Purdue University [Purdue e-Pubs](http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fherrick%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages)

[Publications of the Ray W. Herrick Laboratories](http://docs.lib.purdue.edu/herrick?utm_source=docs.lib.purdue.edu%2Fherrick%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages) [School of Mechanical Engineering](http://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Fherrick%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages)

8-2015

Microperforated Films as Duct Liners

J Stuart Bolton *Purdue University*, bolton@purdue.edu

Nicholas Kim kim505@purdue.edu

Follow this and additional works at: [http://docs.lib.purdue.edu/herrick](http://docs.lib.purdue.edu/herrick?utm_source=docs.lib.purdue.edu%2Fherrick%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages)

Bolton, J Stuart and Kim, Nicholas, "Microperforated Films as Duct Liners" (2015). *Publications of the Ray W. Herrick Laboratories.* Paper 112.

http://docs.lib.purdue.edu/herrick/112

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

Microperforated films as duct liners

Nicholas Kim, J. Stuart Bolton Ray W. Herrick Laboratory, Purdue University

Introduction

Microperforated Panel:

Thin film with 100 microns scale holes

Clean, light → an alternative to fibrous sound absorbing material

Introduction

Acoustic Properties are controlled by:

- 1. Thickness of the panel
- 2. Diameter of the hole
- 3. Porosity
- 4. Mass per unit area
- 5. Air cavity depth

 \triangle By appropriate choice of these parameters, single panel can provide good acoustic performance in one or two octave band, but not in broader range.

Nultiple-Layer Microperforated Panels are needed to cover broad frequency range

◆ Duct liner composed of multi-layer microperforated panels can be one solution to reduce noise from a duct.

Microperforated Panel

Cylindrical hole (Maa (1975,1987,1998,1999))

$$
z = \frac{j\omega t}{\sigma c} \left[1 - \frac{2}{x\sqrt{-j}} \frac{J_1(x\sqrt{-j})}{J_0(x\sqrt{-j})} \right]^{-1}
$$

\n
$$
z = \frac{32\eta t}{d^2} \sqrt{1 + \frac{x^2}{32}} + j\omega \rho t \left(1 + \frac{1}{\sqrt{3^2 + \frac{x^2}{2}}} \right)
$$

\nSimplify
\n**Q** Resistance End Correction Factor
\n1975: $\frac{\sqrt{2}}{8} x \frac{d}{t}$ 1987: $\frac{\sqrt{2}xd}{8t}$ 1998, 1999: $\frac{\sqrt{2}}{32} x \frac{d}{t}$

 \Box Meant to account for resistance exterior to hole

Microperforated Panel

- Cylindrical hole (Guo *et al.* (2008))
	- □ Complete Resistance

Cylinder
\n
$$
R = \left(Re \left\{ \frac{j\omega t}{\sigma c} \left[1 - \frac{2}{k\sqrt{-j}} \frac{J_1(k\sqrt{-j})}{J_0(k\sqrt{-j})} \right]^{-1} \right\} + \frac{\alpha 2R_s}{\sigma \rho c} \right) \times \rho c
$$
\n
$$
k = d \left\{ \frac{\omega \rho_0}{4\eta} \right\} R_s = \frac{\sqrt{2\omega \rho_0 \eta}}{2} \qquad \alpha = 2 \quad \text{when round-edged}
$$
\n
$$
\alpha = 4 \quad \text{when sharp-edged}
$$

❖ Previous work (Kim et al. (2012))

$$
\alpha = (16.9 \frac{t}{d} + 152.8) f^{-0.5}
$$

Duct Liner

 \Box Desired parameters of microperforated material were obtained to match the impedance of the fibrous material.

 \Box Locally reacting case outperforms extended reacting case.

❖ Square duct(Shin(2011))

 \Box Microperforated duct liner could be used as an alternative absorbing lining whenever fibrous duct lining is not desired

6 H. Shin and J. S. Bolton, "Microperforated materials as duct liners: Local reaction versus extended reaction backings", *Proceeding of Noise-Con 2010*, Portland, Oregon, USA, 2010.

 \dots **Microperforated Panel as Duct Liner**

 \square There is no analytical solution for cylindrical duct liner for microperforated panel.

 \Box Change to cylindrical coordinate

 \Box To find surface impedance at the panel, start from Helmholtz equation.

Transfer impedance of flexible microperforated panel

❖ Resistance of Microperforated panel

$$
R = \left(Re \left\{ \frac{j\omega t}{\sigma c} \left[1 - \frac{2}{k\sqrt{-j}} \frac{J_1(k\sqrt{-j})}{J_0(k\sqrt{-j})} \right]^{-1} \right\} + \frac{\alpha 2R_s}{\sigma \rho c} \right) \times \rho c \qquad \alpha = (16.9 \frac{t}{d} + 152.8) f^{-0.5}
$$

❖ Continuity and Force equilibrium

$$
v_y = (1 - \sigma)v_s + \sigma v_f
$$

\n
$$
P_1 - P_2 + (v_f - v_s)R \frac{\sigma^2}{1 - \sigma} = j\omega m v_s
$$

\n
$$
P_1 - P_2 + (v_f - v_s)R\sigma = \rho h_p j\omega v_f
$$

$$
Z_{mpp} = \frac{R\sigma(1-\sigma)(j\omega m - j\omega\rho(t+2\delta)) + j\omega\rho(t+2\delta)\{j\omega m(1-\sigma) + R\sigma\}}{\sigma(1-\sigma)(R + j\omega m) + (1-\sigma)^2\rho(t+2\delta)j\omega + \sigma^2R}
$$

8 Yoo *et al.*, "Absorption of finite-sized microperforated panels with finite flexural stiffness at normal incidence", *Proceeding of NOISE-CON 2008*, Dearborn, Michigan, USA (2008).

