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Abstract

The phenomenon of overbanking tendency for a rigid-body, fixed-wing aircraft is investigated. Overbanking tendency is defined as a
spontaneous, unbalanced rolling moment that keeps increasing an airplane’s bank angle in steep turns and must be arrested by opposite
aileron action. As stated by the Federal Aviation Administration, the overbanking tendency may lead to a loss of control, especially in
instrument meteorological conditions. It was found in this study that the speed differential over wing halves in horizontal turns indeed
creates a rolling moment that achieves maximum values for bank angles between 45 and 55 degrees. However, this induced rolling
moment may already be a part of other lateral-directional stability derivatives, most probably in dihedral effect. Nevertheless, the
overbanking tendency may also be induced by propulsive and/or gyroscopic moments, airplane and flight control rigging problems,
human factors, and improper piloting techniques. Straightforward explanation of the overbanking tendency is based on the asymptotic
spiral divergence lateral-directional mode, which is very common in many FAR 23 airplane designs. The full nonlinear stability model,
which may include coupling of longitudinal, lateral, and directional motion in steep turns at high angles of attack and including propulsive
moments, may be required to make the final judgment about the existence of the overbanking tendency. A thorough review of airplane
turning performance in horizontal plane is presented.
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Introduction

One of the common points of confusion and contention
in the aviation community is the phenomenon called the
overbanking tendency (OBT) in steep turns. The definition
of OBT can be summarized as a spontaneous increase of
bank angle in steep turns, which requires active attention
and opposite aileron deployment to stop further bank
increase. The study presented here is an attempt to explain
the origin and the existence (or absence) of the OBT. To
make the final conclusive statements, more research that
ventures into the field of coupled longitudinal and lateral-
directional (L-D) nonlinear stability of fixed-wing aircraft
incorporating destabilizing power/thrust effects, inertial and
aerodynamic coupling, and so forth, is necessary. However,
the question of OBT may be simply explained as human
reaction where pilots see the overbanking tendency caused
by whatever reason as threatening. Any underbanking
tendency (UBT) is simply seen as an annoyance.

The Federal Aviation Administration (FAA, 2004)
defines OBT in terms of the steep bank where the outside
wing portion must complete the larger circle in the same
time as the inner wing half. Thus there is speed difference
which causes lift differential resulting in an unbalanced roll
toward the inside of the turn. However, many other effects
such as thrust, inertial, and aerodynamic moments that act
on an airplane could also be responsible for OBT. The basic
reasoning of the FAA is that the spontaneous OBT at steep
bank angles could be dangerous and must be actively
addressed by pilots.

It is understandable that the FAA (and other regulatory
agencies that deal with certification of pilots) is concerned
with the fact that OBT can cause in-flight loss-of-control
(LOC-I). This is especially true in instrument meteorolo-
gical conditions (IMC) due to pilot distractions and high
workload. As a matter of fact, Langewiesche (1972) reports
that it is common to assume that an inexperienced pilot left
to himself/herself will most likely end a flight catastrophi-
cally in a spiral dive (i.e., ‘‘graveyard spiral’’) and crash (or
cause airplane in-flight breakup). Simultaneously, several
adverse human and aeromedical factors are associated with
the high-g loading during steep-turning downward spiraling
flight.

The FAA requires specific steep-turn performance flight
training for private (45˚¡5 )̊ and commercial (50˚¡5 )̊
pilot candidates (FAA, 2002a; 2002b). Steep turns are to be
practiced also with one of the stated goals to recognize and
neutralize OBT. Superficial explanation of the OBT is
provided in some FAA training materials (FAA, 2004, pp.
3–9, 9–1).

