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Abstract—The use of JavaScript for web applications has
increased in recent years due to its short learning curve, maintain-
ability, and ease of portability across different mobile operating
systems. However, the performance of dynamic-typed languages
such as JavaScript significantly lag behind their corresponding
C/C++ native code. Recent advances in JavaScript compilers have
resulted in notable improvements for client-side Web applications.
However, the impact on the architectural execution of these soft-
ware optimizations is not well understood. Furthermore, because
many of the client-side benchmarks are not representative of
real world websites and applications, thus the would-be impact
of many software optimizations may be overestimated.

In this paper, we present an in-depth architectural charac-
terization of a newer JavaScript benchmark suite, as well as
a profile analysis of the popular JavaScript v8 runtime engine
from Google. Our analysis illustrates the architectural impact of
specific runtime optimizations, as well as additional insights of the
interaction between the runtime engine and different JavaScript
applications. We perform our evaluations using stock versions
of new JetStream client-side JavaScript workloads, as well as
on modified versions that closes the program-level representation
gap with real-world websites.

I. INTRODUCTION

The emergence of the smartphone and tablet devices as
widely used consumer devices has focused the community’s
attention on improving web-based applications. These applica-
tions are typically written in Javascript as programmers need to
balance users’ demand for rich graphical interfaces and support
a large range of user inputs, along with their own desire to
provide portability, easier maintenance, and fast development
time across a range of mobile platforms. Dynamic typed
languages reap such benefits through the facilitation of a high-
level abstraction, but come at the cost of slower performance
when compared to procedural and object-oriented languages
such as C, C++. Despite recent innovations towards increased
performance and power-efficiency in mobile platforms, em-
bedded processors do not employ some of the more advanced
architectural techniques (e.g. deep pipelines, complex branch
predictors) seen on desktop and server platforms because of
power and space constraints.

Furthermore, Ratanaworabhan et al. show that existing
JavaScript benchmark suites such as Octane [1], Sunspider [2],

Emscripten [3], and V8 [4] have been shown to characteris-
tically differ from real-world websites and modeling of user-
activity [5]. More specifically, they observe that real web ap-
plications contain much more JavaScript code than compared
to V8 and SunSpider, with most of it being cold as it is never
invoked. To bridge this representation gap, they show that the
benchmark results containing 1MB of coldcode are more likely
to be representative of browser performance on real web sites.
This representation gap has hindered the community’s ability
to truly understand the complexity performance tradeoffs of
advanced architectural optimizations.

In addition, understanding the execution characteristics of
the runtime engine, as well as its impact on the system
architecture provides yet another dimension towards bridg-
ing the performance gap. Maximizing performance requires
minimizing runtime execution time. and thus a deeper under-
standing of the performance implications caused by runtime
engine’s interaction with the JavaScript workload can enable
programmers to better identify program-level bottlenecks.

To help address these challenges, several previous papers
have performed characterization studies: such as analyzing the
architectural impact of conventional JavaScript the SunSpider
and V8 benchmarks [6], analyzing the program-level difference
between these conventional benchmarks and real websites, as
well as suggesting how the program representation gap can be
minimized [5]. Others have done a large scale study of the use
of Eval in JavaScript applications [7], as well as a limit study
of JavaScript parallelism [8].

In this paper we perform both an architectural and runtime
evaluation of client-side JavaScript (JS) applications in the
context of mobile platforms. Our detailed analysis shows the
impact, and in many cases high variability of runtime charac-
teristics that call into question the applicability of traditional
optimizations geared towards applicability of a broader set of
workloads. We make the following contributions:

• Architectural characterization of stock Mobile & Jet-
Stream suites

• Examination of architectural and performance impact of
modified JS workloads intended to bridge the representa-
tion gap
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Fig. 1: InlineCache Impact on V8 Performance

• Program-phase variability behavior analysis
• Evaluation of the architectural impact of InlineCaches
• Performance analysis of V8 JavaScript runtime engine

The rest of this paper is organized as follows: Section
II provides some background discussion and for this work.
Section III discusses the methodology for our experiments. We
discuss the architectural characterization in Section IV, and our
runtime characterization in Section V. We cover related work
in Section VI, and conclude in Section VII.