Impedance of air backing space

- **❖ Helmholtz Equation**
	- $(\nabla^2 + k^2)\vec{P}(r, \theta, z) = 0$
	- We can assume that pressure is symmetric in *θ* direction, because we will give plane wave in impedance tube.

$$
\vec{P}(\omega, r, z) = \left[AH_0^{(1)}(k_r r) + BH_0^{(2)}(k_r r) \right] e^{j(k_z z - \omega t)}
$$

$$
\overrightarrow{v_r}(\omega, r, z) = \frac{j}{\rho c} \frac{k_r}{k} \left[AH_1^{(1)}(k_r r) + BH_1^{(2)}(k_r r) \right] e^{j(k_z z - \omega t)}
$$

$$
k^2 = k_r^2 + k_z^2
$$

Impedance of air backing space

Pressure and Velocity at panel and wall

 \triangle Impedance looking into panel at $r = a$

$$
\begin{aligned} \n\Box \text{at } r = a \qquad \overrightarrow{P_a} = \left[A H_0^{(1)}(k_r a) + B H_0^{(2)}(k_r a) \right] e^{j(k_z z - \omega t)} \\ \n\overrightarrow{v_a} = \frac{j}{\rho c} \frac{k_r}{k} \left[A H_1^{(1)}(k_r a) + B H_1^{(2)}(k_r a) \right] e^{j(k_z z - \omega t)} \n\end{aligned}
$$

$$
\begin{aligned} \n\Box \text{at } r = b \qquad \overrightarrow{P_b} = \left[A H_0^{(1)}(k_r b) + B H_0^{(2)}(k_r b) \right] e^{j(k_z z - \omega t)} \\ \n\overrightarrow{v_b} = \frac{j}{\rho c} \frac{k_r}{k} \left[A H_1^{(1)}(k_r b) + B H_1^{(2)}(k_r b) \right] e^{j(k_z z - \omega t)} \n\end{aligned}
$$

10

Transfer Matrix Method

a

b

Local reaction

Impedance of Duct Liner

VImpedance of air backing

$$
Z_{air}=\frac{T_{11}}{T_{21}}=-j\,\frac{1}{\rho c}\frac{k_{r}}{k}\left[\frac{H_{0}^{(1)}(k_{r}b)H_{1}^{(2)}(k_{r}a)-H_{0}^{(2)}(k_{r}b)H_{1}^{(1)}(k_{r}a)}{H_{1}^{(1)}(k_{r}b)H_{1}^{(2)}(k_{r}a)-H_{1}^{(2)}(k_{r}b)H_{1}^{(1)}(k_{r}a)}\right]
$$

❖ Surface Impedance and B.C. at the Panel

$$
Z_n = (Z_{air} + Z_{MPP})/\rho c \qquad \frac{jka}{Z_n} = m - \frac{k_r a J_{m-1}(k_r a)}{J_m(k_r a)}
$$

Combine these two equations and solve *k^r* by secant method

❖ Transmission Loss per meter along duct

$$
k_z = \sqrt{k^2 - k_r^2} = \beta - j\alpha
$$

$$
TL = -20\log(1/e^{\alpha})
$$

\dots **Microperforated Panel as Duct Liner**

Double MPPs

 1st MPP : *t*=0.4064 mm, *d*=0.2032 mm, *σ*=0.02, *m*=0.5 kg/m² 2nd MPP: *t*=0.2032 mm, *d*=0.2032 mm, *σ*=0.02, *m*=0.5 kg/m²

 \square Switch the location 1st MPP and 2nd MPP does not give any effect on TL

Double MPPs

1st MPP : *t*=0.4064 mm, *d*=0.2032 mm, *σ*=0.02, *m*=0.5 kg/m²

As the panel becomes thicker, TL decreases.

□As diameter of the hole become larger, TL increases.

Double MPPs

1st MPP : *t*=0.4064 mm, *d*=0.2032 mm, *σ*=0.02, *m*=0.5 kg/m²

As porosity increase, TL goes increases.

□As the panel becomes heavier, TL increases.

Optimization

❖ Assumptions

- Geometry of duct: radius = 0.012 m, expanded radius: 0.044 m
- \Box Hole of the MPP is cylindrical and sharp edged.
- \Box Flexural stiffness of the panel can be ignored.
- \Box Only locally reaction case considered.
- \Box First MPP layer is fixed at 0.012 m from center of duct

Optimization

❖ Constraints

Genetic Algorithm was used for optimization

Optimization result

❖ Increasing number of layers

 Muffler only case is the best in low frequency range (500 – 2000 Hz) but there is resonance frequency at 3800 Hz.

Duct with duct liner case can remove resonance frequency.

Optimization result

◆ Microperforated panel properties for 5 panel duct liner

Conclusion

 \triangle The performance of a microperforated panel is determined by the radius of hole, thickness, porosity, mass per unit area, and air cavity depth.

 \lozenge Optimization result for multi-layer panels covers much broader frequency range than single panel.

❖ Optimization result shows that appropriate combination of microperforated panel can eliminate the resonance frequency in range of interest

◆ Optimal design for cylindrical duct liner can help reduce size of muffler

Future work: extend to extended reaction case