
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

2015

Runtime-Driven Shared Last-Level Cache
Management for Task-Parallel Programs
Abhisek Pan

Vijay Pai

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Pan, Abhisek and Pai, Vijay, "Runtime-Driven Shared Last-Level Cache Management for Task-Parallel Programs" (2015). Department
of Electrical and Computer Engineering Technical Reports. Paper 466.
http://docs.lib.purdue.edu/ecetr/466

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/77940911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F466&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F466&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F466&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F466&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F466&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F466&utm_medium=PDF&utm_campaign=PDFCoverPages

Runtime-Driven Shared Last-Level Cache Management for
Task-Parallel Programs

Abhisek Pan
Purdue University,

Department of Electrical and Computer
Engineering,

West Lafayette, IN, USA.
pana@purdue.edu

Vijay S. Pai
Purdue University, Google

Department of Electrical and Computer
Engineering,

West Lafayette, IN, USA.
vpai@purdue.edu

ABSTRACT
Task-parallel programming models with input annotation-
based concurrency extraction at runtime present a promising
paradigm for writing parallel programs for today’s multi or
many-core heterogeneous systems. Through management of
dependencies, data-movements, task assignments, and or-
chestration, these models markedly simplify the program-
ming effort for parallelization while exposing higher levels
of concurrency. In addition, the use of a runtime platform
enables innovations in the hardware-software interface that
allows the hardware to be highly responsive to the charac-
teristics of the application and vice versa.

In this paper, we show that, for task-parallel applications
running on multicores with a shared last-level cache (LLC),
the concurrency extraction framework can be used to sub-
stantially improve the efficiency of the shared LLC. We de-
velop a task-based cache partitioning technique that lever-
ages the dependence tracking and look-ahead capabilities
of the runtime. Based on the input annotations for future
tasks, the runtime instructs the hardware to prioritize data
blocks with future reuse and evict blocks with no future
reuse. These instructions allow the hardware to preserve
all the blocks for a subset of the future tasks, thus creat-
ing partitions for tasks rather than threads. This leads to
a considerable improvement in cache efficiency over what is
achieved by existing thread-centric cache management poli-
cies. Thread-centric cache management policies fail to track
the complex patterns of data-reuse among tasks that can be
assigned to arbitrary cores and hence replace blocks for all
future tasks resulting in poor overall hit-rates. The proposed
hardware-software technique leads to a mean improvement
of 18% in application performance and a mean reduction of
26% in misses over an LRU-replacement based LLC for a set
of input-annotated task-parallel programs using the OmpSs
programming model implemented on the NANOS++ run-
time. In contrast, the state-of-the-art thread-based parti-
tioning scheme suffers an average performance loss of 2%
and an average increase of 15% in misses over the baseline.

1. INTRODUCTION
Current architectural trends of rising on-chip core counts

and worsening power-performance penalties of off-chip mem-
ory accesses have made the shared last-level caches (LLC)
one of the major determinants of multicore performance.
Traditional thread-agnostic Least Recently Used (LRU)-
based cache replacement schemes have been found to be
ineffective for shared LLCs since they are neither able to pre-

vent the destructive interference of high-demand low-reuse
threads on other threads, nor are they adept in handling
thrashing or scan-type access streams [17, 19, 20, 32, 36].

Shared LLC management techniques for multicore proces-
sors have focussed on either multiprogramming workloads or
multithreaded applications. Partitioning techniques for mul-
tiprogramming workloads have focussed on managing con-
tention among applications through explicit partitioning of
the cache among co-running applications for throughput or
fairness improvement [16, 18, 22, 32, 36]. Proposals for re-
placement policy modification have concentrated on tuning
the replacement policy for better prediction of future reuse
of cached data, with separate parameter tuning for each ap-
plication[13, 19, 20, 21, 31]. Researchers have also proposed
dynamic partitioning policies for multithreaded programs
with static thread assignments and mapping, with an aim
to ensure balanced progress for all threads while optimizing
throughput [26, 27].

In this work we focus on shared LLC managment for an
alternative model of concurrency management for parallel
programs – task-based parallism. As the number of on-chip
cores increase, runtime-managed task-based programming
models have become an important vehicle for expressing par-
allelism. Through management of dependencies, task assign-
ments, and orchestration, these models markedly simplify
the programming effort for parallelization while exposing
higher levels of concurrency. These task-based models are
especially important for today’s many-core heterogeneous
chips because of their ability to simplify the effort for paral-
lelization by relieving the programmer of complex schedul-
ing, load-balancing, and data-movement considerations.

Recently researchers have proposed dependency-aware
task-parallel models where the programmer specifies the in-
put and output for each task through pragmas or code snip-
pets, and the runtime uses this information to build the task
dependency graph and schedule tasks for execution once the
dependencies are resolved [4, 6, 12, 3, 29]. These models fur-
ther ease programming effort through automatic handling
of synchronization and forcing deterministic execution, and
at the same time improve performance by exposing higher
levels of concurrency than what is usually extracted by the
programmer [4]. Additionally researchers have exploited the
information tracked by the runtime to improve the efficiency
of hardware optimizations such as prefetching and coherence
for private caches [24, 28].

Figure 1 illustrates the two competing models to express
parallelism. In the thread-based model, parallelism is ex-

W��
�FRUH���

W��
�FRUH���

%DUULHU��

%DUULHU��

W�

W�

W�

W�

W�

E�

W� W�

E�

W� W� W�

Figure 1: Parallel programming models: thread-based vs.
task-based

pressed through a few concurrent long running threads (usu-
ally equal to the number of logical cores available), all of
which synchronize at barriers. In contrast, execution in task-
based models proceeds through a series of relatively small
units of concurrency called tasks. All tasks which are inde-
pendent of each other can be executed in parallel as long as
there are enough resources available.

While partitioning the ways of a shared LLC among
threads have been shown to improve the performance for
thread-based applications, such thread-centric partitioning
techniques are not well-suited for task-parallel applications,
since these schemes are effective only under the following
two conditions:
• LLC associativity much higher than number of

threads, in order to create imbalance of allocation
among the threads, and
• Long-running pinned threads with substantial intra-

thread data reuse, in order to build per-thread data-
reuse models.

In thread-centric partitioning models, cache blocks are
tagged with the identity (id) of the thread or core that allo-
cates the block. Since there is substantial intra-thread data
reuse, data brought in by one thread can be reasonably ex-
pected to be reused by the same thread. Hence it makes
sense to use thread-based partitions, where data-blocks al-
located by one thread are protected at the expense of the
blocks brought in by other threads. However, a thread-based
partitioning paradigm does not work well for task-parallel
programs running on higher number of on-chip cores with
fine-grained tasks and dynamic task-core assignments [2, 5,
9]. Tasks have much shorter lifetimes than threads, and
there is not much intra-task data-reuse at the LLC level.
Hence effective management of cached data for task-parallel
applications require tracking of inter-task data reuse and
creating partitions that encompass multiple groups of tasks.

This paper presents a hardware-software technique to ef-
ficiently manage the shared LLC for applications using the
dependency-aware task-parallel model on multicores. As
mentioned above, in task-based applications, the dominant
form of data-reuse at the LLC level is of the inter-task vari-
ety. Hence for task-based applications, in order to partition
the cache space among tasks, inter-task reuse of data blocks
needs to be tracked. For the dependency-aware task-parallel
programming models, the runtime already tracks the inter-
task data-reuse among the tasks as part of dependency res-
olution. Moreover, when a data-block is allocated by a task,
the runtime can identify which task will reuse the block in

the future. Our technique leverages the reuse-tracking and
look-ahead capabilities of the runtime in order to create a
task-based partition for the LLC.

With multiple tasks simultaneously accessing the LLC, a
large percentage of the data blocks are evicted before they
can be reused by future tasks, often leading to poor utiliza-
tion. Our technique address this inefficiency in two steps.
First, when a data block is accessed by a task, the runtime
communicates to the hardware the identity of the next task
that is going to reuse the data-block. This allows the hard-
ware to group the cache-resident data blocks by the identity
of the task-ids that will reuse the data-block. Second, dur-
ing victim selection for replacement, the replacement engine
uses the task-data mapping to create partitions for future
tasks - it attempts to retain all the blocks to be reused by a
subset of the future tasks at the cost of evicting blocks be-
longing to other tasks. This considerably increases the cache
utilization for the tasks in the preferred subset, which in turn
leads to better LLC utilization overall, and hence reduced
execution time. The runtime also detects blocks which will
no longer be reused by any future tasks and instructs the
hardware to de-prioritize these blocks.