II. BACKGROUND

A. Javascript Runtime Engine

1) Overview: In this paper, we specifically consider the
open-source V8 Javascript Engine [4]. V8 consists of two
compilers: the full compiler that is responsible for generating
(inefficient) code quickly as possible; and an optimizing com-
piler, Crankshaft, responsible for generating optimized code
for hot code, code that gets executed frequently. Crankshaft
performs type analysis through the use of Inline Caches to
refine its knowledge of program types so that efficient code
can be generated.

2) Inline Caches: Inline Caching (IC) is a commonly
implemented technique used for improving performance of
dynamic-typed langauges [9]. A key assumption of dynamic-
typed langauges is that property accesses at a given access
site are usually performed on objects with the same type.
Thus, maintaining type information regarding object properties
provides a fast path for execution, without requiring invoking
the costly runtime system to determine an object’s property
type.

It is well established that the use of ICs significantly
improve performance [10]. Figure 1 shows the impact on
performance (lower is better) of having ICs-enabled versus
disabled for several of the V8 benchmarks. The X-axis de-
notes the benchmark name, and the Y-axis its corresponding
execution time. X-axis labels appended with no-IC represent
the benchmark having ICs disabled. We later show an analysis
breakdown of the architectural characterstics of ICs in Section
V-A.

As illustrated, enabling IC can provide up to orders of
magnitude better performance as a result of efficient type-
predictability. However, their effectiveness for these JavaScript

suites cannnot be extrapolated to their actual impact for real
websites. As others have shown, the behavior of JavaScript
code is more dynamic in real websites, such that type-
predictability is significantly harder [5], [7].

B. Architectural Characteristics

Recent works provide detailed micro-architectural charac-
terizations of mobile and event-driven applications, and show
that they are significantly different than widely used CPU-
intensive/desktop benchmarks [6], [11], [12]. More specifi-
cally, these workloads suffer from significantly higher instruc-
tion cache misses and branch mispredictions - due to increased
code size as well as extensive time spent in shared libraries and
operating system processes. Moreover, the execution switches
among different binaries frequently, such that they are in-
terleaved rather than structured into discrete phases. In such
situations, instruction locality and branch prediction accuracy
may be affected, resulting in poor performance. Furthermore,
the event-driven nature of web applications adds another level
of obscurity to predicting program control flow.

III. EXPERIMENTAL METHODOLOGY

A. Workloads

For this work, we use benchmarks from the JetStream
suite, [13], the Massive benchmark [14], BBench [11], and
MobyBench [15]. The JetStream suite combines a variety
of benchmarks that cover a variety of advanced workloads
and programming techniques. It includes benchmarks from
SunSpider 1.0.2 [2], Octane 2 [1], and Emscripten 1.13 [3].

Although JetStream introduces several upgrades (e.g. in-
creased working set sizes, bug fixes) to the standard JavaScript
suites of SunSpider and Octane, most of their tests remain
small. Although some of the JetStream benchmarks test asm.js
performance, several aspects are not fully measured. Specifi-
cally, asm.js often appears as large files, which offer different
performance characteristics than that of smaller source files.

Large functions are difficult for the JavaScript runtime
engine to optimize efficiently due to their sheer size. Because
large codebases are likely to contain very large functions,
these functions are not fully optimized. In our analysis, the
Massive benchmark is included in order to stress test the
memory subsystem given a larger code footprint. MobyBench
is a benchmark suite composed of mobile applications such as
gaming, social networking, email, and audio/video players.

B. System

For our architectural characterization analysis we use the
gem5 simulator [16]. The architecture simulated is based
on a mobile system, running Android ICS version [17]. The
architecture details are detailed in Table I. In contrast to
modern systems, the default instruction cache in gem5 is
coherent.

For our V8 runtime analysis, we use PIN [18] to extract the
following information: opcode distribution, function call count,
and dynamic function body size. PIN is used for this part of
the analysis in order to avoid the simulation cost overhead
and kernel rebuilding process for process and function name
tracing required for gem5. The host system parameters used



for the PIN analysis is listed in Table II. Table III lists the
JetStream benchmarks and Table IV benchmarks evaluated in
this work.

