slower than FX-TM for small values of N and steadily improves to 137% longer

for the largest value when k is 1% of N . When k is 2% of N , those numbers are 169%

and 134% respectively.

Fagin’s algorithm suffers worse as N increases. Higher values of N result in higher

values of k, increasing the sorting time. The approach beats FX-TM by a fraction

of a percent with low N and k= 1% of N . Increasing N to our maximum, though,

results inversely in a 100% longer execution time than FX-TM. When k=2% of N , a

6% longer execution time than FX-TM grows to 167% longer when N is large.

Figures 4.3d and 4.3e show how M affects the algorithms. There is almost no

perceivable difference in the execution time of FX-TM, which indicates the low impact

of M relative to the other variables. The effect on BE∗ is more noticeable as it takes

25% to 300% additional execution time compared to FX-TM for both values of k. This

suggests that the effectiveness of pruning with single dimensions on a multidimensional

index loses its potency when more dimensions vie with equal weight in a partial

matching problem.

Figure 4.3e contains an anomaly for the execution time of Fagin’s algorithm similar

to that seen in Figure 4.3a. Execution time decreases as M increases, bringing the

execution time from a time accrued by 100% with respect to FX-TM for a low value

of M to within 15% . This is counter to intuition and the trend seen in Figure 4.3d.

It is because the number of matches available for each attribute max out below k due

to the nature of the data and the value of k. The problem is exacerbated as M grows,
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Figure 4.4.: Results from IMDB and Yahoo! real-world data benchmarks.

resulting in faster sorting times on smaller lists for each attribute. This happens for

data with insufficiently high S/N as M or k grows.
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The difference between Fagin’s algorithm and an attempt to augment its expres-

siveness is clear. The performance of the original algorithm appears correlated to that

of FX-TM, again indicating that data retrieval time is the bottleneck. The increase of

execution time with M is virtually nonexistent. Yet, an increase in M , corresponding

to an increase in the number of times each subscription is added to a list and sorted,

results in a superlinear increase in execution time of the augmented Fagin algorithm.

Finally, Figure 4.3f shows how selectivity affects execution times. Decreasing S/N ,

which corresponds to decreasing S when N is fixed, shows an appreciable effect on

the execution time of FX-TM. The BE∗ tree’s multi-attribute index and clustering

structure allows it to scale with selectivity better, but does not do as well for smaller

values of S/N , which we believe are more representative for top-k. For very low S/N ,

BE∗ adds just over 1000% execution time to that of FX-TM, but it is 91% faster

when S/N approaches 1. With our default values, the trade off point in performance

between the algorithms is when S/N is about .5.

As with the other variables affecting mainly data retrieval times, the execution

time of Fagin’s algorithm is correlated to the execution of FX-TM. Fagin’s algorithm

does take more than 20% longer with values of S/N between .15 and .22, but at both

extremes of the range for S/N the approaches are within 5% of each other. The time

taken by the augmented variant of Fagin’s algorithm is included in the graph for

comparison, but there are no real trends. The existence of a single negative weight on

an attribute requires every subscription to be included in that attribute’s list prior to

sorting, leading to an effective S/N value of 1.0 regardless of the actual selectivity.

4.6.4 Real-World Data Description

To confirm the relevance of our micro-benchmark results, we use two real-world

datasets to generate subscriptions and events for more experiments. The first such

dataset uses movie rating data from IMDB [51]. For each movie, IMDB provides the

number of users who rated it and the average rating. We build small intervals around
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Figure 4.5.: Memory (RAM) usage used for storing subscriptions and for matching.
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these values. The year of release is also provided. Thus all subscriptions and events

have the same attributes. Subscriptions and events are generated the same way from

different sections of the data. The best matches are subscriptions with similar voting

patterns to an event and are released in the same year.

Our second real-world dataset is derived from the Yahoo! music rating service [52].

