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Figure 1 The novel model of visual attention. 
The processing is illustrated in a guided visual 
search task to localize and recognize the 
target ‘bottle‘, indicated by the red cross. 
Firstly, the image is processed by a primary 
visual cortex model (V1), encoding oriented 
edges (O), red-green (L - M), and blue-yellow 
color contrasts (S - LM). From this, a higher 
visual area (HVA), comparable to V4 or IT, 
recognizes object views. The task implies 
feature-based attention towards the target 
object, simulated by activating a target 
preferring neuron in the prefrontal cortex 
(PFC). This results in a feature-based 
amplification signal to HVA, increasing the 
responses of target view neurons in both HVA 
layers, and so selects the target. In parallel, 
feature-based suppression from layer 2/3 to 
layer 4 decreases neuronal responses 

towards distractors. The so modulated HVA responses provide an target specific bias to the frontal eye field (FEF) and so guide 
eye movements. The FEF forms together with HVA a recurrent loop, which focuses activity over time on a single target location, 
leading to the emergence of spatial attention. Finally, an eye movement is planned towards this location, indicating the 
outcome of the recognition process. 

Extended abstract: Visual attention modulates neuronal 
activity in a rich set of paradigm (Reynolds & Heeger, 2009, 
Neuron). However these paradigms use simple stimuli and 
setups, making it hard to link their physiological findings to 
complex real-world tasks containing whole objects and 
background clutter. Here we want to bridge this gap in a real-
world, guided visual search task, in which an object of interest 
has to be searched and recognized in a scene. Computer vision 
systems already use visual attention for such object 
recognition (Borji & Itti, 2013, IEEE TPAMI), but only as a pre-
selection mechanism for a subsequent, sophisticated 
recognition stage (saliency map approach). Contrary, top-down 
attention in the primate brain seems to be a control network 
modulating neuronal activity for the current task (Miller & 
Buschman, 2013, Curr Opin Neurobiol). Thus attention does 
not serve as a separate pre-selection stage, instead it controls 
both selection and recognition processes. This approach is 
advantageous compared to computer vision systems as it 
solves the chicken-egg problem of segmentation and 
recognition by executing both processes in parallel (Antonelli 
et al., 2014, IEEE TAMD).  

Here, we present a novel model of attention (Fig. 1) which 
uses the cortical processing of attention as a core principle, 
and underpins it with a large set of findings from physiology 
and neuroanatomy. A higher visual area (HVA) is simulated by 
a scaled version of a recently developed microcircuit model of 
visual attention (Beuth & Hamker, in revision, Vision Res), 
which explains the physiologically data of twelve different 
attention experiments, e.g. biased competition, modulation of 
contrast response functions, tuning curves, and surround 
suppression. It primarily relies on neuronal implementations of 
a few attention mechanisms: amplification, divisive 
normalization, spatial pooling, and suppression. The area 
contains view-tuned neurons to represent objects, learned by 
a trace-learning rule (Antonelli et al., 2014). The HVA is part of 
a larger visual cortex model which possesses neuroanatomical 
properties like top-down attentional processing (Miller & 
Buschman, 2013), hierarchical receptive field sizes (Smith  

et al., 2001, Cerebral Cortex), and synaptic transmission 
delays (Schmolensky et al., 2000, J Neurophysiol). We also 
included a model of the frontal eye field (Zirnsak et al., 2011, 
Eur J Neurosci) with its physiological cell types (Schall, 1991, J 
Neurophysiol): visual (FEFv), movement (FEFm) and 
visuomovement cells (FEFvm). To sum up, we developed a 
very general model of visual attention embedded in the 
visual and prefrontal cortices. 

We evaluated the model on two large and realistic object 
recognition test sets, consisting of 1000 different scenes with 
either a) black, or b) white-noise backgrounds. Each scene 
contains five different objects from a set of 100 objects under 
72 different rotations (COIL-100 data set). The model´s task 
was to search for one of these five objects and to report its 
location. The model achieves 92% accuracy on black 
backgrounds and 71% on white-noise backgrounds. In the 
black background set, misrecognitions occur mainly when a 
distractor is similar to the target and also more salient as the 
target. These cases occur more often in the white-noise set 
as the noise reduces the neuronal representation of targets. 
Additionally, misrecognitions occur in this set if an object is 
similar to the background noise.  

We furthermore investigated the neuronal mechanisms of 
attention in the guided visual search task. We observe that 
feature-based amplification, explaining the multiplicative 
effect of feature-based attention at the neuronal activity, 
selects the target by amplifying target specific neurons. 
Deactivating feature-based amplification leads to a selection 
of the most salient target. Interestingly, the white-noise 
backgrounds require a stronger amplification signal as the 
black backgrounds because amplification has to compensate 
for the reduced target activity. We also investigated feature-
based suppression which accounts for decreased neuronal 
activity like in biased competition. In this task, it suppresses 
the neuronal activity resulting from distractors and from the 
background. Deactivating this mechanism increases such 
activity by a factor of 2.7 at the black background set, and by 
a factor of 2.0 at the white-noise set.  