Processor 1 (1 GHz)
OoO

ARM ISA
L1 (I and D) caches each 32 KB 2-way,

32 byte-block, 2-cycle
Shared L2 cache 2 MB,

16-way unified,
32-byte blocks, 30-cycle

Main Memory DDR3
256MB

Memory Bus 500MHz
12.8 GB/s

Kernel Armdroid 2.6.35
TABLE I: Simulation System Parameters

Processor 4 (2 GHz)
OoO

x86 ISA
L1 (I and D) private caches 32 KB 2-way

Shared L2 cache 2 MB
Main Memory 12GB

Kernel Linux-3.2.0-24-generic
TABLE II: Host System Parameters

IV. ARCHITECTURAL CHARACTERIZATION

In this section we focus our analysis on memory behav-
ior of the applications in order to determine what types of
architectural optimizations are likely to significantly improve
workload performance.

A. Instruction & Data Footprints

Conventional scientific workloads exhibit an instruction
footprint that is able to fit within the capacity of the L1

Benchmark Category suite
base64 Base Encoder/Decoder SunSpider
bigfib Fibonacci numbers Emscripten
box2d Physics Engine Octane2

code-firstload Code load speed Octane2
cordic Cordic Algoritm SunSpider

crypto-aes Advanced Encryption Standard SunSpider
crypto-md5 MD5 Implementation SunSpider

dry Dhrystone synthetic computing
earleyboyer Chart Parser & Logic Programming Octane2

gbemu GameBoy emulator Octane2
floatmm Floating point matrix multiply Emscripten
mandreel Physics engine’s performance Octane2

navierstokes Fluid simulation Octane2
n-body Solar system simulation Sunspider
raytrace Simple raytracer SunSpider

regexp-2010 Regular expressions Octane2
splay Manipulation of Splay tree Octane2

tagcloud Parses JSON SunSpider
tofte Eval usage SunSpider

typescript Microsoft’s Compiler Octane2
xparb Date Formatting/Parsing SunSpider
zlib Zlib compilation Emscripten

3dcube 3d Cube rotation SunSpider

TABLE III: JetStream Benchmarks
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Fig. 2: L2 Accesses Breakdown

instruction cache, while the occupancy of the shared last-level
cache (SLCC) is predominately used for data. In contrast, com-
mericial workloads exhibit instruction footprints larger than
the L1I cache, and thus depend on the SLCC for additional
storage. However, for commercial workloads the instruction
occupancy requirement is significantly smaller than its data
counterpart given that the capacity of the SLCC in high-end
servers is much larger than mobile platforms. Therefore, SLLC
optimizations for commercial workloads have primarily fo-
cused on the data portion. In contrast, mobile platforms exhibit
both large instruction footprints and a limited capacity SLLC
such that an efficient management policy requires addressing
both components. Figure 2 illustrates a breakdown of L2
accesses between instruction and data for several benchmarks.
The horizontal axis represents the ratio, while the vertical
axis denotes the benchmark. For each benchmark the ratio of
accesses for the instruction, data, instruction TLB walker, and
data TLB walker are shown.

B. DeadBlock Analysis

Deadblock (blocks that are only used once) prediction
can be used to identify blocks to be dead in order to drive
cache management policies that replace deadblocks with live
blocks (blocks with higher reuse). Improved cache policies will
improve the efficiency and utilization of the caches increasing
the hit rate, and thus leading to performance improvement.

Observation The deadblock ratio (the ratio of deadblocks
to total blocks in the cache) varies significantly not only across
different JavaScript workloads, but also between the instruction
& data streams.

We breakdown the deadblock analysis results as follows.
We first categorize deadblocks as either being instruction or
data deadblocks. We also illustrate the deadblock ratio for

Benchmark Category Operation
360buy Online Shopping Lists products items

frozen bubble Game Loads a game
kingsoftoffice Document Opens document file

netease News loads news content
sinaweibo Social Network Loads Information

ttpod Audio Plays a song

TABLE IV: MobyBench Suite



cache misses (the percentage of cache misses to blocks that are
only used once). These results are illustrated in Table V. The
significant deadblock miss ratio is noteworthy, as it suggests an
opportunity for bypassing mechanisms to improve efficiency.

