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Analysis of Metabolomic PCA Data using Tree Diagrams

Mark T. Werth†, Steve Halouska‡, Matthew D. Shortridge‡, Bo Zhang‡, and Robert
Powers‡,*
†Department of Chemistry, Nebraska Wesleyan University, Lincoln, Nebraska 68504
‡Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588

Abstract
Large amounts of data from high throughput metabolomic experiments are commonly visualized
using a principal component analysis (PCA) 2D scores plot. The question of the similarity or
difference between multiple metabolic states then becomes a question of the degree of overlap
between their respective data point clusters in PC scores space. A qualitative visual inspection of the
clustering pattern in PCA score plots is a common protocol. This report describes the application of
tree diagrams and bootstrapping techniques for an improved quantitative analysis of metabolic PCA
data clustering. Our PCAtoTree program creates a distance matrix with 100 bootstrap steps that
describes the separation of all clusters in a metabolic dataset. Using accepted phylogenetic software,
the distance matrix resulting from the various metabolic states is organized into a phylogenetic-like
tree format, where bootstrap values ≥ 50 indicate a statistically relevant branch separation.
PCAtoTree analysis of two previously published data sets demonstrates the improved resolution of
metabolic state differences using tree diagrams. In addition, for metabolomic studies of large numbers
of different metabolic states, the tree format provides a better description of similarities and
differences between each metabolic state. The approach is also tolerant of sample size variations
between different metabolic states.
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Introduction
The rapidly growing field of metabolomics seeks to describe and understand the different
metabolic states of an organism. Recent reviews describe the application of metabolomic
methods to diverse problems including biomarker discovery, drug metabolism, nutrition and
environmental toxicology [1–5]. A fundamental question in many metabolomic studies is
whether or not an altered metabolic state (e.g., disease, mutation, diet, drug, etc.) being studied
is similar to or different from the reference state. The most common statistical approach for
the analysis of metabolomic data is principal component analysis (PCA) and partial least
squares discriminant analysis (PLS-DA) [6–8]. As an illustration, >55 metabolomic or
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metabanomic articles have been published in Anal. Biochem. since 2001, where >45% of these
papers use PCA, PLS-DA or a comparable statistical tool. The focus of the remaining
metabolomic papers is metabolite identification or methodology development, where a
statistical approach is not employed.

PCA or PLS-DA convert data obtained from high-throughput instrumental analysis into a
qualitative visual presentation (scores plot) [9,10] showing the clustering of biological samples
into either similar or different groupings. In some cases, sample data for different metabolic
states are clearly separated into distinct clusters (e.g., wild type cells versus mutant cells). Other
cases arise where the separation of data clusters is not so clearly defined. Even though the
presentation of data in principal component (PC) scores space is the result of a statistical
analysis, it is important to emphasize that the degree of separation between data clusters is not
quantitatively addressed directly by the PCA approach. Recently, the MetaboAnalyst web
server (http://www.metaboanalyst.ca/) has been developed to provide a robust set of tools for
the processing and analysis of metabolomics data [11]. PLS-DA and other supervised methods
have a tendency to over-fit the data and to identify non-existent clustering patterns.
MetaboAnalyst includes random forest [12] and support vector machine [13] methods to
determine the reliability or the significance of the PLS-DA discrimination. Similarly, a SIMCA
Cooman’s plot is used to predict class membership based on the distance to the model [14].
Alternatively, a simple visual inspection of the resulting scores plot does not provide a
statistically meaningful answer to this basic question: are the clustering patterns in a scores
plot significantly different?