Literature Review

In the technical aerospace and aeronautics literature on
airplane stability and control, there is absolutely no

reference to OBT anywhere. The small-perturbation linear
stability theory, which is a workhorse in airplane design, is
based on the initial work of Professor G. H. Bryan in his
1911 book on stability in aviation. A nice summary of early
airplane control and stability technology development is
given by Perkins (1969). The author highlights many
important stability phenomena and states that some of the
early flight-tests in WWII airplanes have shown that
oscillatory Dutch-roll (D-R) is important, but controlling
the spiral divergence is not. In specialized and advanced
books on airplane stability and control, such as Etkin (1959),
Kolk (1961), Seckel (1964), Ashley (1992), Russell (1996),
Abzug and Larrabee (1997), Nelson (1998), Hodgkinson
(1999), Stevens and Lewis (2003), Stengl (2004), Etkin
(2005), Roskam (2007), and Schmidt (2012) there is no
mentioning of the OBT in any L-D stability context. There is
also no specific discussion of roll stability in steep turns and
high bank angles. The only exception to this is the discussion
of the span speed distribution during horizontal turns by
Phillips (2004). Although Phillips (2004) does not call it
OBT, his description of the phenomenon clearly points to it.
As it will be shown here later, the effect of wing speed-
differential can be neglected when the diameter of a turn is
much larger than the airplane’s wingspan. It is apparent that
Phillips (2004) considers this speed differential outside of the
stability context. Moreover, the certification guidelines and
regulations do not require testing of the aircraft flight
dynamics at steep bank angles. As Phillips (2004) points
out further, fixed-wing aircraft with low wing-loading and
large wingspan (such as gliders) must take into account this
speed differential which in very steep turns may cause stall of
the lower wing.

Etkin (2005, p. 298), in discussing the roll stiffness,
specifically states that aerodynamic rolling moments are
not bank angle dependent and that any effect of it (Clw ) is
already included in the lateral stability coefficient Clb ,
which is directly dependent on the sideslip angle (b).
Similar arguments were repeated by Nelson (1998),
Raymer (1999), and Philips (2004). McCormick (1995, p.
518) states that Clw is always zero, and that at best an
airplane exhibits neutral roll stability in regard to bank
angle (w). As a matter of fact, unlike angle of attack (AOA
or a) or sideslip angle (b), bank angle (w) generates no
aerodynamic moments per se.

A literature review of peer-reviewed, archived technical
journals on aircraft stability and control yielded no specific
return on OBT. It must be admitted that the search was not
very in-depth or exhaustive, but nevertheless, no connec-
tion to OBT, or similarly, to L-D stability in steep-turns,
returned any meaningful results. There are literally
thousands of articles dealing with aircraft stability plus
many NASA technical reports, and it is possible that this
problem was addressed somewhere, sometime. However,
no technical article was found that deals with the problem
of OBT.
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On the other hand, regulatory fixed-wing aircraft pilot
training requires practice of steep turns. Thus, a strong
argument is made for OBT. For example, in FAA training
material (FAA, 2004; FAA, 2013a), OBT is mentioned
several times and some physical explanations are given.
Interestingly, the old CAA civil pilot training manual (Cram
& Brimm, 1940) does not mention OBT anywhere, although
it includes a very decent description of steep turns and load
factors. However, OBT, or anything related to it, was never
mentioned. The great Wolfgang Langewiesche (1972, p.
133) was perhaps the first to introduce the concept of OBT.
In his book Stick and Rudder, originally published in 1944,
his explanation of OBT was basically in line with the
understanding of divergent spiral (in)stability of that time.
On the other hand, former Lockheed engineering test pilot,
Sammy Mason (1982) does not mention OBT anywhere in
his book, Stalls, Spins, and Safety.

The late test pilot, flight instructor, and aviation educator
extraordinaire Bill Kershner, who also taught aerobatic
flying and advanced spin recoveries to the author of this
article many years ago, does not mention OBT in his books
on advanced pilot-oriented aerodynamics and airplane
performance (1994) or on basic aerobatics (1996). As a
matter of fact, torque (left-turning tendency), which will
cause reduction in the bank angle in right steep turns (about
60 )̊, is specifically mentioned. This would be a case of UBT
caused by powerplant torque. Although not explicitly
mentioned, it would be expected that small OBT exists in
left turns, but this may be completely suppressed by dihedral
effect (roll stiffness). It is thus unlikely that powerplant
torque would cause any significant change in lateral stability.
Additionally, Kershner (1994) describes the reduction of
dihedral effect due to destabilizing power (propeller slip-
stream) effects in sideslips. Another basic aerobatic book
(Campbell & Tempest, 1989) makes no mention of OBT in
the section on steep turns and advanced maneuvering.