We use the same technique as in the IMDB dataset to build intervals around the

number of voters and the average rating. Many songs also have anonymized genre and

artist identifiers. These are discrete values. The best matches are subscriptions with

similar voting patterns, matching genres, and the same artist as an event.

For each of these datasets, N and k are set to default values and varied as in the

micro-benchmarks, but M and selectivity are features of the data. The values for each

of the variables, including the defaults for N and k, are in Table 4.2.

4.6.5 Real-World Timing Results

The trends using the real-world data, shown in Figure 4.4, mirror the trends in

the micro-benchmarks. We omit the modified Fagin variant so the differences among

the other algorithms is clearer. For the IMDB data, the BE∗ tree is never less than

48% slower than FX-TM in Figure 4.4b. It is as much as 86% slower in Figure 4.4a.

This is a smaller difference than seen in the micro-benchmarks because M ’s value of 3

is smaller than the default value of 12 for the micro-benchmarks, and BE∗ is sensitive

to M .

Fagin’s algorithm is 10% faster than FX-TM when N and k are very low in

Figure 4.4b. When N or k is increased, that edge disappears. For our highest value of

N , Fagin’s algorithm takes 31% longer than FX-TM. Varying k in Figure 4.4a results

in a quadratic change in execution time for Fagin’s algorithm, indicating that the

limit on the per-attribute list size seen in the micro-benchmark data is not seen here.

When k is N/10 in Figure 4.4a, the execution time for Fagin’s algorithm is 636%



79

longer than that of FX-TM. The general trends for N and k on all approaches are

similar to those observed in the micro-benchmarks.

The Yahoo! dataset results also corroborate the micro-benchmarking results. Given

that the value of M is in between the IMDB dataset and the lowest seen in the micro-

benchmarks experiments, it is a little surprising that the execution time of the BE∗

tree is never less than 115% longer than FX-TM under the same conditions. This

best case scenario is shown in Figure 4.4e when both N and k are relatively low. As

those variables increase, the performance difference widens to a maximum of 164%

in Figure 4.4d. Fagin’s algorithm is almost 7% faster than FX-TM for the lowest

value of N tested in Figure 4.4e, but adds 100% latency for our highest value of N in

Figure 4.4f and more than 700% latency for the maximum value of k in Figure 4.4d.

4.6.6 Memory Usage Results

In emphasizing the execution time, we expect to incur some overhead in memory

requirements. We rerun two micro-benchmark tests and the real-world data tests to

measure the memory used. We look at the memory used for storing subscriptions

and the space used by the matching algorithm per event. We first consider N , which

affects the number of subscriptions stored and the tree indexing requirements. We

also consider M , which affects the size of subscriptions and requires additional entries

in attribute structures.

Memory use depends upon implementation of the data structures, so we realize

that the exact values could vary widely. It is not advisable to draw conclusions about

the direct comparisons of memory usage among algorithms, but the trends with

relation to the variables and general orders of magnitude should be similar between

implementations.

To find the amount of memory required to store subscriptions, we first initiate

garbage collection and read the memory used by the Java runtime. We populate the

structures for each algorithm and manually initiate garbage collection before taking
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another reading. The difference between the two readings is the memory used to store

the subscriptions.

Figure 4.5a shows N versus the memory requirements to store subscriptions. Each

subscription requires roughly the same amount of memory independent of the indexing

used. The number of nodes in a tree is linear to the number of leaf nodes. Thus the

amount of memory used by all approaches is linear on N . A BE∗ tree uses less space

than multiple interval trees due to it’s only using the most relevant indexes at each

level instead of indexing every attribute of every subscription. The memory required

for storing subscriptions is the same for FX-TM and Fagin’s algorithm, as shown in

Figures 4.5a–4.5d, because we use equivalent structures.