The task-aware cache management framework is devel-
oped as an extension of the NANOS++ implementation of
the OmpSs programming model [12]. The framework does
not require any change in the OmpSs API and hence is trans-
parent to the application programmer. OmpSs is a task-
based programming model which requires the programmer
to annotate each task with the data objects that the task
is going to read from or write to. OmpSs provides com-
piler directives for creating these annotations. The runtime
evaluates the annotations at task-creation time and builds a
task-dependency graph based on these annotations. If a task
is found to be dependent on a previously created task, it is
added as a successor to the previous task. A task is sched-
uled for execution once all its dependencies are resolved. We
extend the dependence-resolution framework of the runtime
to record, for each created task, the mapping of data ob-
jects to the successor tasks who are going to use the objects
next. At the start of execution of a task, the runtime com-
municates to the hardware this stored task-data mapping.
This id of the future task that is going to use the block is
stored with the tag of the block in the LLC. During replace-
ment, if the replacement engine finds that all blocks in a set
are tagged with future task-ids, it replaces the LRU block
and considers the task-id of this block to be de-prioritized.
So henceforth all blocks belonging to this task are replaced
before any block belonging to another task. If no blocks be-
longing to the de-prioritized task is found in a set, another
future task is de-prioritized. This allows at least some of the
future tasks to preserve all their blocks in the cache. The
extra hits obtained through this preservation usually out-
weighs the extra misses suffered by the de-prioritized tasks,
leading to an overall improvement in cache efficiency and
program performance. The runtime decides on the candi-
date tasks for prioritization based on the size of the data
accessed by the tasks. Only the more prominent tasks (in
terms of data used) are selected as candidate for prioritiza-
tion.

Our hardware-software shared LLC management tech-
nique leads to a 18% increase in performance and a 26%
reduction in misses over a LRU-replacement based LLC
for a set of input-annotated task-parallel programs us-

ing the OmpSs programming model implemented on the
NANOS++ runtime.

The rest of the document is organized as follows: Sec-
tion 2 provides a brief background on dependence-aware
task-parallel models. Section 3 motivates the need for task-
based cache management approaches for task-parallel appli-
cations. The proposed hardware-software technique is dis-
cussed in Section 4. Section 5 outlines the experimental
framework. Section 6 analyses the performance of the pro-
posed technique. Section 7 discusses the implementation
challenges. Section 8 reviews the related work, and finally
Section 9 concludes.

2. DEPENDENCE-AWARE TASK PARAL-
LELISM

Dependence-aware task-parallel models are a class of task-
parallel models that extract concurrency among tasks at
runtime based on programmer-provided inputs and outputs
for each task [4, 6, 12, 3, 29]. Such a model substan-
tially simplifies the programming effort required to paral-
lelize a sequential application. All the programmer needs
to do is to encapsulate sequential blocks of computation
(such as functions) into tasks and specify the data to be
used by each task. The input-output data can be speci-
fied in the form of compiler directives (OpenMP tasks [3],
OmpSs [12]), or code snippets (serialization sets [4]). Dur-
ing program execution, the runtime thread first evaluates the
data-specification clauses for the tasks it encounters in order
to build a task-dependence graph. Tasks are inserted in the
task-dependence graph in program order but are executed
out of order. The task-dependence graph is used to schedule
tasks for execution once all dependencies are resolved.

The OmpSs programming model works with C programs
and allows the programmer to create tasks from functions or
code blocks using the task directive. The Mercurium com-
piler interprets the task directives to create actual tasks.
The NANOS++ runtime system is responsible for the ac-
tual execution of the application, and manages all aspects
of execution such as thread-pool management, target-device
management, dependence resolution, and scheduling. List-
ing 1 shows the skeleton code for an implementation of the
Fast Fourier Transform (FFT) kernel in OmpSs.

2.1 Specifying Data Dependencies

G�G�G�G�

G��G��G� G��

��������

��

��

��

��

G� G� G� G�
���� ���� ���� ����

���� ���� ���� ����

���� ���� ���� ����

���� ���� ���� ����

Figure 2: 2-dimensional 4x4 array repesented in row-major
order.

The task directive in OmpSs can be appended with in,
out, inout, or concurrent dependence clauses to specify
which data objects a task depends on (for example Listing 1,
line 1). Currently the dependency clauses can efficiently ex-
press data objects ranging from simple variables to segments

of multidimensional arrays [30]. A multidimensional array
segment, known as a region, represent a discontiguous re-
gion of memory made from a set of contiguous memory seg-
ments [30]. Since the dependencies are computed at task
creation time, dependencies can be tracked through pointer
aliasing as well.

1 #pragma omp task inout (data [0 ; FFT BS] [0 ; N SQRT])
2 stat ic void FFT1D (long N SQRT, long FFT BS ,
3 double Complex data [N SQRT] [

N SQRT]) { ; }
4 #pragma omp task inout (data [0 ; FFT BS] [0 ; N SQRT])
5 stat ic void FFT1D 2 (long N SQRT, long FFT BS,\
6 double Complex data [N SQRT] [

N SQRT]) { ; }
7 #pragma omp task inout (data [0 ; TR BS] [0 ; TR BS])
8 void t r s p b l k (long N, long N SQRT, long TR BS ,
9 double Complex data [N SQRT] [N SQRT

]) { ; }
10 #pragma omp task inout (data1 [0 ; TR BS] [0 ; TR BS] ,

data2 [0 ; TR BS] [0 ; TR BS])
11 void trsp swap (long N, long N SQRT, long TR BS ,
12 double Complex data1 [N SQRT] [

N SQRT] ,
13 double Complex data2 [N SQRT] [

N SQRT]) { ; }
14 #pragma omp task inout (data [0 ; TR BS] [0 ; TR BS])
15 void tw t r sp b l k (long N, long N SQRT, long TR BS ,

long JJ ,
16 double Complex data [N SQRT] [N SQRT]) { ;

}
17 #pragma omp task inout (data1 [0 ; TR BS] [0 ; TR BS] ,

data2 [0 ; TR BS] [0 ; TR BS])
18 void tw trsp swap (long N, long N SQRT, long TR BS

, long JJ , long J ,
19 double Complex data1 [N SQRT] [

N SQRT] ,
20 double Complex data2 [N SQRT] [

N SQRT]) { ; }
21

22 void FFT 1D (long N, long N SQRT, long FFT BS ,
long TR BS ,

23 double Complex A[N SQRT] [N SQRT]) {
24 // Transpose
25 for (long JJ=0; JJ<N SQRT; JJ+=TR BS) {
26 t r s p b l k (N, N SQRT, TR BS , &A[JJ] [JJ]) ;
27 for (long J=JJ+TR BS ; J<N SQRT; J+=TR BS)
28 trsp swap (N, N SQRT, TR BS , &A[JJ] [J

] , &A[J] [JJ]) ;
29 }
30 // Fir s t FFT round
31 for (long J=0; J<N SQRT; J+=FFT BS)
32 FFT1D(N SQRT, FFT BS , &A[J] [0]) ;
33 // Twiddle and Transpose
34 for (long JJ=0; JJ<N SQRT; JJ+=TR BS) {
35 tw t r sp b l k (N, N SQRT, TR BS , JJ , &A[JJ] [

JJ]) ;
36 for (long J=JJ+TR BS ; J<N SQRT; J+=TR BS)
37 tw trsp swap (N, N SQRT, TR BS , JJ , J ,

&A[JJ] [J] , &A[J] [JJ]) ;
38 }
39 // Second FFT round
40 for (long J=0; J<N SQRT; J+=FFT BS)
41 FFT1D 2(N SQRT, FFT BS , &A[J] [0]) ;
42 // Transpose
43 for (long JJ=0; JJ<N SQRT; JJ+=TR BS) {
44 t r s p b l k (N, N SQRT, TR BS , &A[JJ] [JJ]) ;
45 for (long J=JJ+TR BS ; J<N SQRT; J+=TR BS)
46 trsp swap (N, N SQRT, TR BS , &A[JJ] [J] ,

&A[J] [JJ]) ;
47 }
48 }

Listing 1: Skeleton code snippet for FFT implementation in
OmpSs.

Internally, the runtime represents each region in a compact
form. For 64-bit virtual addresses, a region is represented
by an ordered sequence of digits such that each digit can

be 0,1, or X(unknown). This in turn can be represented by
a pair of 64 bit binary fields, called the value and the mask
respectively. A one in the mask field denotes that the bit
in the value field at the corresponding position is known,
otherwise the bit-value is at that position is unknown, and
the corresponding position in the value field is set to zero
by convention (more details in [30]). For example, if we
consider a 2-dimensional 4x4 array represented in a 4-bit
virtual address space (Figure 2), a region that consists of
two ranges <0x2− 0x3, 0x6− 0x7> can be denoted by the
sequence 0X1X, which is equivalent to the <value, mask>
pair of <1010, 0010>. The compact representation also
allows for inexpensive membership tests – only a couple of
operations, a bit-wise AND followed by an equality test,
are required to check whether an address belongs to a
region. We leverage the low storage and computation costs
of storing a region and testing membership in the proposed
cache management framework.