Other pilot-oriented books on aerodynamics that even
superficially touch on the subject of stability and control
rarely mention OBT. The book on practical aerodynamics
for pilots by Hurt (1965), Aerodynamics for Naval
Aviators, includes a non-calculus-based basic introduction
on static and dynamic airplane stability. However, nowhere
is the term OBT mentioned, either in relation to steep turns
or in any other stability or performance context. Hubin
(1992) also makes no reference to OBT when discussing
airplane aerodynamics. Specifically, in the section on the
aerodynamics of turn or in the chapter on airplane stability,
trim, and control and when discussing rolling motion there
is no hint of OBT. On the other hand, Denker (2001) is a
big advocate of OBT, but his descriptions are commensu-
rate with the ones used earlier and do not represent any new
insights into OBT. Askue (2006) writes about flight testing
of homebuilt airplanes and he discusses in simple terms all
important L-D stability problems including spiral diver-
gence and D-R modes. There is no discussion of OBT.

Anderson and Eberhardt (2001) make no mention of the
OBT when discussing the physics of (steep) turns. Neither
does Smith (1992) when discussing aerodynamics of turns
(including steep ones). While Swatton (2008; 2011)
provides a very decent introduction on airplane static and
dynamic stability, OBT is not mentioned.

Since gliders (sailplanes) are also fixed-wing aircraft,
some references were checked there as well. Piggot (2002)
makes no mention of OBT. Likewise, neither does Stewart
(2001) when discussing glider aerodynamics. However,
Conway (1989) and the FAA (2013a) address OBT in
glider flying identically to the way it was explained for
powered airplane flight. By reading many other national
and international sources, it seems that OBT almost
exclusively originates in US published fixed-wing pilot-
training materials.

There are, of course, many non-peer-reviewed articles
and opinions in the pilot community about OBT. For the
sake of argument, the article by Lohmann (2003) argues
against OBT, claiming that it is insignificant in conven-
tional GA light-planes. On the other hand, Garrison (2011)
advocates for OBT along the same arguments of differ-
ential wing speeds during turning motion. Some authors
dispute any possibility that OBT exists, while others
adamantly support it.

Is it possible, however, that both sides of the aisle are
correct? A simple explanation is that differential speed, lift,
and corresponding rolling moment in turns does indeed
exist, but that this effect is already included and hidden in
some stability derivatives. Even if it is not, it can be
neglected for great majority of conventional FAR 23 and
FAR 25 airplanes.

So does OBT really exist? Is OBT just a well-understood
consequence of the gentle spiral divergence possibly
combined with the small wing lift differential and associated
rolling moment in steep turns? The answer cannot be
definitively given, as some effects besides wing speed
differential could still possibly, but very unlikely, lead to
OBT in light GA FAR 23 airplanes. One such effect, which
is essentially an unintentional active boundary-layer-control
in significant sideslips in turns, could come from propeller
slipstream (i.e., propwash). However, propeller slipstream is
completely absent in gliders/sailplanes; thus, it is very
difficult to see how that argument alone supports OBT.
Some nonlinear coupling of aerodynamic and inertial effects
do exist that could cause induced rotations around other
body axes, but that is mostly reserved for high-performance
fighter airplanes. Possible cause of OBT could be coupled
roll-spiral oscillatory mode. This curious mode, often referred
to as lateral-phugoid, is the consequence of unusual combina-
tion of stability derivatives (Hodgkinson, 1999).

This article asserts only a contribution toward better
understanding of OBT. No final claims to the origin of OBT
are given, other than the most likely causes. This article is
neither an exhaustive review of the airplane L-D stability and
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control (as that would be a monumental work about which
many great books have already been written) nor the
definitive answer to the origin of OBT if it indeed exists.

Mathematical Model of Turning Flight

An illustration of the airplane in a constant-altitude
horizontal plane turning flight with associated forces is
shown in Figure 1. Here, b is the wingspan, C is dihedral
angle, and w is the bank angle.