However, one point to be made is that predicting dead-
blocks for loop-based programs using techniques such as
sampling the reference count are effective because control-
flow access behavior is more predictable. In contrast, because
event-driven web applications exhibit poor instruction locality
and lower branch prediction accuracy due to the fact different
sets of events are triggered depending on input and typically
short executing body event-handlers, conventional techniques
may not be as effective. Furthermore, deadblock predictors that
utilize program counter (pc) such as [19] to drive bypassing
also may not suitable in the presence of frequently occuring
self-modifying code. This is because the optimizing and/or
deoptimizing of JavaScript code will likely make it harder for
such prediction schemes to maintain steady-state.

C. ColdCode-Effect

Previous work has shown that workloads from existing
Javascript suites differ from their real-world counterparts [5],
[20]. A main difference is that real web applications contain
significantly more Javascript code, with most of it being cold,
code that is processed by the runtime engine but never actually
invoked during execution of the benchmark. To bridge this
difference, we follow their example and add cold code to the
benchmark suite in order to make them more representative and
determine the resulting architectural characteristics. Specifi-
cally, we add about 1MB of JavaScript from the JQuery Mobile
library as part of the input source code. However, functions
from this library are never invoked by the workload and are
thus only processed once by the JavaScript runtime during the
loading phase.

The effects of the coldcode addition are illustrated in
Figures 3 - 4. Figure 3 depicts the change in missrate while
Figure 4 presents the change in overall access behavior for
the instruction cache, data cache, and SLCC. The figures
illustrate a grouped bar chart denoting the percent change of
several cache-related metrics for two workloads: base64, and
navierstokes. The X-axis illustrate the percent change (original
version / coldcode verion) and the Y-axis indicates the metric.

Focusing on the top-level (instruction & data) cache mis-
srate behavior in Figure 3, we see that the addition of the
coldcode results in about 20-30% worsening of the instruction
missrate, while about 15% worsening for the data cache
missrate.

Benchmark Instruction Ratio Data Ratio
bigfib 0.33 0.13
box2d 0.24 0.45
cordic 0.31 0.50

codefirstload 0.48 0.42
dry 0.31 0.33
float 0.34 0.35

navierstokes 0.23 0.41
nbody-c 0.34 0.55

regexp-2010 0.22 0.42
typescript 0.24 0.36

TABLE V: DeadBlock Ratio
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Fig. 3: ColdCodeEffect on Misses
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Fig. 4: ColdCodeEffect on Accesses

Observation The impact on the instruction cache is almost
double the impact on the data cache due to the fact that because
these workloads already exhibit high instruction misses per
kilo-instruction (MPKI) due to their poor instruction locality,
the addition of coldcode significantly reduces the amount of
instruction reuse the benchmark was utilizing without the
coldcode.

Turning our attention to the SLCC, we again see that the
impact of coldcode is different for the L2-Inst missrate of
NavierStokes than it is for Base64. Specifically, the L2-Inst
missrate worsens more than compared to the L2-Data missrate
for Navierstokes, whereas the opposite is true for Base64. This
is likely due to the fact that because Base64 experiences greater
instruction reuse (note the larger increase of L2-Inst Accesses
for Base64 than NavierStokes (Figure 4), allowing the base
LRU replacement policy to preserve the instructions.

Observation Despite the high instruction access to the
SLCC, the overall missrate of the SLCC is closer linked to the
L2-Data missrate component than that of the L2-Inst missrate.
However, this does not suggest that a cache management policy
that prefers data is likely to provide better performance as the
effects of instruction & data misses are different.

D. IPC Distribution

In this subsection we evaluate the distribution of the sam-
pled IPC (instructions per cycle) for the different workloads.
The motivation for monitoring changes in the runtime IPC is to
determine if a program exhibits significantly varying program
phase changes, an observation that cannot be determined by
simply looking at the average of the entire program. Figure
5 plots the sampled IPC into histograms for both the Moby-
Bench and JetStream benchmarks. The plots illustrate that the
JetStream benchmarks exhibits far greater variance between
phases.