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

FFT	 Arnoldi	 CG	 MM	 Mul/sort	 Heat	 MEAN	

M
is
se
s	
re
la
/
ve
	 to

	 b
as
el
in
e	
LR
U
	

STATIC	 UCP	 IMB_RR	

Figure 3: LLC Misses for thread-based partitioning tech-
niques applied to task-based applications running on 16
cores sharing a 32-way 16 MB LLC.

3. CACHE MANAGEMENT FOR TASK-
PARALLEL PROGRAMS

A task is the smallest unit of concurrency in task-parallel
applications. The execution of a task-parallel application
proceeds through a series of possibly parallel tasks, the de-
pendence among which are determined by the data-objects
each tasks reads or writes. Once all dependencies of a task
are resolved, it is scheduled for execution, and is executed
by an idle thread among a pool of worker threads. A task is
usually of much smaller duration than a thread and does not
show appreciable data-reuse at the LLC level during execu-
tion. The dominant form of data-reuse in such programs are
of the inter-task variety, and the data reuse patterns among
tasks can be quite complex.

Thread-based dynamic cache partitioning policies attempt
to partition the ways of the shared LLC among co-running
threads in order to maximize throughput and achieve bal-
anced progress for all threads [26, 27, 32]. We find that
such thread-based partitioning schemes are quite ineffective
in improving the shared LLC efficiency for task-parallel ap-
plications. Figure 3 shows the misses due to three thread-
based cache partitioning techniques for a 16 MB, 32-way
LLC shared among 16 cores, relative to the baseline Global
LRU replacement for a series of task-parallel applications
(application details in Section 5). The STATIC policy stat-
ically partitions the cache ways equally among all threads.

The utility-based cache partitioning (UCP) policy allocates
space to each thread based on a runtime estimate of the
marginal utility of the space to each thread with the goal of
maximizing total cache throughput [32]. The imbalance-
based cache partitioning technique (IMB RR), designed
specifically for symmetric multithreaded applications, cre-
ates temporary imbalance of allocation among threads to
accelerate each thread in turn so that all threads are ac-
celerated in the long run. Cache misses incurred by these
schemes is seldom appreciably better than the the baseline
and often worse (up to 3.7X worse). On an average, the
STATIC policy incurs 1.54X, the UCP policy incurs 1.31X,
and the IMB RR policy incurs 1.15X times the misses in-
curred by the baseline. In contrast, the well-known OP-
TIMAL replacement policy (due to Belady [7]) incurs only
0.65X as many misses on an average as the baseline.

There are a few reasons for the inefficiency of thread-
centric techniques for task-parallel applications. These
schemes determine the per-thread allocations based on some
form of a runtime model of allocation-vs-efficiency for each
thread. Building this model requires each thread to be
long-running and pinned to a specific core. Since tasks are
short-lived and data referenced by a task running on a par-
ticular core can be reused by another task on a different
core depending on scheduling considerations, such models
are not meaningful in a task-based environment. Second,
since major data-reuse at the LLC level is between tasks
and not within a task, any runtime model needs to track
data-reuse across groups of tasks and distribute the cache
space across these groups of tasks. Intra-task data reuse
with short reuse distances (due to spatial locality for exam-
ple) is usually captured at lower levels of the cache hierarchy.
Third, thread-based allocation models evaluate the alloca-
tion at pre-specified coarse-grain static interval of instruc-
tions (tens of millions of instructions), whereas allocation
decisions for task-based applications should ideally happen
at task-boundaries. Finally the patterns of inter-task data
reuse are complex - for example, a single task can consume
data generated by multiple producer tasks, individual por-
tions of the data touched by a single task can be reused by
different tasks, or a single data-object can be heavily reused
by multiple tasks. The thread-based models cannot capture
these complex reuse patterns.

As an example, Figure 4 shows the nature of inter-task
data reuse for the two-dimensional FFT task-parallel ap-
plication. Assume that the input matrix is broken into
16 disjoint chunks (d1 − d16), which are touched by tasks
t1−t14. Figure 4a shows part of the task-dependency graph
for the application. Figure 4b shows the mapping of tasks
to data. FFT proceeds in alternate stages (see Listing 1),
with all tasks in each stage being independent of each other.
In the first stage the trsp blk and trsp swap tasks (tasks
t1 − t10) operate on the smallest chunks. A trsp blk task
touches 1 chunk (t1 → d1), and a trsp swap task touches
2 chunks(t2 → d2, d5). In the second stage however (tasks
t11 − t14), each fft1d task operates on a set complete rows
(t11 → d1, d2, d3, d4). Hence 1 fft1d task reuses data block
from 4 tasks from the previous stage, and conversely chunks
touched by 1 trsp swap task is used by two fft1d tasks (for
example, blocks touched by t2 are used by t11 and t12).
Thread-centric cache management techniques do not cap-
ture such reuse relationships among tasks.

Furthermore, the effectiveness of thread-based way-

t5t3 t4 t6t1 t2 t9t7 t10t8

t13 t14t11 t12

(a) FFT2D task-dependency graph.

t1 t2 t3 t4

t2 t5 t6 t7

t3 t6 t8 t9

t4 t7 t9 t10

t11

t12

t13

t14

Stage 1 Stage 2

trsp_blk trsp_swap fft1d

d1 d2 d3 d4

d8d7d6d5

d11d10d9 d12

d16d15d14d13

d1 d2 d4d3

d5 d6 d7 d8

d9 d10 d11 d12

d13 d14 d15 d16

(b) Task-data mapping for FFT2D tasks.

Figure 4: Inter-task data reuse for FFT2D applica-
tion. A single task can consume data generated by more
than one tasks, vice versa.

partitioning techniques reduces as the number of cores in-
crease relative to the shared LLC associativity, since the
number of possible partitioning configurations decrease.

The goal of this work is to develop a cache management
technique that captures the complex data-reuse patterns
among tasks and partitions the cache accordingly. Referring
to the FFT example, the tasks in the first stage (t1−t10) op-
erate in parallel and attempt to bring the entire input matrix
in the shared LLC. However if the input matrix, which rep-
resents the combined working set for all tasks, is too large
to fit in the LLC, the baseline policy starts replacing the
earliest blocks touched. This leads to a high percent of miss
rates for all future tasks (t11−t14). In our scheme, when the
first set of tasks (t1 − t10) touch the data-blocks, the run-
time informs the hardware about the identity of the future
tasks that would reuse the data blocks. For example, when
the chunks in the topmost row are touched by tasks t1− t4,
they are marked to be touched by task t11 next. This infor-
mation allows the partitioning engine to be smarter about
which blocks to replace. The engine essentially partitions
the cache for future tasks, so as to preserve all blocks be-
longing to a single task. By default, the partitioning engine
tries to protect all blocks for every future task. However
that is not possible if the working set is larger than the
LLC capacity. Hence, at the time of replacement, if all the
blocks in a set are found to be protected, the engine re-
places the LRU block. This also means that the task that
owns the LRU block is marked as low-priority. Since this
task is marked as low-priority, all the data blocks for this
low-priority task becomes candidates for replacement across
all sets. If in another set, there are no blocks belonging to
this low-priority task, then another task, which owns the
LRU block in that set, is identified as low-priority. This im-
plicitly creates a partition shared by a group of low priority
tasks across all sets, while allowing the other tasks to remain
at high priority and entirely preserve their data. Depending
on the relative size of the working set and the LLC capacity,

a subset of the tasks t11− t14 will be protected and the pro-
tected tasks will enjoy very high hit-rates in the cache, thus
increasing the overall hit-rate. In contrast, if global LRU
replacement is used, all future tasks suffer from poor hit-
rates, which leads to inefficient cache usage. If the runtime
determines that there are no future tasks that will reuse a
data block, it instructs the hardware to consider such blocks
as dead and hence candidates for immediate eviction. The
future task-data mapping is updated by the runtime at the
start of each task.