Felsenstein encountered similar problems when attempting to assign confidence limits to
phylogenetic trees [15] and resolved the problem by applying a bootstrap statistical approach
[16,17]. This approach may also be applicable to the analysis of clustering patterns in scores
plots for metabolomic data. The metabolome is complementary to the transcriptome and
proteome, captures the functional or physiological state of the cell and provides a link between
genotypes and phenotypes [18]. Clearly, the range and quantity of metabolites observed are
dependent on both the organism’s proteome and genome, but direct correlations between gene
expressions and the metabolome is low [19]. Nevertheless, metabolites have been associated
with species evolution [20] and have been used to differentiate between different fungal species
[21], different Escherichia coli species [22], and to monitor the adaptive evolution of yeast
[23]. Phylogenetic trees have also been generated from the analysis of metabolic networks
[24] and reproduce phylogenetic relationships between species derived from 16sRNA
sequences [25]. Given that metabolomics maps reasonably well with phylogeny, it seemed
appropriate to explore the application of tree diagrams and the bootstrap method to determine
the significance of clustering patterns in scores plots.

A software program named PCAtoTree was developed to quantitatively analyze clusters of PC
values. The program converts metabolomic data expressed as PC scores into a series of
Euclidean distance matrices that can be used to generate metabolic trees and the corresponding
bootstrap values. The resulting tree diagrams are intended to be used in combination with the
original scores plot to decipher the significance of cluster similarity or differences. Importantly,
the tree diagrams should not be interpreted as a hierarchal representation of the original
metabolomics data [26].

Methods
The PCAtoTree program (available upon request) was written in the Awk scripting language
running under the Linux operating system. The PCAtoTree program uses data from a PC scores
plot generated by SIMCA (UMETRICS, Kinnelon, NJ). For each separate metabolic state, the
PCAtoTree program calculates the average of each PC and the related standard deviations.
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Next, any data points having a PC value that is more than two standard deviations from the
respective average are removed. The average PC values are then recalculated and these average
values define the cluster center for each metabolic state. To be consistent with the typical two-
dimensional PC scores plots commonly found in the literature, the results presented here were
calculated using only the first two principal components [27,28]. However, metabolomic data
analysis often requires the use of additional components. The PCAtoTree program was written
to accommodate eight principal components and can be expanded if necessary to include more
PC’s.

Distances between the average PC positions for each metabolic state are calculated using the
standard equation for the Euclidean distance between two points.

[1]

Because this distance matrix is calculated from the average PC position for each metabolic
state, there is a single unique distance between any given pair of metabolomic states. While it
is possible to calculate the distances between every possible combination of data point pairs,
the analysis of these distances is complicated primarily by the rapid progression in the total
number of distances to be calculated with each successive data point. Also, it will not
fundamentally change the definition of the cluster center, but will unnecessarily complicate
the bootstrapping analysis. Furthermore, a Euclidean distance does not capture direction so an
average distance from every possible combination of data points will over-estimate the
separation of closely spaced states. A similar circumstance occurs for a data set with a relatively
large standard deviation, where the larger distances will skew the average separation.

Most importantly, the PCAtoTree program randomly resamples the data for each metabolic
state to apply standard bootstrapping methods to assess the significance of the similarity
(overlap) or difference (separation) observed between pairs of data clusters. For each metabolic
state (e.g., the wild-type state), the program randomly draws data points from the dataset to
determine an average PC score. It is important to note that the PCA analysis was performed
only once and each round of bootstrapping utilizes the same PC scores dataset. Data points
previously flagged as outliers remain excluded. A particular data point may be chosen more
than once or completely excluded in the new average PC calculation, but the total number of
data points randomly drawn is equivalent to the original size of the dataset. The new PC average
values are then used to calculate a new distance matrix. Resampling is repeated until a total of
100 distance matrices have been created. The resulting distance matrix file is transferred to
Version 3.68 of the PHYLIP (http://www.phylip.com) [29,30] suite of software programs for
completion of the bootstrapping and visualization of the results as metabolic tree diagrams.