Figure 4.5b shows the effect of varyingM on the amount of space required to store

subscriptions. As each subscription stores its preferences, the size of subscriptions

increases linearly with respect toM . Each new attribute also requires additional space

in the indexing trees. In the case of interval trees which index each attribute, that

can be expected to also have a linear relationship, which is supported by the data. In

the case of BE∗ trees, the relationship is also linear.

Figures 4.5c and 4.5d show the impact of changing N on the storage space required

for the data structures holding the real-world data. Both the IMDB and Yahoo!

datasets show linear changes in storage space with respect to N , affirming the results

from the micro-benchmark data. The Yahoo! dataset, with its higher value of M ,

requires more space than the IMDB dataset. This affirms the correlation of M and

storage space seen in the micro-benchmarking data.

Matching requires additional memory. The amount depending on the event, we

obtain an average reading for 500 different matches. We collect garbage between each

match, and check our results to ensure that automatic garbage collection does not

impact the numbers. The data collected is memory in use by the Java virtual machine

beyond storing the subscriptions, which includes memory used to match including

function calls and temporary variables.
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(a) IMDB dataset (b) Yahoo! dataset

Figure 4.6.: Overhead of the budget window mechanism.

Figure 4.7.: Top-k results with NOAH.

Intuitively, k, which determines the heap size in the approaches using heaps

to maintain the top-k already found, should affect this memory usage. However,

Figures 4.5e and 4.5g show this not to be the case. k has almost no discernible effect

on the amount of space the matching took in either the Yahoo! or IMDB datasets.

This is because the size of the heap itself is relatively inconsequential to the overhead

incurred by the Java method calls and object creations.

The other variable expected to increase the space required for matching is S, which

impacts the size of scoremap in FX-TM. For the real-world datasets with fixed S/N ,

that means increasing N . The results are in Figures 4.5f and 4.5h. Increasing N from
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50000 to 250000 results in an increase in memory usage of 75% FX-TM in the IMDB

dataset and a 51% in the Yahoo! dataset. The other approaches also require more

memory as N increases, but the increases are less significant. In none of these tests

does the memory use exceed 5MB, which is at least an order of magnitude less than

the space required to store subscriptions.

4.6.7 Budget Window Results

The next experiments test the impact of the budget window mechanism on match-

ing time. To that end, each subscription is added a time window of [1000000, 10000000]

units and a budget of [10000, 100000] matches. Every g(t) is set to 1, making
∫
g(t) dt =

t− t0 for a homogeneous matching of the subscription across its time window. A time

unit is the time taken by a single iteration of the matching algorithm.

To add the functionality to Fagin’s algorithm, the multiplier is calculated in the

same way as in FX-TM for each attribute before sorting. In both FX-TM and Fagin’s

algorithm, updates to the amount spent are made between matching iterations to

maintain the single threading.

Implementing the mechanism in BE∗ is more cumbersome. The minimum and

maximum multipliers must be propagated up the tree to inform pruning decisions.

Since the multipliers change with time, they must be calculated and propagated

continuously. We did this calculation and propagation in between each match. Since

this process is clearly time intensive, we also moved the mechanism to a separate

continuously running thread for a less onerous comparison to the other algorithms. In

that case, pruning uses the current information at each level, which may be inconsistent

with the state of the subscriptions further down.

For simplicity, Figure 4.6 shows only the results of implementing the budget

window mechanism in the real-world data sets using the default N value of 100000

and k at 2%. The first (red) bar in each group is the time taken by each algorithm

without the budget window mechanism. The second (green) bar is the time taken
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when the mechanism is implemented within the same thread. For the BE∗ tree, the

third (blue) bar is for the multithreaded approach.

The additional time taken for the budget window mechanism in the IMDB dataset

is shown in Figure 4.6a. FX-TM and Fagin’s algorithm require an additional 25.6%

and 12.5% respectively, with the overall time taken for FX-TM still being less than

that taken by Fagin’s algorithm. The time required with this feature incorporated into

the BE∗ tree is significantly higher. Running completely on a single thread, the BE∗

tree leads to a 220% time increase. Running the update thread in parallel reduces this

overhead to 53.1%, which is still significant compared to the other two approaches

running in single threads.