The runtime can also decide not to update the task-data
mapping for future tasks that have small memory foot-
prints. In that case the data blocks are marked belonging to
a default task (a common task-id is used for all such blocks),
and remain at a priority lower than the protected tasks but
higher than any de-prioritized task. Only the more promi-
nent tasks (in terms of data used) are selected as candidates
for prioritization. This allows us to limit the overheads and
achieve better performance by protecting only the tasks that
have a high impact on application performance. For applica-
tions using matrix-vector computations, tasks that involve
only vector-vector computations can be ignored since the
memory footprint of these tasks are orders of magnitude
smaller than that of the tasks that involve matrix-vector
computations. In this work, the candidate tasks are chosen
by the programmer and are communicated to the runtime
through the priority directive available through the API.
However it is possible to let the runtime select such tasks
at runtime based on the relative size of the memory foot-
prints of tasks. For applications which have only a single
type of task (matrix multiplication) or comparable memory
footprints for all tasks (parallel sort), the runtime consid-
ers all tasks as candidates for prioritization. In the follow-
ing section, we describe in detail the hardware and software
support required to implement the above technique.

4. HARDWARE-SOFTWARE SUPPORT
The objectives of our hardware-software cache manage-

ment framework are twofold:
1. For any LLC-resident data block, communicate the

identity of the future task(s) that will use the block
to the LLC so that updated task-data mapping can be
maintained. The runtime communicates the changes
in task-data mapping to the hardware only at the start
and end of a task execution.

2. Design an LLC replacement engine that uses the task-
data mapping to create task-based partitions that at-
tempts to preserve data blocks for as many future tasks
as possible. The priority levels of each live task needs
to be tracked in order to create the partitions.

In this section we describe the proposed modifications in the
runtime, hardware-software interface, cache storage, and the
replacement engine required to achieve these goals.

4.1 Runtime Modifications
When a task is created, the dependence analysis engine

of the NANOS++ runtime creates a unique id for the task
and stores the data regions accessed by the task in a data
structure called the region tree. Each region is tagged with
the last writer task and the reader tasks of the latest pro-
duced value. The dependencies for a newly-created task can
then be computed by comparing its data regions with the
data-regions inserted in the tree by previous tasks. We ex-

tend the state of this newly created task to store a mapping
of data-regions accessed by this task to the id of the next
future task(s) that will reuse these regions. A special task-
id is used to represent the fact that no future task is going
to use this block (henceforth called the dead task). The
mapping is updated as the dependence engine adds future
tasks to the tree and computes the dependencies. For ex-
ample, Figure 5 shows a simple task-dependence graph that
the runtime might generate. Assume that all tasks have a
read-write relationship with the data regions. Task t2 is de-
pendent on t1 through region d1; task t3 is dependent on t2
through d1, and on t1 through d2. When t1 is created, re-
gions d1, d2 are mapped to the dead task. As tasks t2 and t3
are added, the task-data region mapping for t1 is updated.

When this task starts execution, the runtime informs the
hardware about the data-blocks and the associated future
tasks. The runtime sends this information if the memory
footprint of the future task is prominent enough to warrant
protection.

t1s1 d1,d2

d1

d1,d2

s1: d1,d2→t∞

s3: d1,d2→t∞

s2: d1→t∞ t2s2

t3s3

s2: d1→t2,d2→t∞

s3: d1→t2,d2→t3

s3: d1→t3

Figure 5: Task-dependence graph and task-data map-
ping. The circles show the task-ids subscripted with task-
creation time. White boxes show data regions touched by
a task, grey boxes show how task-data mapping changes as
more tasks are created. t∞ denotes the dead task ie. no
task is going to use the data in future.

4.2 Interfacing with Hardware
As discussed in Section 2.1, a data region is represented

in the OmpSs in a very compact form, through two 64 bit
fields, which can represent a set of non-contiguous virtual ad-
dresses. Hence the runtime can communicate a task-region
pair using two 64-bit fields for region id and a 32 bit field for
a task-id. Accordingly, we propose a simple instruction set
extension in the form of a memory-mapped interface with
specific user-level commands. The fields to communicate for
one data region are as follows:
• value (64-bit)
• mask (64 bit)
• software task-id (32 bit)
• group-id(1 bit)

A small per-core hardware engine translates the software
task-id to a hardware task-id and stores this mapping in a
Task-Region Table and determines the future task-id of each
memory access instruction. Task-id translation mechanism
and the purpose of the group-id is explained in Section 4.3.
This table is flushed and updated by the runtime at the
start of each task. Each memory access instruction during
the task execution does a lookup of this table to identify
the task-id that the address belongs to. The membership
test for an address requires two bitwise logical operations.
If no future task-id is found, a special default task-id is as-
sumed. The number of entries in this table is equal to the

number of tasks a particular task depends on, and only a
few entries are needed. With the use of composite task-
ids (described in 4.3), we find that 16 entries per core is
more than enough. This setup is similar to the well-known
programmable memory-access-interception frameworks pro-
posed for transparent memory access monitoring, debug-
ging, or dynamic optimizations [37].

Once a task-id is obtained the task-id is carried with the
memory transaction and stored in the memory hierarchy. If
the access is a miss in lower-level (L1) cache, the future-
task id is sent to the LLC as part of the miss request, and
is updated in the tags of the LLC. If the access is hit in
the lower-level cache, the task-id is compared with the last
task-id. If the ids are found to be different, an id-update
request is sent to the LLC to update the tag of the block
with the new owner.

At the end of a task, the runtime informs the hardware
that the task with that software task-id has finished exe-
cution. This allows the hardware to update the status of
the corresponding hardware task-id to Not-Used (task sta-
tus values are described in Section 4.4), and also free the
hardware task-id for recycling. Figure 6 tabulates the com-
mands sent by the runtime at different stages of execution
for the example shown in Figure 5.

Task execution state Command type Parameters

t1 start Update task-data map d1 → t2

Update task-data map d2 → t3

t1 end Release sw task-id t1

t2 start Update task-data map d1 → t3

t2 end Release sw task-id t2

t3 start Update task-data map d1 → t∞

Update task-data map d2 → t∞

t3 end Release sw task-id t3

Figure 6: Hardware-software communication wrt Fig-
ure 5. The runtime sends the new task-data map at the
start of execution of each task, and requests release of the
software task-id at the end of execution of the task.

4.3 Hardware-Software Task Translation
The runtime communicates the tasks-data mapping to the

hardware in terms of the unique task-id that it has deter-
mined. While these software task-ids can be directly used
in the hardware framework, we propose a translation frame-
work between the software and hardware task-ids (HW-SW
Task Map) because of two reasons. First, software task-ids
are monotonically increasing and are equal to the number of
tasks created throughout the application. However at a par-
ticular time, only a limited number of tasks are active from
the perspective of our framework (currently executing tasks,
and the tasks that are directly dependent on these currently
executing tasks). So a HW-SW task mapping maintained
at the LLC level allows us to recycle hardware task-ids and
limit the bit-budget of storing a task-ids. So before the run-
time updates the Task-Region Table, the hardware sends a

7DVN�
H[HFXWLRQ�
VWDWH

&RPPDQG�W\SH 3DUDPHWHUV 6:�+:�
WDVN�LG�PDS

$FWLYH�+:�
WDVN�LGV

W��VWDUW 8SGDWH�WDVN�GDWD�PDS G��ĺ�W� W����[� [�

8SGDWH�WDVN�GDWD�PDS G��ĺ�W� W����[� [���[�

W��HQG 5HOHDVH�VZ�WDVN�LG W� [���[�

W��VWDUW 8SGDWH�WDVN�GDWD�PDS G��ĺ�W� W����[� [���[�

W��HQG 5HOHDVH�VZ�WDVN�LG W� [�

W��VWDUW 8SGDWH�WDVN�GDWD�PDS G��ĺ�W� W����[� [���[�

8SGDWH�WDVN�GDWD�PDS G��ĺ�W� W����[� [���[�

W��HQG 5HOHDVH�VZ�WDVN�LG W� [�

Figure 7: Hardware-software task-id translation wrt
Figure 5. t1, t2, t3 are software task-ids and x1 and x2 are
hardware task-ids.

request to a centralized engine to obtain a hardware task-id.
If a hardware id has been already assigned to the requested
software id, or a free hardware id is available for allocation,
the Task-Region Table is updated, otherwise the update is
skipped. The runtime requests to release the hardware-id
corresponding to the software id at the end of each task.
Figure 7 shows when and where hardware tasks are mapped
to software tasks, and also lists the active hardware task-
ids required during the execution for the example shown in
Figure 5.