Flight Mechanics of Turning Flight

A rigid-body non-rotating flat-earth model of airplane
turning performance in arbitrary plane (Vinh, 1993) using
the topocentric coordinate system xf ,yf ,zf

� �
fixed to the

earth surface (zf axis positive upward) and inertial, for all
practical purposes here, yields a set of six coupled ordinary
differential equations (ODE) describing the motion of the
airplane’s center of gravity (CG).
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The body xb,yb,zbð Þ or longitudinal-lateral-vertical axes
(for roll, pitch, and yaw rotations) are fixed to aircraft

(origin in CG). The first three ODE define speeds and
location of the aircraft’s CG in relationship to fixed inertial
frame of reference. This set of equations can be
considerably simplified, assuming that the thrust vector is
collinear with the velocity vector (cos "&1, sin "&0), and
that turning performance takes place in the horizontal plane
only. Thus, for constant-rate turn (v) at fixed altitude
(c~0, dc=dt~0, dz=dt~0), Equation 1, simplifies to:
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The wind vector could be easily incorporated in the three
ODE defining translational motion in 3D space around a
fixed inertial coordinate system. All aircraft rotations and
moments are described using the right-hand-rule convention.
The body roll and pitch rates are both zero ( _w~0, _h~0), and
all that is remaining of body rotations is the yaw rate. If the
problem is of constant-airspeed (dV=dt~0), Equation 2
reduces to (Anderson, 1999; Asselin, 1997; Eshelby, 2000;
Hale, 1984; Mair & Birdsall, 1992; McCormick, 1995;
Phillips, 2004; Raymer, 1999; Saarlas, 2007; Vinh, 1993):

T~D L cos w~W L sin w~
W

g
Vv ð3Þ

From the second equation in system (Equation 3), the
vertical load factor n is defined as:

Figure 1. Aircraft in a constant-altitude turning flight in vertical (LHS) and horizontal (RHS) planes. Some geometry is highly exaggerated for better visual
representation.
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From the third equation in system (Equation 3), the
angular velocity (change of heading y) of a turning aircraft
or rate-of-turn (ROT) in a horizontal plane is given as:

ROT~v~
dy

dt
~

g tan w

V
~

g
ffiffiffiffiffiffiffiffiffiffiffiffi
n2{1
p

V
ð5Þ

Here, g is gravitational acceleration and the angular
rotation velocity vector ~v in the fixed inertial reference
system is perpendicular to the horizontal plane in which the
turn takes place. The instantaneous radius-of-turn of the
airplane’s CG is:

R~
V

v
~

V 2

g tan w
~

V2

g
ffiffiffiffiffiffiffiffiffiffiffiffi
n2{1
p ð6Þ

Since an airplane is assumed to be a rigid-body and the
angular speed is constant for all its body parts, the
tangential speed will vary with the radius vector from the
center of rotation. The centripetal force created by the
horizontal lift component is the only active force causing
the airplane to experience centripetal acceleration (change
of direction). An opposing centrifugal force is generated as
an apparent (inertial) force in non-inertial or accelerated
frame of reference (airplane and its occupants).

Constant-altitude turning performance calculations are
shown in Figure 2. Straight solid lines depict constant
radius-of-turn (R5const) performance. The faster the
airplane flies in a constant-radius constant-altitude turn,
the higher the ROT, bank angle, and the n-load. The

monotonously decreasing dashed curves depict constant
vertical flight loads. A lift-limit (maximum coefficient-of-
lift) is represented by a solid curving line. For example, for
an airplane with turning radius of 150 ft (diameter of
300 ft) at n~2:0 (w~600), the stalling speed cannot
exceed roughly 55 knots which corresponds to 38.9 knots
stalling speed in level n~1:0 (1-g) flight. However, the
same steep-turn with the bank angle of 60˚ could be made
at the radius of turn of 300 ft (diameter of 600 ft) in which
case the stalling speed in a turn cannot exceed 77 knots (1-g
stalling speed of 54.5 knots). For example, a utility-
category airplane designed for maximum vertical flight
loads of n~4:4 (w~76:780) and 1-g stalling speed of 50
knots (with corresponding maneuvering speed of 105 knots
at MTOW) will have ROT of about 45 degrees/s and
negotiate the horizontal (no-wind) circle with the radius of
turn of about 230 ft taking only about 8s to complete a 360˚
heading change (shown as red diamond marker in
Figure 2). This is the cornering airspeed defining the
maximum turning performance (largest ROT and shortest
R) while limited by the maximum in-flight structural
vertical load factor (nmax) and accelerated stalling speed
(lift limit).