Specifically, the FITCH program in PHYLIP performs a weighted least-squares analysis of
the 100 Euclidean distance matrices from PCAtoTree to minimize the distances between the
nodes [31]. The minimized distances are used to generate a summary metabolic tree. Virtually
all metabolomic studies incorporate a reference or control group (e.g., a wild-type cells, healthy
subjects, etc.). This group is defined as the outgroup for the purpose of the FITCH distance
program. FITCH also produces a family of individual metabolic tree diagrams that are analyzed
using the PHYLIP CONSENSE package with the majority-rule extended setting. CONSENSE
counts the number of times an identical branch is found. When the number of bootstrap steps
(and therefore the number of individual trees) is 100, these values represent the percentage that
a given branch appears. Using the majority rule extended setting [32], bootstrap values below
50% indicate that none of the possible branch patterns appears even 50% of the time and implies
a statistically insignificant separation. Similarly, portions of the metabolic tree without a
bootstrap value should be treated as unresolved. As bootstrap values rise above 50%, the
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confidence described by the tree branch also increases. Obviously, bootstrap values of 100%
indicate complete statistical confidence in the overlap or separation of the metabolic states
shown by the tree. Trees were visualized using the Phylip DrawGram program.

Simulated metabolic PCA data was used to illustrate the bootstrapping process (Figure 1). Data
points were randomly generated in Excel to produce four clusters of ten points each: (i) circles
had an average PC1 and PC2 scores corresponding to −5.94 and −2.72, respectively and a
standard deviations of 0.89 (PC1 axis) and 1.00 (PC2 axis), (ii) triangles had an average PC1
and PC2 scores corresponding to −5.94 and 0.28, respectively and a standard deviations of
0.99 (PC1 axis) and 1.00 (PC2 axis), (iii) diamonds had an average PC1 and PC2 scores
corresponding to −3.91 and 2.28, respectively and a standard deviations of 0.98 (PC1 axis) and
1.00 (PC2 axis), and (iv) squares had an average PC1 and PC2 scores corresponding to 4.93
and 0.28, respectively and a standard deviations of 0.74 (PC1 axis) and 1.00 (PC2 axis). The
squares cluster was placed to the far right side of the PC scores plot to represent the reference
or control metabolic state. The circles, triangles and diamonds clusters are placed near each
other on the left side of the PC scores plot and represent different metabolic states of interest.
The open symbols represent the original dataset and remain fixed.

Closed symbols represent the average center position obtained from random resampling of the
data. These points move to reflect different possible resampling results. Panel A represents the
case where the resampling results in the average center of the diamond dataset is closest to the
average center of the triangle dataset. The Euclidean distance between the triangles and
diamonds is 1.68 units and the metabolic tree shows the diamonds and triangles grouped
together. Panel B represents the case where resampling of the same experimental data has
produced a new situation where the triangle center is now closest to the center for the circles
metabolic state. The distance between the triangles and circles is 2.50 units, but the distance
between the triangles and diamonds has now increased to 3.20 units. This scenario produces a
metabolic tree that now pairs the triangles and circles. After repeating the bootstrap process
100 times, a single consensus distance for each pair of cluster centers should emerge. These
consensus distances could be expressed as a distance matrix although it would be difficult to
readily discern relationships amongst the values. The tree format provides a more readily
interpretable format in which to view the groupings, relative distances between groups and
most importantly the bootstrap values.

The application of tree diagrams to analyze metabolomics PCA data was demonstrated using
previously published results, where experimental procedures for cell culture growth, sample
preparation, NMR data collection, processing and analysis, and PCA protocols were described
in detail [27,28]. Specifically, tree diagrams were generated from the analysis of 8-azaxanthine
activity in Aspergillus nidulans [27] and D-cycloserine activity in Mycobacterium
smegmatis [28].

Results
PC scores data points were manually generated in Excel to explore the relationship between
cluster overlap and the resulting bootstrap value. Again, four datasets were used with the cluster
on the far right representing the reference or control metabolic state. Datasets representing the
three remaining metabolic states were adjusted to have the same average PC1 value and then
overlapped along the PC2 axis. The spread (i.e., standard deviation) of the clusters in the PC2
dimension was empirically adjusted so that the standard deviations of all three clusters differed
by no more than 0.02. One of these clusters (circles) was then incrementally separated along
the PC2 axis and the resulting datasets were analyzed. The results of these simulations are
presented in Figure 2.
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The bootstrap value increases asymptotically as a function of the relative cluster separation
distance (Figure 2, top panel), which is defined as the distance between the cluster centers
divided by the standard deviation of the cluster spread. Cluster standard deviations of one and
two were used during the simulations. When the results were normalized to the relative
distance, the curves overlapped (data not shown). The solid line represents the best-fit curve
to simulations done using 10 data points per cluster. Point a represents the case where the three
clusters, with standard deviations of 2.0, were completely overlapped as shown in panel a
below. The corresponding metabolic tree has one branch representing the squares and a second
branch where the diamonds, triangles and circles are grouped together.