Second, hardware task-ids allow us to effectively deal with
multiple reader tasks. In most cases a data-region touched
by a task has a clearly identifiable single next user task (all
cases of WAW, WAR dependencies, and most cases of RAW
dependencies). However if a data object written by a task
is read by multiple tasks which are independent of each-
other, the object has multiple future users, which can all
proceed in parallel (Figure 8). Hence the object should be
preserved as long as any of these multiple protected tasks
are high-priority. Also, the the id change from the multiple
tasks (t1, t2, t3 in the figure) to the next task (t5) should
happen only after each of t1, t2, and t3 has used the data.
In order to achieve these goals, we assign a composite task
id to this region, and the mapping between composite task-
id to its constituent tasks is maintained in the LLC level.
The priority of the block is determined to be the highest of
all tasks that own the block. Also the ownership transition
from a composite task to the next task happens only when
all constituent tasks are released. The group-id that was
mentioned as a part of the interface is used to identify groups
of tasks for a single region that make up a composite task. A
data-region with a group-id of 0 signifies that there are more
tasks for this particular data-region. A group-id of 1 implies
the end of a group of task for a region. In the common case
of a single task for a region, the group-id is always 1.

4.4 Last-Level Cache Modifications
At the LLC level the future task-ids are stored along with

the cache tags. There are two special task-ids, the dead task,
and the default task. The partitioning engine maintains a
table, indexed by the task-id, called the Task Status Table,
maintaining the status of the task-ids. A task-id can be in

t1 d1(W) d1→t2, t3, t4

t2 t3 t4

d1(R)

t5

d1→t5

Figure 8: Task-dependence graph for multiple read-
ers. All three tasks t2, t3, t4 are future users of region d1
after it is touched by t1. Also all of them have t5 as the next
future task-id. Hence t2, t3, t4 are mapped to a composite
task-id in hardware.

GDWD WDJ WDVN�LG

7DVN�6WDWXV�7DEOH

+:�6:�7DVN�0DS&RUH��

7DVN�5HJLRQ�
7DEOH

GDWD WDJ WDVN�LG
WDVN�LG
WDVN�LG

WDJ
WDJ

GDWD
GDWD

&RUH��

7DVN�5HJLRQ�
7DEOH

GDWD WDJ WDVN�LG
WDVN�LG
WDVN�LG

WDJ
WDJ

GDWD
GDWD

/��� /���
GDWD WDJ WDVN�LG

GDWD WDJ WDVN�LG

6KDUHG�/DVW�OHYHO��

Figure 9: Task-based cache management framework. Addi-
tional structures are highlighted in grey.

the following states:
1. High-Priority: The data blocks that belong to this

task-id are protected and would not be replaced un-
less necessary,

2. Not-Used: The task-id is not in use, so the blocks
belonging to this task-id will be replaced after low-
priority blocks but before high-priority blocks,

3. Low-Priority: At least one block belonging to the task
block has been replaced already, and blocks belonging
to this tasks are first candidates for replacement.

Hence 2 bits per task-id are required to represent the task
status. A hardware task-id can be used to represent either
a single task-id or a composite task-id. Hence a third bit is
required to identify if the task-id is a composite id. For a
non-composite task-id, the status is read directly from the
Task-Status Table. Otherwise the composite Task-Status
Map is read to find the tasks that the composite task-id
belongs to, and the highest priority among all member tasks
(again read from the Task-Status Table) is chosen as the
block priority. Figure 9 shows a system-level view of the
proposed framework, with per-core Task-Region Tables and
the Task Status Table at the LLC level.

Algorithm 1 describes the victim selection algorithm used
by the replacement engine. The replacement policy is still
LRU-based but is modified such that the replacement en-
gine chooses the LRU block based on the following overrid-
ing priority order (most-likely to least-likely to be replaced):
blocks belonging to the dead task, blocks belonging to the
low-priority task, blocks not tied to any task(default-task)
or blocks with task-ids which are not being used, and blocks
belonging to the high-priority task . So all blocks with the
lowest priority status will be replaced before any higher-
priority block, and within the same priority group, the LRU
block will be replaced first.

When a block belonging to a high-priority task is replaced,
the task priority in the Task-Status Table changed to a low-

priority task. For a block with a composite task-id, if all the
constituent tasks are high-priority, then a randomly chosen
task from the group is downgraded. This is the key step that
creates the partitioning implicitly, since once a task is down-
graded, its blocks will be replaced from all sets, until there
is a set where no such blocks are found. Then another task
will be downgraded. This creates a common partition for
all downgraded tasks, while letting the other tasks preserve
their data. The number of tasks that are downgraded are
not controlled explicitly, but is decided automatically based
on the size of the working set relative to the cache capacity.

5. EVALUATION FRAMEWORK
We evaluate the performance of our hardware-software

LLC management technique using the GEMS execution-
driven full-system multiprocessor simulator [25]. GEMS is
a detailed timing simulator for the memory hierarchy that
uses the Simics full-system simulator as its functional simu-
lation engine [14]. We model a multicore chip with a highly-
associative shared last-level L2 cache with private L1 caches.
Table 1 lists the relevant system parameters. We mod-
ify the Perfect-regions dependence plugin supplied with the
Nanos++ runtime to implement the sofware hints frame-
owrk, and use the default breadth-first scheduler in our ex-
periments.

Table 1: System Parameters.
Number of Cores 16
Cache Line Size 64 bytes

L1 Cache Associativity 4
L1 Cache Size 256KB

L2 Cache Associativity 32
L2 Cache Size 16 MB

L2 Cache Request Latency 4 cycles
L2 Cache Response Latency 4 cycles

Coherence Protocol MESI directory
Frequency 1 GHz

Workloads: We use the following seven task parallel ap-
plications obtained from the the OmpSs application repos-
itory [1]. After warming up the cache until the start of
execution of the first batch of tasks, we run the benchmarks
to completion.We parallelize the input initialization where
appropriate.

1. FFT: Two dimensional Fast Fourier Transform that
includes two phases of 1D FFTs interspersed with sets
of transpose and twiddling. We use a 2048 X 2048
double precision matrix as input. Each 1D FFT task
performs 128 rows of FFTs and each transposition-
twiddling task operates on blocks of 128 X 128 ele-
ments.

2. Arnoldi Iteration: Arnoldi iteration reduces a square
matrix A to Hessenberg form via orthogonal similarity
transformation: QT ∗A∗Q = H. We use an input size
of 2048 X 2048 double precision matrix with a block
size of 256 X 256elements.

3. Conjugate Gradient (CG): Parallel conjugate gradient
method that iteratively solves a linear system Ax=b,
where A is a symmetric positive definite matrix. We
use an input size of 2048 X 2048 double precision ma-
trix with a block size of 256 X 256 elements.

4. Matrix Multiplication(MM): Parallel implementation
of dense matrix multiplication. Each input matrix is

Algorithm 1 LLC victim selection in a set

1: procedure Select Victim(A, TST)
Input:

Tag Array for Set, A
Task Status Table, TST

Output:
Victim Block, victim
Task Status Table, TST

2: victim priority ← HIGHEST
3: for each block i in A do
4: priority ← Get Priority(i, TST, TASK(i))
5: if priority < victim priority then
6: victim age← AGE(i)
7: victim← i
8: victim priority ← priority
9: else if priority = victim priority then

10: if AGE(i) > victim age then
11: victim age← AGE(i)
12: victim← i
13: end if
14: else
15: continue
16: end if
17: end for
18: if victim priority = HIGH then
19: Downgrade priority of Task(i) to LOW by chang-

ing TST entry
20: end if
21: return victim
22: end procedure
23:
24:
25: procedure Get Priority(i, TST, task-id)
Input:

Block, i
Task Status Table, TST
task id of block i, task-id

Output:
Priority, pri,
. Priority from low to high: DEAD, LOW, DEFAULT,
HIGH, HIGHEST

26: if taskid = DEAD TASK then
27: return DEAD
28: else if (taskid = DEFAULT) ∨ (TST [taskid] =

NOT USED) then
29: return DEFAULT
30: else if TST [taskid] = LOW then
31: return LOW
32: else if TST [taskid] = HIGH then
33: return HIGH
34: end if
35: end procedure

of the size 1024 X 1024 elements, with a block size of
256 X 256 elements.

5. Multisort: Parallel recursive merge-sort application
where at each stage the input is split into quarters
and sorted in parallel, and then merged back in pairs.
Quicksort is used for the smallest chunks. We use 4K
integers as input with chucks of 256 elements for each
task.

6. Gauss-Siedel(Heat): Iterative heat distribution solver
using the 5-point Gauss-Seidel algorithm. The input
matrix consists of 2048 X 2048 double precision ele-
ments.

6. RESULTS

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	
1.4	
1.6	
1.8	

FFT	 Arnoldi	 CG	 MM	 Mul/sort	 Heat	 MEAN	

Pe
rf
or
m
an

ce
	 re

la
/
ve
	 to

	 b
as
el
in
e	

LR
U
	

STATIC	 UCP	 IMB_RR	 DRRIP	 TBP	

(a) Application Performance

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

FFT	 Arnoldi	 CG	 MM	 Mul/sort	 Heat	 MEAN	

M
is
se
s	
re
la
/
ve
	 to

	 b
as
el
in
e	
LR
U
	

STATIC	 UCP	 IMB_RR	 DRRIP	 TBP	

(b) Cache misses

Figure 10: Relative performance of STATIC, UCP,
IMB RR, DRRIP, and TDP schemes for 16 MB Cache, nor-
malized to the baseline unpartitioned LRU cache (32-way
associative, shared by 16 cores).