If this particular airplane is accelerated to, for example,
115 knots in a constant-altitude steep-turn, several options
exist. Maintaining the same radius-of-turn (ROT increas-
ing), the flight load and the bank angle will increase beyond
the maximum design limit risking structural damage or
failure. The second option is to hold constant ROT (about
45 /̊s) which would also lead to increased (albeit lesser)
flight load and bank angles again violating the structural
limits. However, there are no cockpit instruments that will

Figure 2. Airplane turning performance (h5SL5const., W/S511.912 lb/ft2, CL,max51.4).
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show constant R or ROT. When increasing airspeed
beyond maneuvering (VA), for example, from 105 to 115
knots, the maximum structural flight load (n~4:4 in this
case) and the bank angle (w~76:780) must be maintained,
leading to lower ROT (about 42 /̊s) and turning at larger R
(about 260 ft here). This could possibly be a dangerous
scenario, as the airplane has the potential to create more lift
and thus overstress its structure. However, the over-
whelming majority of GA airplanes are thrust-/power-
limited to have such sustained super-maneuvering cap-
ability at maximum flight loads even when at lowest
density altitudes (DAs). It takes an advanced aerobatic
airplane or a maneuverable jet fighter to accomplish
sustained high-performance turns. The stalling speed
corresponds to the maximum coefficient-of-lift and is
flight-load dependent.

A Model of Differential Airspeed and Lift Generation in
Turning Flight

Due to velocity differential between the upper (‘‘up’’)
and the lower (‘‘lw’’) wing halves, more lift will be
produced on the elevated semi wing-span than on the lower
one when the airplane is banked:

DL~Lup{Llww0 Ltotal~LupzLlw ð7Þ

The vertical component of the total lift must offset
weight while the horizontal component provides for the
centripetal force that causes the angular acceleration. In
reality, the ‘‘adverse aileron’’ effect often exists, and
depending on the airspeed, the first instantaneous reaction
to aileron deployment may be the airplane’s vertical climb
or descent. Differential lift on wing halves in bank
produces the rolling moment component:

L
_

roll~DL: j
b

4

� �
jƒ1 ð8Þ

The center of lift for each semi-span acts close to its
respective center. The exact location will really depend on
the lift distribution and the wing planform, requiring
information on the sweep angle, taper ratio (l~ct=cr),
chord change along the span, and other wing geometric
characteristics. To simplify the problem, it is assumed here
that the spanwise lift distribution is uniform. This is, of
course, unrealistic, but acceptable approximation of span-
wise lift distribution on a rectangular wing with unity taper
ratio (l~1). The elliptical lift distribution is the one that
produces minimum induced drag, uniform coefficient-of-
lift, and the spanwise lift distribution is, in fact, elliptical
(Anderson, 1999; Asselin, 1997; Hurt, 1965; McCormick,
1995; Mair & Birdsall, 1992; Nicolai & Carichner, 2010;
Phillips, 2004; Raymer, 1999; Saarlas, 2004; Vinh, 1993).

From the basic geometric considerations and assuming
that half-wingspan lift acts in midpoints (Figure 1), the

radius vectors for upper and lower radius-vectors which lay
in different (non-horizontal) planes yield:
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b

4
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b

4
cos w
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z
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4
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sin2 w

ð9Þ

The projection of the distance between the midpoints to
horizontal plane where CG is located results in:

Ds~Rup{Rlw&
b

2
cos w ð10Þ

Differential tangential velocity between the midpoints
separated by the wing semi-span is:

DVv~const~Vup{Vlw~v Rup{Rlw

� �
~

v b

2
cos w ð11Þ

If constant-airspeed turns are made for bank angles not
exceeding stalling conditions, one obtains:

DVu~const~
gb

2 V
sin w~

V 2
csp

2 V
sin w

Vcsp~
ffiffiffiffiffi
gb

p
wmaxƒ cos{1 n{1

max

� � ð12Þ

The characteristic wingspan speed Vcsp defines differ-
ential rotational motion of the wing with given span in the
Earth’s gravitational field. For a wingspan of 35 feet, the
characteristic span speed differential is about 20 knots. If
the airplane airspeed (V ) is held constant in a level-altitude
turn, the speed differential changes as a sine function
(sin w). This could lead to an erroneous conclusion that the
speed differential is largest at 90˚ bank angle. As a matter
of fact, since the airspeed and altitude are kept constant, an
arbitrary increase of bank angle will ultimately lead to stall
first (Figure 2). Stalling speed will become infinite at 90˚
bank ‘‘coordinated’’ constant-altitude turns. The differential
wing speed for constant radius turns is:

DVR~const~
gb

2
ffiffiffiffiffiffiffiffiffi
2Rg
p FR wð Þ~

ffiffiffiffiffiffiffiffiffi
2Rg
p

2

b

2R

� �
FR wð Þ

FR wð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffi
sin 2w

p ð13Þ

The constant turn-radius overbanking function FR wð Þ is
shown in Figure 3. The variable

ffiffiffiffiffiffiffiffiffi
2Rg
p

is an ‘‘orbital’’
(circling) speed of turning airplane in a horizontal plane.
For example, with a radius-of-turn of 300 ft, this circular
speed is about 58 knots. The dimensionless ratio of
wingspan and diameter of the turn is constant for given
airplane and span-speed. The speed differential (Equation
13) increases up to bank angle of 45˚ and then decreases to
zero at 90 .̊ Additionally, if the turn diameter is much larger
than wingspan (as is usually the case) then wing speed
differential is a very small value. If, on the other hand, the
airspeed in a turn increases in a relationship to increasing
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bank angle so that constant stall margin (constant AOA and
CL) is maintained, one obtains:

V k,wð Þ~kVso

ffiffiffi
n
p

~
kVsoffiffiffiffiffiffiffiffiffiffiffi
cos w

p k~const§1 ð14Þ

Here, k is the constant factor of speed above the stall (e.g.,
k~1:2) and k~1 implies stall speed. By increasing the
bank angle in a level-altitude turn, the wing-loading will
increase and the airplane’s stall margin will decrease at
constant airspeed. This is how steep-turns are normally
conducted. However, if k is maintained constant by speeding
up (this will need a lot of thrust) as the bank is increased, the
speed differential between midpoints becomes:

DVCL~const~
gb

2 kVso

FAOA(w) ð15Þ

The highest speed differential is obtained in stalling turn
(k~1). The constant-AOA overbanking function FAOA(w)

is also shown in Figure 3, and defined as:

FAOA(w)~ sin w
ffiffiffiffiffiffiffiffiffiffiffi
cos w

p
ð16Þ

Thus, the constant-altitude steep-turns can be performed
under various flight conditions:

1. Constant radius-of-turn (R~const)
2. Constant rate-of-turn (ROT~const)
3. Constant airspeed (V~const)
4. Constant AOA (CL~const)

Overbanking functions are different for various flight
conditions listed above. Typically, steep-turns are made at
constant airspeeds. However, if the airspeed stays constant

while increasing the bank angle in constant-altitude turn,
the AOA will increase and ultimately lift-limit will be
reached. The wing lift differential for level-altitude steep-
turn becomes:
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CL V 2
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where DV~ Vup{Vlw

� �
and 2 VCG~2 V~ VupzVlw

� �
.

Since static stability (tendency) is being explored from an
equilibrium position (constant bank angle), one can assume
approximately uniform CL on both wing halves. Utilizing
Equation 8 with j~1, the rolling moment increment due to
wing speed differential in a horizontal plane turn is:

DL
_

w(w)~
1

16
r b S CL gbð Þ sin w ð18Þ

The rolling moment due to bank angle perturbation can
be expressed as:

DL
_

w~Cl wð Þ:Q:S:b~Clw
:Dw:Q:S:b ð19Þ

The aerodynamic rolling coefficient assuming constant
coefficient-of-lift now becomes:
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V 4
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: tan w

ð20Þ

Figure 3. The plot of ‘‘overbanking functions’’ versus bank angle, w.
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The non-dimensional bank angle dependent stability
derivative (airspeed constant) yields:

Clw~
LCl

Lw
~

1

4
: 1

rSLs

� �
: W

S

� �
: gb

V4

� �
: 1

cos2 w
w0 ð21Þ

For an airplane with a wingspan of 35 ft, wing loading of
about 15 lb/ft2 flying 100 KCAS at SL, and the bank angle
of 45 ,̊ one obtains Clw~0:00437 rad{1. For the same
airplane turning at 75 knots (just above stall), the bank
angle roll derivative becomes Clw~0:01381 rad{1.
Induced rolling moment caused by a spontaneous increase
of bank angle by 5˚ at 45˚ is 77 ft-lb at 100 KCAS and
137 ft-lb at 75 knots respectively, which is very small
indeed. To reiterate, Etkin (2005), McCormick (1994), and
others deny any existence of Clw . The roll stiffness
(effective dihedral) stability derivative is negative and
usually around Clb~{0:08 for light GA FAR 23 airplanes
(when not too close to the critical AOA).