Observation This larger variance suggests that the Jet-
Stream benchmarks are much more likely to benefit from pro-
gram phase optimizations, rather than through entire-program
performance metrics. In contrast, the MobyBench suite illus-
trates comparable IPC performance throughout program exe-



cution, suggesting that overall program performance metrics
are good indicators for performance tuners.

E. Memory Bandwidth

Figure 6 illustrates the memory bandwidth requirements for
several of the benchmarks. As our target platform is that of a
mobile platform, the parameters of the system are indicated in
Table I. To maintain reasonable simulation times (1-2 days) the
amount of simulated time is 30 seconds. We see that both the
conventional (Sunspider, Octane), realistic (Box2d, Codeload),
as well as mobile workloads (e.g. BBench) exhibit similar, yet
underwhelming memory bandwidth demands.

Fig. 6: Memory Bandwidth
V. V8 RUNTIME CHARACTERIZATION

In this section we discuss our performance profiling of
the V8 JavaScript runtime engine. We analyze the runtime
engine to collect profile analysis in order to identify functions
that are invoked frequently and spend a lot of time in as
areas for potential optimizations. Tiwari et al. [6] shows that
a significant part of the total execution is spent in the V8
JavaScript runtime engine. Obtaining a deeper understanding
of the bottlenecks of the runtime engine is required in order
to be able to further optimize JavaScript performance.

In the following subsections we perform an instruction
characterization of InlineCaches and identify hot code of V8.
Characterizing the impact of ICs would suggest the type
of processor support needed to improve performance (e.g.
additional ALU units, bigger branch-history tables). Similarly,
identifying the heavily used components of V8 can suggest op-
portunities for architectural enhancements unique to JavaScript
performance.

A. Instruction Characterization of Inline Cache Performance

Because of the limited effectiveness of ICs in real websites,
it is important to consider the architectural impact for when
ICs are disabled. Specifically, we analyze several architectural
metrics: Instruction Opcode distrbution and number of instruc-
tions. Figure 7 illustrates the architectural break the impact of
ICs for several of the V8 benchmarks. For each of the subplots,
the X-axis indicates the benchmark name, while the Y-axis
represents the relative increase in operations. We observe that
the impact of having ICs disabled results in significantly more
instructions being executed. Subplot 7e illustrates the overall
total operations increase of the experiments.

Observation One key observation we see that is for
different benchmarks exhibit different increases for each type

of instruction. For instance, raytrace experiences the largest
relative increase of branch and Integer ALU operations, but
NavierStokes sees the largest relative increase in memory
operations. On the other hand, Crypto experiences the largest
increase in comparison operations. This indicates that opti-
mizations that target one opcode reduction (e.g. minimizing
ALU operations) would not be effective for all benchmarks.

B. V8 Performance

In this subsection we show the performance characteris-
tics of the V8 runtime engine when executing the different
benchmarks. In addition to identifying hot code as areas
for optimization, understanding the execution behavior of the
runtime illustrates the specific demands of the JavaScript
benchmark at a program-level. For instance, illustrating that a
large increase SLCC misses is due to poor type-predictability
that is identified by observing that a particular runtime function
is invoked repeatedly would help JavaScript programmers tune
their benchmarks accordingly.

The results presented in this subsection have all the default
runtime optimizations enabled (e.g. Inlining Cache). We tally
the function call count, dynamic function body size, and
their multiplcative factor to determine which parts are suitable
for optimizations. However, when deciding what parts are
good targets for optimizing, consideration is typically given
to common bottlenecks across a set of workloads rather than
benchmarks individually. This is done in order to determine
what optimizations are more likely to benefit a broader target
audience or domain.

For this we group all the workload function profiles to-
gether to determine which functions are invoked the most
often, and then focus our attention on the top twenty functions.
Figure 8 illustrates the top twenty functions that are called in
consideration of the entire suite. The vertical axis indicates the
function name, and the horizontal axis represents the number
of times it was called.