We compare the performance of the proposed Task-Based
Partitioning technique(TBP) with other hardware-based
shared cache partitioning techniques. The STATIC policy
is the simplest partitioning policy that statically partitions
the cache ways equally among all cores / threads. Utility-
based Cache Partitioning(UCP) is a well-known dynamic
cache partitioning technique for multiprogramming work-
loads. UCP policy allocates space to each thread based on
a runtime estimate of the marginal utility of the space to
each thread with the goal of maximizing total cache through-
put [32]. It is expected to maximize the overall hit-rate of
the cache, but not necessarily ensure balanced progress. The
imbalance-based cache partitioning technique (IMB RR) is
a recent dynamic scheme that creates temporary imbalance
of allocation among the threads of a parallel application to
accelerate each thread in turn so that all threads are ac-
celerated in the long run [27]. It uses round-robin policy
of thread-prioritization to accelerate all threads. This tech-
nique also has the ability to turn off partitioning and use
the baseline LRU policy, if partitioning does not provide
any benefit. We also evaluate the performance of a well-
known replacement-policy modification technique – the dy-

namic re-reference interval prediction (DRRIP) method pro-
posed by Jaleel et al. [20]. DRRIP is a modification of NRU
replacement policy, which aims to make the replacment pol-
icy both scan and thrash-resistant. A policy change from
SRRIP (static RRIP) to BRRIP (Bimodal RRIP) is effected
when the policy selection counter shows a bias of 1024 for
one policy over another. Figure 10 shows the relative per-
formance of the STATIC, UCP, IMB RR, DRRIP, and the
proposed TBP techniques relative to an unpartitioned cache
(using a thread-agnostic LRU policy) for a 32-way 16 MB
shared LLC. The x-axis shows the benchmarks. The Y-
axes for 10a show relative performance (higher is better)
and for 10b show relative miss-rates (lower is better). On
average, usr the TBP technique leads to a 18% improve-
ment in performance and 26% reduction in cache misses over
the baseline. DRRIP achieves better performance than the
baseline, with a 5% speed up and 13% reduction in misses.
Other thread-based partitioning schemes actually perform
worse than the baseline in average. The STATIC policy suf-
fers from a 27% drop in performance with 54% increase in
misses with respect to the baseline. The corresponding num-
bers for UCP and IMB RR are 11% performance loss with
31% miss increase, and 2% performance loss with 15% in-
crease in misses respectively. IMB RR performs best among
the competing partitioning techniques since it has the abil-
ity to turn off partitioning all-together if it determines parti-
tioning to be harmful. As expected, TBP achieves very lit-
tle performance gain for matrix multiplication because of the
compute-intensive nature of the application. For Heat, TBP
suffers a performance loss compared to UCP and IMB RR
despite a miss-rate reduction because the application can
not recover from the temporary imbalances create in the
task performance due to task-prioritization.

7. IMPLEMENTATION OVERHEAD
The major overhead of the proposed technique comes from

maintaining an updated task-to-block mapping. We used 8-
bit task-ids, so that the hardware has 256 task-ids that can
be recycled. The core-level Task-Region Table has 16 20
byte entries, which results in a total space overhead of 5KB
over 16 cores. For 256 tasks, the Task-Status Table of 256
entries has a total overhead of less than 128 bytes. We also
note that the overhead of hardware-software task mapping
can be obviated if the dependency resolution is implemented
in hardware, as proposed by Etsion et al. [15]. The LLC tags
carry task-ids, but for thread-based partitions the tags carry
thread-ids which would be 4-bits for 16 cores. On the other
hand the proposed scheme does not incur any overheads for
creating runtime models or dynamically computing alloca-
tions unlike other thread-based partitioning techniques. For
example the UMON circuits used in the UCP technique in-
cur 2KB storage per-core, adding up to 32 KB for 16 cores.
UCP also runs a greedy algorithm at pre-specified inter-
vals of instruction to compute the partition sizes. IMB RR
scheme does not have shadow monitors, use a hardware pro-
gram phase detection policy to adapt to change in program
phases, and needs to repeatedly re-partition the cache space
to find the best configuration.

8. RELATED WORK

8.1 Shared Cache Partitioning

The problem of partitioning a shared cache among multi-
ple concurrently executing threads has received considerable
attention in the community. The partitioning techniques can
be categorized under two groups - one targeting the multi-
programming environment (one application per core), the
other targeting multithreaded programs (single application
using all cores).

8.1.1 Multi-programming Workloads
The idea of minimizing the over-all miss rate for all com-

peting threads in a multi-programming workload has been
the focus of several partitioning techniques [32, 36]. A parti-
tioning scheme that always allocates space to a thread which
has maximum marginal utility for that space can minimize
the over-all miss rate. If the marginal utility for each thread
decreases monotonically, then the optimal partitioning can
be achieved by simply continuing to allocate one unit at each
iteration to the thread which has the maximum utility for it,
till there are no free units left [35]. For realistic applications
with no such monotonicity in their utilization behavior, this
greedy algorithm has been modified to obtain near-optimal
algorithms.

Qureshi and Patt propose the use of auxiliary tag direc-
tories and hit counters for each thread to track its cache-
utilization behavior at runtime [32]. Cache ways are par-
titioned among threads using this information, in order to
maximize the combined utility for all threads. The authors
propose an algorithm that relaxes the requirement of allo-
cating only one way in each iteration. At each iteration the
algorithm greedily finds the thread that has maximum util-
ity considering all free ways and the minimum number of
ways that are needed to achieve that utility. The winning
thread is then allocated the minimum number of ways.

Suh et al. [36] compute the marginal utility of each thread
from the actual cache itself by counting the recency positions
of the hits for each thread into the shared cache. The scheme
does not incur the overhead of per-thread shadow tags, but
suffers form inaccuracy in the marginal utility since the util-
ity obtained for each thread is affected by the behavior of all
other threads sharing the main cache. They employ another
modification to Stone’s algorithm where the marginal utility
curve for each thread is broken into piece-wise monotonically
decreasing regions, and Stone’s algorithm is invoked for each
combination of non-convex points in the curves, and finally
the best partition is chosen from all the candidates.

Jaleel et al. proposes a shared cache management tech-
nique which partitions the cache implicitly by choosing a
specific insertion policy for each of the competing applica-
tions based on its memory access behavior [19]. The key
insight behind this scheme is that for a reference stream
that has a working set larger than the cache capacity, cache
utilization can be improved by increasing the lifetime of
some cache blocks beyond that allowed by a traditional LRU
scheme [31]. To this end, the authors propose the Bimodal
Insertion Policy (BIP) replacement method, where most of
the incoming blocks are inserted in the LRU position instead
of the MRU position, the default position for traditional
LRU-based schemes. As a result, any block that reaches
the MRU position gets the opportunity to live in the cache
for more time than it could in an aging-based scheme like
LRU. For the rest, the MRU insertion position is maintained,
so that the aging-based replacement is not eliminated com-
pletely. For multi-programming workloads, the BIP method

would work best for the applications whose working sets
could not be accommodated in the shared cache, whereas
the LRU scheme would be suitable for applications with high
temporal locality and small working sets. Hence, a portion
of the shared cache sets is used to choose between the BIP
and LRU policies for each thread in the cache at runtime
and the chosen thread-aware replacement policy is enforced
for the rest of the cache.

8.1.2 Multi-threaded Workloads
Muralidhara et al. investigate the problem of partitioning

a shared L2 cache among the threads of a multi-threaded
application [26]. The authors proposed a dynamic parti-
tioning scheme that focuses on making the slowest running
thread (critical path thread) faster so that the application
becomes faster [26]. The proposed technique involves divid-
ing the entire execution time into equally spaced intervals of
dynamic instruction count, computing the IPC values after
each interval, and allocating more cache space to the slowest
thread. A record of IPC values vs. cache sizes is maintained
for all past intervals. Cubic spline interpolation is used on
the recored data points in order to predict the change in
IPC for additional cache space allocation. Pan and Pai pro-
pose an imbalance-based partitioning scheme for symmetric
multithreaded programs [27]. The authors show that the
memory reuse behavior of each thread in these programs is
symmetric, and, in most cases, non linear. They exploit the
non-linearity by creating high levels of imbalance in thread
allocations, such that one thread at a time can accelerate
by securing large share of the cache at the expense of all
other threads. Overall performance improvement is secured
by prioritizing each thread in a round-robin fashion.