The results with the Yahoo! dataset reiterate the previous results with more

accentuated numbers. In this case, FX-TM requires a time increase of 29.7% over

not implementing the budget window, and Fagin’s algorithm requires 16.6% longer.

The total time taken for FX-TM is still less overall than Fagin’s algorithm. The BE∗

tree approach requires 540% longer when updating in the same thread and 346%

longer when using a separate thread. This additional time indicates that the pruning

mechanism during matching depends heavily on the data, and implementing the

budget window mechanism can have a very large impact on the pruning.

4.6.8 Distributed Setup Results

With our JVM and machines, we are not able to run much more than 200000

subscriptions fitting the defaults from the generated microbenchmarks before running

out of memory, which is insufficient for our target applications.

We evaluated the distributed setup on a group of blade servers at an IBM

research center. We generated 500000 subscriptions using the defaults from the

microbenchmarks. We evenly distributed the subscriptions across different numbers

of leaves. Increased distribution decreases the load per leaf at the expense of greater

aggregation. We tested each setup with 100 events and show the average times in
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Figure 4.7. Because we are trying to emulate a real system with full expressiveness,

we only consider the two approaches which can handle non-monotonic score, i.e. BE∗

trees and FX-TM. For each algorithm we show two lines – the average amount of time

taken for the local system at the leaves and the total amount of time from when an

event enters the system to when the top-k results from the system are available.

Distributing the data decreases the effective N value at individual nodes, and the

time for local computation decreases. There is a point of diminishing returns as the

relative addition of each new node is less significant, and aggregation time increases

with the addition of more nodes. This is particularly noticeable as the number of

nodes passes a threshold of a power of 3, which increases the height of the aggregation

hierarchy. It is worth noting that while the aggregation time is generally the same

between the two algorithms because the outputs from the local nodes are equivalent,

it is slightly higher for BE∗ trees. This is because the variability of the local latency is

higher, and the aggregation hierarchy has to receive all results to complete aggregation,

so the maximum local computation time is as important as the average time.

For both algorithms the minimal total system time occurs when the data is

distributed across 27 nodes. At this point the decrease in local computation time

becomes less significant than the increased aggregation time for our data. At this

point, the BE* tree takes 330% as long as FX-TM at the local nodes and 226% as

long for the entire system. We note the total system time at 27 nodes is less than the

local matching time when there were fewer than 12 nodes, so distribution effectively

decreases total matching latency.
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5 PRIOR ART

5.1 Big Data Aggregation

Several frameworks consider breaking down big data computations into inde-

pendently optimized phases. MapReduce [6] has become very prevalent, and is the

basis for much work and research. Incoop [53] adds a contraction phase between

map and reduce in the MapReduce framework by exploiting the Combiners to run

aggregation. This contraction phase does not consider the efficiency of different fan-

ins for combination. Yu et al. [54] extend MapReduce to efficiently aggregate data

between job phases with similar goals to Incoop. These approaches show the usefulness

of an aggregation subsystem, but do not optimize the interaction topology of such

a mechanism. MapReduceMerge [55] extends the framework with a merge step – a

synonym for aggregation – after the reduce phase. MapReduceMerge is motivated

by many operations relevant to applications using MapReduce, e.g. full sorts, joins,

set unions, and cartesian products, which are not supported efficiently. MapReduce

Online [56] allows processing at the reducers to begin before all data is received, thus

allowing it to be used for stream processing or more intuitive iterative processes.

CamCube is a network architecture to bypass traditional routing by orienting

servers [57] with a coordinate system when full control of the environment is possible.