We see that the top three functions are: Internal-
LookupIterator, HandleScope, and FactoryNewNumber. Facto-
ryNewNumber corresponds to the allocation of new memory
on the heap, thus indicating that these benchmarks are memory
intensive. The other top 2 functions correspond to calls to the
construction of the Iterator class. High usage of the iterator
class suggests that a lot of time is spent traversing graphs, or
other unordered map-type datastructures. An important exam-
ple of this is the Global Value Numbering (GVN) optimization
performaned by Crankshaft. GVN is an optimization that
attempts to eliminate redundancy. More specifically, for each
instruction it generates a hashcode based on its opcode, input,
any data associated with it, and then inserts it into a hash table.
When there exists an equivalent instruction in the hash table,
GVN deletes the later instruction and uses the one already in
the table [21].

The remaining top functions mainly correspond to run-
time object property settings, which have to do with updates
(SetProperty) and reads (getProperty) of dynamically allocated
objects.

Figure 10 illustrates the V8 function profiles for several
individual benchmarks. Viewing the fuction call distribution
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Fig. 5: IPC Distribution for MobyBench & JetStream Benchmarks
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Fig. 7: V8 InlineCache Impact Breakdown

for the benchmarks individually help illustrate unique trends.
Specifically, for computationally intensive workloads such as
NavierStokes and Mandreel, we see that Parser and Scan-
nerAdvance are invoked frequently. Furthermore, these two
functions are invoked as frequently as the LookUpIterator.
In contrast, Parser and Scanner are not listed in the graphs
suggesting that optimizing those two functions are likely to
only benefit computational intensive workloads.

Another observation from the individual benchmark pro-
files suggest that these benchmarks frequently allocate memory
on the heap. This can probably be correlated back to how
JavaScript programs are typically written: frequent allocation
of memory for new objects with little concern for memory
management. Despite the frequent memory allocation, we only
see the garbage collector Scavenger routine show up in the

3dCube profile, suggesting that these benchmarks do not stress
the memory-limits of the system and most objects allocated are
predominately live.

After profiling the most invoked functions, we further
investigate the impact of these functions on total V8 per-
formance. More specifically, even though a function may be
invoked many times, its cost, in terms of number of program
instructions or cycles can be relatively minimal compared
to other less frequently invoked larger functions. To better
determine the true cost for each runtime function, we take the
function call count and multiply it by the dynamic bodysize
of the function. For simplication purposes we assume that
all instructions have an equvalent cost, such that the larger
the mutlplied factor, the greater its overall share of program
execution time.
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Fig. 9: V8 RunTime Function Profile Benchmarks
Illustration of the top twenty functions invoked for several benchmarks.

C. V8 Performance: IC-Disabled

In this subsection we evaluate the performance character-
istics of the V8 runtime engine with Inline Caching disabled.
Because the effectiveness of IC decreases for realistic web-
page browsing, an evaluation of the runtime engine under
this scenario is key to better understand areas for opti-
mizing. Because of the increased execution time associated
with disabling IC, we illustrate the comparable effects of
enabling/disabling IC on the shorter executing V8 workloads.
Figure 11 illustrate the function profile analysis on the runtime
when enabling/disabling IC for the NavierStokes and Splay
benchmarks. For each of the subplots the X-axis illustrates the
top twenty invoked functions, while the Y-axis represents the
call count.

Observation We see that the hot functions differ between
the when ICs are enabled and when they are disabled. This

suggests that optimizations targeted for this scenario may not
necessarily be applicable or useful when ICs are effective.
For instance, subfigure 11c shows that the dominant function
calls for executing the Splay benchmark with IC enabled are
memory-related: heap allocation, and the garbage collector
(Scavenger). In contrast, disabling IC for the Splay benchmark
(subfigure 11d) introduces multiple LookupIterator function
calls as well as calls to LoadIC Miss handling, the latter of
which would be expected.

Observation Another key difference is the orders of mag-
nitude difference in executed instructions noted in the Y-axis
count between Figures 11a and 11b. Because IC does not
have as much of an impact on splay’s performance, the Y-
axis counts between Figures 11c and 11d are the same. The
execution of the benchmarks with ICs disabled result in the
functions being invoked significantly more times, and hence
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Fig. 10: V8 RunTime Function Total Cost Profile Benchmarks
Illustration of the top twenty functions total cost for several benchmarks. The result for each function corresponds to its call
count multiplied by its dynamic function body size.

execute orders of magnitude more instructions than when ICs
are enabled. This again correlates back to Figure 7 illustrating
the large increase of number instructions executed.