8.2 Software-assisted Cache Management

8.2.1 Software Hints
A key component of our cache management technique for

task-based applications is the framework that allows the run-
time to control the shared LLC replacement by informing
the hardware about the tasks which are future consumers of
the data blocks. In recent times, hardware vendors have al-
lowed software to influence the replacement policy through
appropriate hints, such as non-temporal access hints in Intel
processors, or target cache-level specifications for allocating
cache blocks in the Itenium architecture. Researchers have
explored compiler and profile-based techniques to improve
cache utilization through these hints [8, 10, 33, 34, 38, 39].

Wang et al. propose a software replacement hint in the
form of an evict-me bit, which when set for a block (through
extended load/store instructions) makes it the most likely
candidate to be replaced. The authors develop a static
compiler-level analysis to obtain a rough estimate of reuse
distances of blocks for loop-based programs, and set the
evict-me bit for the blocks with reuse distance greater than
the cache size [38].

Beyls and D’Hollander develop profile-based and analyti-
cal techniques to generate target cache hints for loop-based
applications running on the IA64 architecture [8]. Target
cache hints inform the hardware about the highest(fastest)
level of cache a particular memory access is expected to ob-
tain reuse hits from. The hardware uses these hints to guide
allocation and promotion decisions for the caches. First,
the authors estimate the reuse distance histogram for all

accesses from each memory access instruction through pro-
filing and extrapolation and generate static hints (hints that
remain constant for all accesses due to an instruction). Sec-
ond, for applications conforming to the polyhedral model,
the authors develop equations to generate forward reuse dis-
tance estimations for accesses based on program parameters
and use these to insert extra code which dynamically gener-
ates the hints for different instances of the same instruction.
Brock et al. propose a similar profile-based method to iden-
tify accesses with high OPT distances (forward reuse dis-
tances for accesses under the optimal replacement policy)
and annotate these accesses with MRU replacement hints
during the compile phase [10]. The motivation of using
OPT-distance over forward reuse distance stems from the
fact that for cyclic access-patterns with a period larger than
the cache capacity, all accesses have reuse distance greater
that the capacity and hence are candidates for MRU evic-
tion, whereas an optimal replacement policy would have re-
tained some of them. A static memory reference inside a
loop can lead to many dynamic accesses with differing OPT
distances. To address this issue, the authors present an ana-
lysis to group accesses by OPT distances in loop-based pro-
grams, and performs loop splitting to enable the compiler
insert appropriate hints to these separate groups. The ana-
lysis is profile-driven. First OPT-distances are measured for
all dynamic accesses, and then they are grouped by static
references. For each static references the authors aim to find
patterns of OPT-distances across the loop iterations. Two
distinct patterns are found to be dominant – for some iter-
ations, the distances are bounded (spatial-locality), and for
others they increase linearly with iteration number (tem-
poral locality due to cyclic access patterns for loops). The
authors use automatic grid-regression method to learn this
patterns from training inputs. They also find that, for linear
patterns, the offset depends on loop size/input size, and the
slope depends on loop-shape. This enables OPT-distance
prediction for different inputs sizes. Then, based on num-
ber of static references in the loop, input size and cache size,
loop-splitting is performed. These profile-based or analytical
estimations of reuse distance are reasonably accurate for sin-
gle threaded loop-based applications, but do not work well
for parallel applications because actual shared reuse distance
values diverge from the predicted values due to interference
from co-running threads or tasks, and the indeterminism in
access interleaving.

Sandberg et al. explore the effects of identifying and elim-
inating non-temporal accesses in a multicore multiprogram-
ming environment [34]. The authors develop a profile-based
approach to identify memory access instructions whose data
is never reused during its lifetime in the cache hierarchy
as non temporal accesses through offline analysis of reuse
distance profiles. These non-temporal accesses are installed
only in L1 cache but not in the outer level-caches. A non-
temporal access instruction is identified by the following cri-
teria: at least one access with reuse distance greater than
capacity and the number of accesses that reuse data within
a distance range between L1 capacity and L2 capacity is
smaller than a threshold. If an L1 data block is set as non-
temporal it remains so until it is evicted from the L1 cache,
even if it is reused through some other instruction, it remains
non-temporal. Due to this stickiness of the non-temporal
status, the above-mentioned condition must also hold for
any memory access instruction that reuses the same data

through the L1 cache. Confining non-temporal data to the
private L1 caches allows for better utilization of the shared
outer level caches. Rus et al. proposed profile-based tech-
niques to selectively use non-temporal access instructions
for string operations with poor reuse behavior to improve
cache utilization for datacenter applications [33]. Yang et
al. explored the benefits of using non-temporal accesses to
reduce the cache pollution effects of zero-intializtions in vir-
tual machine-managed applications [39].

8.2.2 Software Cache Partitioning
Lu et al. partition the cache space among heap and global

objects allocated by an application in order to segregate ob-
jects with poor data locality from the rest of the objects [23].
This improves whole-program locality. Data locality signa-
tures of individual objects are collected through profiling
runs with training inputs, and are used to predict the lo-
cality behavior for the test inputs. Partitioning is done at
the start of a run, using the stored locality information, run
parameters, and cache configuration. Page coloring is used
to partition the cache in software.

Ding et al. implement a library for user-level allocation
of cache space that is implemented through the well-known
page-coloring based cache-set partitioning method [11]. The
library allows users to allocate private/shared space for spe-
cific data-structures and threads in the cache. Design of the
allocation policy is left to the programmer.

8.3 Runtime-driven Architecture Optimiza-
tions

The runtime for task-parallel applications have been used
by researchers to guide architectural optimizations for mul-
ticores. Papaefstathiou et al. develop a runtime-guided
prefetch engine that can be used to prefetch data blocks
to be accessed by future tasks for multicores with private
caches. The authors also partition each cache between the
data blocks belonging to the current and future tasks in
order to prevent the prefetched data from polluting the
caches [28]. Manivannan and Stenstrom propose using the
runtime to guide coherence optimizations such as downgrad-
ing and self-invalidation in order to improve performance of
task-parallel applications [24].

9. CONCLUSION
In this paper, we proposed and evaluated a hardware-

software technique to partition a shared last-level cache
among the tasks of a task-parallel application. We show that
current thread-based partitioning techniques are ineffective
in improving the efficiency of shared LLC for task-parallel
applications, since they fail to track complex data-reuse pat-
terns present among short-lived tasks and also to adapt to
the dynamism of task-core assignments. Instead we design
a scheme based on the ideas of using the runtime to map
cache-resident task blocks to the tasks that are going to
reuse them in future, and directing the replacement engine
to preserve data blocks for as many future tasks as possi-
ble. The scheme also identifies blocks that are no longer
going to be used in future and flags them for early eviction.
On average,the proposed technique achieves 10% increase in
application performance and 26% reduction miss-rate over
a LRU-based unpartitioned cache for task-parallel applica-
tions through improved utilization of the cache space.

10. REFERENCES
[1] Barcelona Supercomputing Center bsc application

repository.
https://pm.bsc.es/projects/bar/wiki/Applications.
Accessed: 2015-04-02.

[2] Intel Corporation intel threading builing blocks.
https://www.threadingbuildingblocks.org. Accessed:
2015-03-21.

[3] OpenMP Application Programming Interface, Version
4.0, howpublished =http://www.openmp.org/mp-
documents/OpenMP4.0.0.pdf, note = July 2013,
Accessed: 2015-04-06.

[4] M. D. Allen, S. Sridharan, and G. S. Sohi.
Serialization sets: A dynamic dependence-based
parallel execution model. In Proceedings of the 14th
ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’09, pages
85–96, New York, NY, USA, 2009. ACM.

[5] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger,
Y. Lin, F. Massaioli, X. Teruel, P. Unnikrishnan, and
G. Zhang. The design of openmp tasks. Parallel and
Distributed Systems, IEEE Transactions on,
20(3):404–418, March 2009.

[6] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken.
Legion: Expressing locality and independence with
logical regions. In Proceedings of the International
Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’12, pages
66:1–66:11, Los Alamitos, CA, USA, 2012. IEEE
Computer Society Press.

[7] L. A. Belady. A study of replacement algorithms for a
virtual-storage computer. IBM Syst. J., 5(2):78–101,
June 1966.

[8] K. Beyls and E. H. D’Hollander. Generating cache
hints for improved program efficiency. J. Syst. Archit.,
51(4):223–250, Apr. 2005.

[9] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk: An
efficient multithreaded runtime system. In Proceedings
of the Fifth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPOPP ’95,
pages 207–216, New York, NY, USA, 1995. ACM.