Nodes communicate with up to six neighbors directly, limiting the maximum achievable

fan-in. Camdoop shows the ability for CamCube to work efficiently with the existing

MapReduce formulation [58]. Camdoop aggregates within the implementation instead

of on the edges of the calculation as in some other MapReduce implementations, but

is limited by the six neighbor constraint.

Morozov and Weber [22] consider merge trees for distributed computations, an

abstraction for combining subsets of large structured datasets. Their system monitors
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data traits in different branches and recomputes a better tree. It does not optimize

for aggregation functions or extrapolate to find optima.

While not specific to aggregation, Kim et al. [59] extend the work by Cheng

and Robertazzi [60] to optimize load distribution on processors connected by a tree

network. The newer work maximizes parallelization for fastest completion because

there is no computation to aggregate results from each processor. Kuhn and Oshman

do consider the complexity of aggregation in networks [61], but they concentrate on

the number of rounds of communication required in directed networks. Drucker et al.

consider the complexity required to split a task across several nodes in the case the

results do not have to be aggregated [62].

Work with sensors optimizes overlays for power consumption while conforming to

the routing restrictions imposed by the location and communication capabilities of

sensors [63, 64]. TinyDB [65] furthers this in determining when to sample, which is

equivalent to local computation.

Naiad [66] considers aggregation as part of iterative or cyclic computations. It

allows distributed data access and updates to be interleaved, and is not aggregation-

specific. Like resilient distributed datasets put forth by Zaharia et al. for Spark [30],

Naiad relies on data retained in memory. This offers latencies which can be orders

of magnitude better than with disk accesses. This addresses the problem raised by

Venkataraman et al. [28] that data access is a significant bottleneck for iterative

calculations on many distributed frameworks.

A line of research that considers an overlay specific to aggregation is Astrolabe [21].

Astrolabe is introduced as a summarizing mechanism of bounded size using a hier-

archical nature. The aggregation is meant to monitor system state and facilitate

scalability of dynamic systems. Summarizing calculations are made and aggregated

on the fly using gossip protocols. To a limited fashion they consider the effect the

overlay has on the aggregation, but it is not geared toward minimizing the total time

of the system as a separate phase involved in computation.
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SDIMS [67] presents a rigid overlay for a distributed system used primarily

for aggregation. Shruti [68] adds flexibility to the structure by allowing the actual

aggregation mechanisms to be tuned across this structure without altering the overlay.

The overlay is hierarchical with known fan-in. It is built on top of a distributed hash

table for reasons including fault tolerance rather than finding an optimal overlay for

total system latency. STAR [20] extends this line of work by using a consistency

metric [69] to adaptively set the precision constraints for processing aggregation.

PIER [70] is another system built on DHTs to distribute workload, this time for

database use. The overlays are once again restricted by the underlying framework,

but the system itself efficiently aggregates results to respond to queries.

5.2 Top-k Matching

5.2.1 Top-k Matching Algorithms

Fagin proposes the seminal algorithm [12] for top-k matching. It runs on databases,

so querying sorted lists for individual attributes is easy, and it uses these sorted

lists and an aggregation function to create an aggregate order. Matching takes

O(N (M−1)/M k1/M) time starting from the point the sorted lists are available – N

is the number of objects in the system (our subscriptions) and M the number of

attributes.

Fagin and Wimmers [13] expand this to incorporate weights that can vary per

attribute without affecting the running time. In line with the database querying model,

these weights are determined by the query (corresponding to our events) rather than

the objects in the database (our subscriptions).

Machanavajjhala et al. [40] at Yahoo! attempt the first top-k system without a

database for the specific use of targeted ads. Their work shows such an approach

can efficiently find the attribute level results when attributes can be stored in sorted

order, and those results used in Fagin’s algorithm.
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Sadoghi and Jacobsen also approach the problem from a storage perspective instead

of focusing primarily on aggregation [41, 71]. Their BE* tree uses an alternating

clustering and dimension partitioning strategy. They choose the partitioning such

that the most divergent dimensions are used first to prune the search space quickly.