VI. RELATED WORK

Because of the renewed focus on improving mobile and
web performance, recent proposals have dedicated their efforts
to better understand JavaScript workload characteristics and
propose optimizations for improving performance.

A. Analysis Studies

Fortuna et al. conducted a limited study on the poten-
tial of JavaScript parallelism [8]. Ogasawara focuses on the
runtime analysis for server-side JavaScript workloads [10].
Tiwari et al. perform an architectural characterization and
principle component similarity analysis of the SunSpider and

V8 benchmarks [6]. Due to the representation gap between
the standard JavaScript workloads and real websites’ content
and modeling of user-interaction, others have strived towards
creating more realistic frameworks: Gutierrez et al. created
the general web-browsing benchmark: BBench [11]. Richards
et al. have developed an automated browsing benchmark, JS-
Bench, that models a fixed period of user interaction for several
of the most popular websites [20]. Pandiyan et al. performan
energy characterization and architectural implication study of
their own MobileBench suite [12]. They enhance BBench
to incorporate more realistic user actions such as different
scrolling & zooming movements. The primary focus of both
the BBench and MobileBench works have been to determine
the architectural and energy characterization of mobile work-
loads such as general web browsing, and loading of games or
photos in a gallery. Due to the limited user-interaction mod-
eling presented in their benchmarks, the JavaScript engine is
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Fig. 11: V8 RunTime Function Profile Inline Caching Effect

barly utilized. Our analysis essentially covers both dimensions:
architectural characterization of a newer JavaScript suite and a
detailed performance analysis of a popular JavaScript runtime
engine. Furthermore, our analysis is provided in the context
of a mobile system which better illustrates the architectural
impact of the runtimes’ optimization & workload behavior in
a more constrainted environment.

B. Proposed JavaScript Optimizations

EFETCH, RDIP, and PIF are Instruction-cache prefetchers
have been recently proposed [22], [23], [24]. The first two
exploit characteristics of event-driven workloads, to create an
event signature to capture current event and function calling
context to predict the control-flow within a function. There
are other proposed techniques to improve JavaScript execution
that are orthogonal to this work. Anderson et al. propose
extending the ISA to load and check the type with a single
instruction [25]. Ahn et al. identify two design decisions
in the V8 JavaScript Engine that hinders type predictability.

They propose three software optimizations that minimizes type
unpredictability and reduces the dynamic instruction count for
execution for real websites [26]. Zhu et. al perform design-
space exploration to determine energy efficiencies trade-off
between processor designs for web applications. They also
propose implementing the browser engine cache as a collection
of registers where each register holds exactly one DOM
(render) tree attribute [27].

VII. CONCLUSION

The increased popularity of JavaScript enabled browsers
and applications has focused the community’s efforts towards
improving performance. Given that its event-based program-
ming model is inherently different than conventional scientific
workloads, requires solutions for optimizing performance that
ones that have been applicable to other domains. It is this
observation that motivates the need to investigate the per-
formance characteristics at a finer-grain level that has been
done before. In this paper, we present an in-depth architectural



Fig. 8: V8 Function Total Call Count
Illustration of the top twenty functions invoked across the
entire suite.
characterization of the new JetStream JavaScript suite. We in-
vestigate key characteristics such as deadblock ratio, coldcode-
effect on cache performance, IPC variability, and memory
bandwidth. We also examine the instruction characterization
of type-predictability, and perform a detailed study of the
interaction between the runtime engine. We find that tailoring
stock JavaScript bencmarks towards more realistic web-sites
significantly increases the system memory pressure. Moreover,
we illustrate the variance in program-phase behavior, as well
as in runtime behavior due to presence or absence of Inline
Caching. This variance signifies that optimizations that target
specific JavaScript program-phases or accelerating ineffective
type-predictability are more likely to be impactful and useful
than traditional optimizations that have been targeted for broad
applicability.
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