[10] J. Brock, X. Gu, B. Bao, and C. Ding. Pacman:
Program-assisted cache management. In Proceedings
of the 2013 International Symposium on Memory
Management, ISMM ’13, pages 39–50, New York, NY,
USA, 2013. ACM.

[11] X. Ding, K. Wang, and X. Zhang. Ulcc: A user-level
facility for optimizing shared cache performance on
multicores. In Proceedings of the 16th ACM
Symposium on Principles and Practice of Parallel
Programming, PPoPP ’11, pages 103–112, New York,
NY, USA, 2011. ACM.

[12] A. Druan, E. Aygude, R. M. Badia, J. Labarta,
L. Martinell, X. Martorell, and J. Planas. Ompss: A
proposal for programming heterogeneous multi-core
architectures. Parallel Processing Letters,
21(02):173–193, 2011.

[13] N. Duong, D. Zhao, T. Kim, R. Cammarota,
M. Valero, and A. V. Veidenbaum. Improving cache
management policies using dynamic reuse distances.
In Proceedings of the 2012 45th Annual IEEE/ACM

International Symposium on Microarchitecture,
MICRO ’12, pages 389–400, Washington, DC, USA,
2012. IEEE Computer Society.

[14] J. Engblom, D. Aarno, and B. Werner. Full-system
simulation from embedded to high-performance
systems. In R. Leupers and O. Temam, editors,
Processor and System-on-Chip Simulation, chapter 3,
pages 25–45. Springer US, 2010.

[15] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez,
R. Badia, E. Ayguade, J. Labarta, and M. Valero.
Task superscalar: An out-of-order task pipeline. In
Microarchitecture (MICRO), 2010 43rd Annual
IEEE/ACM International Symposium on, pages
89–100, Dec 2010.

[16] F. Guo, Y. Solihin, L. Zhao, and R. Iyer. Quality of
service shared cache management in chip
multiprocessor architecture. ACM Trans. Archit. Code
Optim., 7(3):14:1–14:33, Dec. 2010.

[17] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni.
Communist, utilitarian, and capitalist cache policies
on cmps: caches as a shared resource. In Proc. 15th
Int’l Conf. Parallel Architectures and Compilation
Techniques, PACT ’06, pages 13–22, New York, NY,
USA, 2006. ACM.

[18] R. Iyer. Cqos: a framework for enabling qos in shared
caches of cmp platforms. In Proc. 18th Annual Int’l
Conf. Supercomputing, ICS ’04, pages 257–266, New
York, NY, USA, 2004. ACM.

[19] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot,
S. Steely, Jr., and J. Emer. Adaptive insertion policies
for managing shared caches. In Proc. 17th Int’l Conf.
Parallel Architectures and Compilation Techniques,
PACT ’08, pages 208–219. ACM, 2008.

[20] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and
J. Emer. High performance cache replacement using
re-reference interval prediction (rrip). In Proceedings
of the 37th annual international symposium on
Computer architecture, ISCA ’10, pages 60–71, New
York, NY, USA, 2010. ACM.

[21] G. Keramidas, P. Petoumenos, and S. Kaxiras. Cache
replacement based on reuse-distance prediction. In
Computer Design, 2007. ICCD 2007. 25th
International Conference on, pages 245–250, 2007.

[22] S. Kim, D. Chandra, and Y. Solihin. Fair cache
sharing and partitioning in a chip multiprocessor
architecture. In Proc. 13th Int’l Conf. Parallel
Architectures and Compilation Techniques, PACT ’04,
pages 111–122, Washington, DC, USA, 2004. IEEE
CS.

[23] Q. Lu, J. Lin, X. Ding, Z. Zhang, X. Zhang, and
P. Sadayappan. Soft-olp: Improving hardware cache
performance through software-controlled object-level
partitioning. In Parallel Architectures and Compilation
Techniques, 2009. PACT ’09. 18th International
Conference on, pages 246–257, Sept 2009.

[24] M. Manivannan and P. Stenstrom. Runtime-guided
cache coherence optimizations in multi-core
architectures. In Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International, pages
625–636, May 2014.

[25] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D.

Hill, and D. A. Wood. Multifacet’s general
execution-driven multiprocessor simulator (gems)
toolset. SIGARCH Comput. Archit. News, 33:92–99,
Nov. 2005.

[26] S. P. Muralidhara, M. Kandemir, and P. Raghavan.
Intra-application cache partitioning. In Proc. 2010
IEEE Int’l Symp. Parallel & Distributed Processing
(IPDPS), pages 1–12. IEEE, Apr. 2010.

[27] A. Pan and V. S. Pai. Imbalanced cache partitioning
for balanced data-parallel programs. In Proceedings of
the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-46, pages 297–309, New
York, NY, USA, 2013. ACM.

[28] V. Papaefstathiou, M. G. Katevenis, D. S.
Nikolopoulos, and D. Pnevmatikatos. Prefetching and
cache management using task lifetimes. In Proceedings
of the 27th International ACM Conference on
International Conference on Supercomputing, ICS ’13,
pages 325–334, New York, NY, USA, 2013. ACM.

[29] J. Perez, R. Badia, and J. Labarta. A
dependency-aware task-based programming
environment for multi-core architectures. In Cluster
Computing, 2008 IEEE International Conference on,
pages 142–151, Sept 2008.

[30] J. M. Perez, R. M. Badia, and J. Labarta. Handling
task dependencies under strided and aliased
references. In Proceedings of the 24th ACM
International Conference on Supercomputing, ICS ’10,
pages 263–274, New York, NY, USA, 2010. ACM.

[31] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and
J. Emer. Adaptive insertion policies for high
performance caching. In Proc. 34th annual Int’l Symp.
Computer Architecture, ISCA ’07, pages 381–391.
ACM, 2007.

[32] M. K. Qureshi and Y. N. Patt. Utility-based cache
partitioning: A low-overhead, high-performance,
runtime mechanism to partition shared caches. In
Proc. 39th Ann. IEEE/ACM Int’l Symp.
Microarchitecture, MICRO 39, pages 423–432. IEEE
CS, 2006.

[33] S. Rus, R. Ashok, and D. Li. Automated locality
optimization based on the reuse distance of string
operations. In Code Generation and Optimization
(CGO), 2011 9th Ann. IEEE/ACM Int’l Symp., pages
181 –190, Apr. 2011.

[34] A. Sandberg, D. Eklöv, and E. Hagersten. Reducing
cache pollution through detection and elimination of
non-temporal memory accesses. In Proceedings of the
2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’10, pages 1–11, Washington, DC, USA,
2010. IEEE Computer Society.

[35] H. Stone, J. Turek, and J. Wolf. Optimal partitioning
of cache memory. IEEE Trans. Computers,
41:1054–1068, 1992.

[36] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic
partitioning of shared cache memory. J. Supercomput.,
28:7–26, Apr. 2004.

[37] G. Venkataramani, B. Roemer, Y. Solihin, and
M. Prvulovic. Memtracker: Efficient and
programmable support for memory access monitoring
and debugging. In Proceedings of the 2007 IEEE 13th

International Symposium on High Performance
Computer Architecture, HPCA ’07, pages 273–284,
Washington, DC, USA, 2007. IEEE Computer Society.

[38] Z. Wang, K. S. McKinley, A. L. Rosenberg, and C. C.
Weems. Using the compiler to improve cache
replacement decisions. In Proceedings of the 2002
International Conference on Parallel Architectures and
Compilation Techniques, PACT ’02, pages 199–,
Washington, DC, USA, 2002. IEEE Computer Society.

[39] X. Yang, S. M. Blackburn, D. Frampton, J. B. Sartor,
and K. S. McKinley. Why nothing matters: The
impact of zeroing. In Proceedings of the 2011 ACM
International Conference on Object Oriented
Programming Systems Languages and Applications,
OOPSLA ’11, pages 307–324, New York, NY, USA,
2011. ACM.

	Purdue University
	Purdue e-Pubs
	2015

	Runtime-Driven Shared Last-Level Cache Management for Task-Parallel Programs
	Abhisek Pan
	Vijay Pai

	Introduction
	Dependence-aware Task Parallelism
	Specifying Data Dependencies

	Cache Management for Task-Parallel Programs
	Hardware-Software Support
	Runtime Modifications
	Interfacing with Hardware
	Hardware-Software Task Translation
	Last-Level Cache Modifications

	Evaluation Framework
	Results
	Implementation Overhead
	Related Work
	Shared Cache Partitioning
	Multi-programming Workloads
	Multi-threaded Workloads

	Software-assisted Cache Management
	Software Hints
	Software Cache Partitioning

	Runtime-driven Architecture Optimizations

	Conclusion
	References