They show that this approach is experimentally competitive to a multi-dimensional

storage tree on generated and real-world data.

Recent research into top-k matching focusses on performing rankings with uncer-

tain data. Dylla et al. [72] and Song et al. [73] consider approaches to display the k

best suspected matches when some of the values in the data are unknown or known

only with some probability. Both methods require some additional overhead to handle

this extra requirement.

Search engines and ad companies have their own approaches, but these are

proprietary and unavailable to the public.

5.2.2 Distributed Top-k Matching Systems

Several researchers consider distributing the top-k matching problem. Most pro-

posals rely on running a matching algorithm on nodes on partitions of the data,

then aggregating the partial results in some way. Improving the core top-k matching

algorithm thus improves the distributed system.

Fagin mentions that the data can be housed on multiple systems, but does require

all of the accesses to be done from a single computer to run the algorithm. Cao

and Wang [29] distribute Fagin’s algorithm by running it at multiple nodes, and

then combining the partial results at a single node. The process involves running the

algorithm and pruning before sending the partial results to a designated node for

merging. The paper focuses on the best way to do this while conserving bandwidth.

Fagin proposes a similar threshold algorithm [14]; that paper includes extensive proofs

on how well similar algorithms perform under various scenarios.
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These approaches rely on in part on Fagin’s algorithm. Machanavajjhala et al. [40]

theorize about an alternative possibility of using a publish/subscribe system to find

matches, presumably similar to what is described by Aguilera et al. [74] with more

robust matching, but claim it is inefficient and do not implement it. What they do

implement uses Fagin’s algorithm. Thus any improvements to a local algorithm are

immediately pertinent to distributed top-k matching.

5.2.3 Limitations

Efforts based on Fagin’s work exhibit several limitations. Among them is assuming

the time for ordered access on attribute matching can be ignored. With proration and

dynamic multipliers, scores cannot be known ahead of time, so subscriptions cannot

be stored in sorted order, and sorting is run during retrieval. This is required for each

of attribute, which takes O(MS logS) time for S matching subscriptions per M event

attributes prior to running the algorithm.

One requirement of Fagin’s algorithm propagated to other work is the explicit need

for monotonicity in the scoring mechanism [12]: component scores from attributes

are considered sequentially, and the aggregate score is required to either exlusively

increase or decrease (or stay the same) as the algorithm runs. This works well for

some functions, e.g. minimum and maximum subscore. However, even an aggregation

function as simple as summation is not monotonic when considering the possibility

of positive and negative weights. For example, consider aggregating the score over

a match with component scores {.2, .2, -.1}. After the initial component, the score

is .2. With the next component it increases to .4 and then decreases to .3. As long

as two component scores aside from the first have opposite signs, monotonicity is

not guaranteed. Consider a political campaign trying to serve ads. The campaign

would prefer to serve ads to users with some attributes (gender, income, etc.). Those

below the voting age should be avoided, corresponding to a negative weight for this

campaign.



90

Fagin and Wimmers [13] present a device for weighting attributes in a match, but

weighting can only be on what we call an event. In the case of advertising, the ad

consumer has a smaller stake in the match than the advertiser. Thus it makes more

sense to allow the advertisers to specify weights independent of each other as they

will value different attributes for targeting demographics. Advertisers are the objects

in the system, the subscriptions, and the ad serving is a result of the events; this

example of weighting cannot be done with events as proposed by Fagin and Wimmers.

BE* trees [41] are easily modified to overcome these limitations despite being

best tuned to events with attributes containing single values. However, as we will

demonstrate empirically, BE* trees are not always the fastest approach.

None of this research considers dynamic score adjustment based on system behav-

ior.



91

6 CONCLUSIONS

6.1 Big Data Aggregation

Rigourously defining classes of distributed data processing is the first step in

creating a portfolio of tools. With a broader range of tools users can select the right

abstraction to perform analysis efficiently without giving up intuitive data models or

requiring reimplementation of pieces of distributed frameworks that are used across

problems.