Point b in Figure 2 represents a separation of the circles from the diamonds and triangles by
one relative distance unit (see panel b). The spread of the data clusters was kept constant at
two standard deviations. Visual analysis of panel b shows that a relatively high degree of cluster
overlap remains at this relative distance. However, the average bootstrap value for point b was
81%. The corresponding consensus metabolic tree, obtained from 81 out of 100 random
samplings of the dataset, now has three branches. Squares and circles each form separate
branches and the third branch is the pairing of the triangles and diamonds. When the relative
distance is increased to three (point c), the bootstrap value has clearly reached the 100% upper
limit. Each of the 100 samplings of the data set produced the same three-branched tree described
for point b. Even at a relative distance of three, the circles do not appear to be completely
separated from the diamonds and triangles. This result illustrate that the tree diagrams can
identify statistically distinct clusters that are not readily apparent by visually inspecting PCA
scores plots.

The dashed line in Figure 2 (top panel) represents the best-fit curve for results obtained when
the number of data points per cluster was reduced from ten to six. As the number of data points
per cluster decreased, even greater separation of the clusters is required to achieve the same
bootstrap value. Even at a relative distance of five, the bootstrap value has not yet reached
100%. This clearly demonstrates the inherent value in obtaining replicates of 10 or more to
statistically differentiate between multiple metabolic states [33]. Assuming a normal
distribution, the accuracy of the average position for the cluster will improve with the number
of data points or alternatively an outlier has a diminished impact on distorting the true center
for the cluster. As the number of data points increases, the probability of selecting any given
point during the bootstrapping step is diminished and the distribution of data points away from
the average also decreases. As a result, the cluster’s center is more consistently defined and
the range of distances calculated during the bootstrapping step will diminish with increasing
data points, which, in turn, will decrease the variability in the number of distinct nodes and
increase the bootstrapping number. Importantly, shifting of the curves shown in Figure 2 (top
panel) only depends on cluster size and not the standard deviation since the graphs perfectly
overlap for different standard deviation values. Of course the graphs do indicate that if the
standard deviation for a cluster does increase, the separation between clusters would need to
increase proportionally to maintain a similar bootstrap percentage.

For simulations with four metabolic states, the minimum bootstrap value was consistently
around 35–38%. Presumably, the lower limit bootstrap value reflects clustering occurring at a
higher probability than random chance would allow. For three overlapped clusters, a pairing
would have to occur more than 33% of the time. When the number of metabolic states is
increased to five, the lower limit of the bootstrap value decreased proportionally to the number
of distinct metabolic states. However, the precise relationship between the lower limit of the
bootstrap value and the number of metabolic states remains unclear. But, the absolute value of
the minimal bootstrap number is basically irrelevant since a bootstrap number below 50% is
generally considered insignificant.
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It should be noted that the simulations presented in Figure 2 was designed to focus on the
separation of one dataset (circles) from two overlapped clusters (diamonds and triangles). In
these simulations, one group (squares) was defined as the reference or control data set and
deliberately placed far away from the remaining three data sets (metabolic states). In addition,
two groups (diamonds and triangles) were generated with essentially identical center positions
for the clusters. Both of these constraints likely favored increased statistical significance for
the intentional separation examined in the simulations.

To illustrate the application of this approach to actual NMR PCA scores data, we reexamined
data previously published for a study of the interactions between the fungal cells of Aspergillus
nidulans and the drug 8-azaxanthine (AZA) [27]. There are four metabolic states to be
considered: the wild-type A. nidulans, the wild-type cells treated with AZA, which inhibits the
enzyme urate oxidase, a urate oxidase deletion mutant of A. nidulans and the urate oxidase
deletion mutant treated with AZA. PCA of this system suggested that three of these metabolic
states (wild-type treated with AZA, mutant and mutant treated with AZA) were similar to each
other and distinctly different from the wild-type metabolic state (see Figure 3, panel A).

Further analysis of the PC 2D scores data from the original study using the PCAtoTree program
is also presented in Figure 3A. As expected, the resulting tree diagram shows the wild-type
data cluster is clearly separated from the other samples. However, in the original data set the
wild-type with drug data appeared adjacent to the mutant and mutant with drug data in PC
space. This small separation was attributed to some residual urate oxidase activity remaining
in the presence of the drug [27]. Based on a qualitative visual analysis, there did not appear to
be sufficient justification for separation of these groups. With development of the PCAtoTree
program, this issue can be addressed more quantitatively. In 100 out of 100 cases, the mutant
and mutant with drug data were clustered together. Likewise, in 100% of the cases, the
separation between wild-type with drug and the two mutant datasets was maintained. This
result demonstrates the improved resolution of data clusters made possible by using a metabolic
tree approach.

A metabolomic study of the effects of D-cycloserine (DCS) on mycobacterial metabolism
provides a more challenging system to easily analyze using a PCA 2D scores plot [28]. In
particular, sample populations for the ten different metabolic states range from 6 to 20. The
original PCA scores plot and the resulting metabolic tree are shown in Figure 3 (panel B). At
the bottom of the tree, the D-alanine racemase null mutant (TAM23) cells are clearly separated
from the remaining nine metabolic states. Next, the wild-type (mc2155), D-alanine racemase
over producing DCS resistant mutant (GPM14), undefined DCS resistant mutant (GPM16)
and TAM23 complemented with wild-type D-alanine racemase gene (TAM23-pTAMU3) cells
are found on the left side. These were originally reported as clustering together. The metabolic
tree analysis shows that the TAM23-pTAMU3 separates from this group 97% of the time.
Clearly, these similar cell lines have small, but significant, variations from each other. The
branch leading to the cells treated with DCS has a bootstrap value of 100 indicating a complete
separation of the drug-treated samples from the non-drug treated samples. Within the group of
five cell lines treated with DCS, the DCS-GPM14 and DCS-TAM23 were associated with each
other 67% of the time. Other associations within the DCS treated samples occurred at even
lower levels. This more quantitative analysis does not contradict any of conclusions presented
in the original report.

Discussion
The PCAtoTree approach was developed to address the question of overlap versus separation
of data clusters in PC scores plots produced by metabolomic studies. This question is critical
to the interpretation of scores plots produced from PCA and similar statistical techniques.
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Overlapped data clusters suggest a similar metabolic process while separated data clusters
imply different underlying metabolic mechanisms. The overlap/separation issue is further
complicated as the number of metabolic states included in the study increases. However, due
to difficulties with the proper application of common statistical tests (e.g., univariate T test,
ANOVA, MANOVA) this question has not been addressed until now.

The PCAtoTree approach recognizes that the overlap/separation issue can be rephrased more
quantitatively in terms of distances between the centers of the data clusters. Another advantage
of the bootstrap approach is that it is less sensitive to the number of data points per cluster.
This facilitates comparisons when the control and sample populations are of different sizes as
was the case in the mycobacterial study of Halouska and coworkers [28]. Even though the
approach can be applied to samples of variable size, one should keep in mind that larger sample
populations are still desirable.

Tree branches with bootstrap values below 50% suggest overlap of the data clusters in PC
scores space or an insignificant separation. In the metabolic studies, these metabolic states
would be considered essentially identical. Conversely, bootstrap values of greater than 50%
indicate that the corresponding branch of the metabolic tree occurs more often than alternative
branching patterns. As seen in Figure 2, bootstrap values greater than 50% are possible even
when visual analysis of the data confirms that substantial overlap of the clusters remains. This
illustrates a strength of the tree diagram approach; an unbiased analysis of cluster centers
identifies separations that are not easily visualized.