We define the compute-aggregate family of problems and identify universal char-

acteristics of compute-aggregate tasks that allow to unify design principals of “ideal"

aggregation trees so in depth analysis of the aggregation function is not required to

determine the aggregation overlay.

We rigorously prove optimality of aggregation trees for different cases of compute-

aggregate systems. We clearly state our assumptions for modeling and the conditions

we impose. For processing a single block of input we explain that the appropriate

measure is latency and that the ratio of output size to input size affects the optimal

fan-in.

After the optimal overlays are proven for a slightly simplified models we create

heuristics that vary in practical ways and implement them in a new system called

NOAH. The heuristics rely on a single variable y – the ratio of the aggregation output

to one input – to choose the fan-in to use for an overlay.

We experimentally show these heuristics to be nearly, if not actually, optimal for

a variety of microbenchmarks and real world problems in Amazon EC2 without

synthetically forcing the assumptions we used to build the model. The overlays

outperform naïve one-size-fits-all overlays, such as those currently used in practice,

by up to 75%.
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We introduce a balancing mechanism to improve performance when the heuristics

choose overlays with skewed data distribution. We also introduce two other mech-

anisms to exploit prior aggregation to reduce the amount of work done or resource

inefficiencies caused by maintaining unnecessary parallelism in subsequent aggregation.

These mechanisms reduce latency in persistent overlays by up to 80% over reusing

overlays without modification.

The latency savings are significant both as part of a larger problem and when

running iterative aggregations.

6.2 Top-k Matching

Expressive top-k matching with low latency represents a cornerstone for many

“match-making” applications including online advertising, which has been driving a

large economy based on online services. We introduce a new, more expressive, model

for top-k matching which encompasses the models from prior art. It supports intervals

in events and subscriptions with optional prorating for interval intersection. The model

allows weights on events or subscriptions and supports non-monotonic aggregation.

We present FX-TM, an efficient and scalable algorithm for our model which runs in

O(M log N+S log k) time including data retrieval. This is experimentally competitive

with the existing art, even without considering our extended expressiveness. Fagin’s

seminal algorithm is competitive for lower values of k as long as its limitations on

expressiveness are acceptable. BE∗ trees, which can be modified to be as expressive

as FX-TM, are shown by micro-benchmarks to be slower for selective data. For two

real-world data sets BE∗ exhibited up to 2× higher matching time than FX-TM.

We believe that the extended expressiveness of our FX-TM and its performance

make it competitive for relevant matching problems and systems, especially with

regard to serving ads. Existing art does not match the performance of our algorithm

while incorporating both the expressiveness and ability to dynamically change scores

based on budgets.
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We present a dynamic mechanism to adjust the matching score based on the

rate of matching and a predetermined budget and time window. With dynamic score

adjustment, BE∗ requires up to 11× higher matching time than FX-TM.

We implement distributed top-k matching with NOAH for improved performance

and greater scalability. Together with the other work on NOAH this shows how the

computation and aggregation phase can be optimized independently.

6.3 Future Work

There are still cases for which our fan-ins remain unproven because the degree of

super- or sub-linearity of the aggregation function factors into the model. While the

heuristics show good performance in these ranges it is worth further exploration to

see if more precise heuristics can be created.

We are also working on optimizing the computation and aggregation in tandem for

total optimization instead of considering aggregation in isolation, e.g. by calculating

an optimal number of leaf nodes, and specific optimizations for iterative computation.

We are also considering real time pricing for top-k matching. The budget window

multiplier does a good job of altering subscription scores relative to each other to

prevent over- or under-matching relative to peers. However, there is still a problem of

global supply and demand that might cause all subscriptions to get over- or under-

matched together. By charging different prices for a match based on the demand for

the given event we believe an equilibrium point could be acheived.
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