The issue of cluster overlap or separation can now be expressed in more quantitative terms
using tree diagrams with bootstrap values. However, in the simplest sense the question of
whether or not two clusters are overlapped has only two answers: overlapped or not overlapped.
The bootstrap value does not provide a definitive answer to the overlap question in all cases.
But, it does provide a useful measure of the confidence in the resulting interpretation of the
experimental data. Our analysis also clearly demonstrates that increasing the number of
replicate data points significantly improves the reliability of differentiating between two
clusters. Figure 2 illustrates a dramatic increase in the bootstrap number from a doubling in
the number of data points while keeping all other factors constant. Effectively, a larger number
of replicate data points better define the cluster’s center, which, in turn, allows for an improved
differentiation between clusters that are still visibly overlapped. This result also makes clear
the challenge involved in attempting to assess the degree of cluster overlap or separation by
visual inspection alone.

Application of the PCAtoTree approach to the drug metabolism results of Forgue and
coworkers [27] demonstrated that the separation of the wild-type with drug metabolic state
from the mutant metabolic states was small but significant by virtue of the fact that it was found
in all 100 cases. A higher level of confidence can now be placed in a previously uncertain
observation. In the case of the mycobacterial metabolism study by Halouska and coworkers
[28], the clear overlap of the five DCS-treated samples can now be expressed as occurring 100
out of 100 times. A claim of separation of the TAM23-pTAMU3 from the three nearby groups
(mc2155, GPM14 and GPM16) is based on 97 out of 100 results. While a claim of separation
of GPM16 from mc2155 and GPM14 is supported at the lower level of 74 out of 100 results.

In summary, the PCAtoTree approach addresses the question of similarity, or difference,
between metabolic states in a metabolomics experiment. Bootstrapping provides a more
quantitative measure of the confidence in a claim of separation or overlap of experimental data
clusters. The approach is applicable when sample populations between metabolic states vary
significantly. Also, tree diagrams will greatly simplify the analysis of complex metabolic
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studies that involve numerous experimental conditions where the visual inspection of clustering
patterns is extremely challenging.
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Figure 1.
Examples of PC scores plots with the corresponding Euclidean distance matrices and metabolic
trees. Open symbols represent simulated experimental data points. Closed symbols represent
the cluster center positions calculated after random sampling of the respective datasets. Panel
A presents the case where the centers of triangles and diamonds are closest together. Panel B
presents the case where the triangles and circles have the smallest separation.
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Figure 2.
(Top) Best-fit curves obtained from simulations of bootstrap value as a function of relative
cluster separation distance. Solid line calculated using 10 data points per cluster. Dashed line
calculated using 6 data points per cluster. (Middle) Selected PC scores plots used for
simulations (10 data points per cluster, cluster standard deviation = 2): a) relative distance =
0, b) relative distance = 1, c) relative distance = 3. (Bottom) Metabolic trees corresponding to
the PC scores plot shown above.
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Figure 3.
Panel A shows the PC scores plot and the corresponding metabolic tree for the Aspergillus
nidulans fungal mutant and drug treated samples. The labels correspond to: A. nidulans urate
oxidase mutant ( ), wild-type with 8-azaxanthine (AZA, ), urate oxidase mutant with AZA
( ), and wild-type cells (♦). Panel B shows the PC scores plot and the corresponding metabolic
tree for the Mycobacterium smegmatis mutants and drug treated samples. The labels correspond
to: wild-type (mc2155, ), D-alanine racemase null mutant (TAM23,●), D-alanine racemase
over producing DCS resistant mutant (GPM14, ), undefined DCS resistant mutant (GPM16,

), TAM23 complemented with wild-type D-alanine racemase gene (TAM23-pTAMU3, ),
cells treated with D-cycloserine (DCS): TAM23 ( ), GPM14 ( ), GPM16 ( ) and TAM23-
pTAMU3 ( . Bootstrap values above 50% are indicated. (Reprinted with permission from
references 27 and 28, Copyrights 2006 and 2007 by American Chemical Society).
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