Methods and Materials

A fictitious modern FAR 23-certified SEL GA utility-
category airplane with constant-speed propeller, retract-
able-gear, and normally aspirated fuel-injected engine is
used in this study. Technical data of the most important
design parameters are given in Table 1.

Thrust and Power Required in Constant-altitude Steep Turns

Thrust and power required to meet sustained turning
performance will be now described. The conventional
subsonic drag polar for low Mach (M) numbers (Anderson,
1999; Asselin, 1997; Eshelby, 2000; Hale, 1984; Mair &
Birdsall, 1992; McCormick, 1994; Phillips, 2004; Raymer,
1999; Saarlas, 2007; Vinh, 1993) yields:

CD~CD,0zK:C2
L where : K&

1

p:AR:e

AR~
b2

S
~

b

�c

ð22Þ

Drag required in constant-airspeed level-altitude turn is:

Tr~D V ,s,nð Þ~ 1

2
srSLV 2 S CD

~
rSL

2
sS CD,0V 2zn2 2:K :S

s:rSL

� �
W

S

� �2

n~1

1

V2

ð23Þ

Clearly, thrust required for constant-airspeed, constant-
altitude (steep) turns increases rapidly with the load factor
(bank angle):

Ta~
gp Vð Þ:BHP sð Þ

V
~Tr V ,s,wð Þ

~
rSL

2
sS CD,0V 2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Drag�not�due�to�Lift
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Drag�due�to�Lift

ð24Þ

Power of reciprocating engine (normally aspirated or
turbo-charged/normalized) at given density altitude is,
according to Asselin (1997):

BHPa sð Þ
BHPSL

~

1:0 hvhcrit

s hð Þ
scrit

� �0:765

hcritƒhvhceilingƒ36,151 ft

8><
>:

9>=
>;

ð25Þ

For constant-speed propellers, constant propulsive effi-
ciency over range of airspeeds (typically 0.80–0.85) is
assumed. Thrust required increases in steepening turns
exclusively because of the increase in drag-due-to-lift
(which is predominantly due to increase in vortex- or
induced-drag). It follows from Equation 23 that more thrust
will be needed for airplanes with higher wing-loading, at
higher altitudes, at slower airspeeds, and steeper bank
angles. An example of thrust required and available turning
performance as a function of airspeed and for various bank
angles in constant altitude steep-turns for a typical GA
airplane is shown in Figure 4. Power required for constant-
altitude turning flight is:

THPa~gp Vð Þ:BHPa sð Þ~THPr V ,s,wð Þ

~
rSL

2
sS CD,0V 3|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
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V|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Power�due�to�Lift

ð26Þ

Minimum airspeeds in turns are limited by the stall (lift)
limit (CL, max) or thrust limits, while maximum are limited
by the structural (maneuvering) loads. Corner airspeed is

Table 1
Essential performance parameters of fictitious FAR 23 utility-category GA airplane.

MTOW [lb] S [ft2] b [ft] K (cruise) CD,0 (cruise) CL, max (cruise) MCP SL [HP] gp [-] SFC [lb/hr/BHP]

2,600 170 35 0.0535 0.025 1.40 200 0.84 0.45
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attained at a point (corner) where structurally limited
constant maneuvering airspeed intersects the maximum lift
coefficient limit (here, CL, max~1:4) and is illustrated in
Figure 2 with the red diamond marker. A normally
aspirated fuel-injected reciprocating engine with the
maximum continuous SL ISA power (MCP) of 200 HP
and the constant-speed propeller with efficiency of 84%
assumed constant for the range of airspeeds discussed
(from 50 to 150 knots) is used. Clearly, thrust from the
reciprocating engine-propeller combination decreases with
the true airspeed and altitude (not explicitly shown).
Interestingly, the turn performance is thrust-limited
(600 lb) even at SL with the maximum sustaining load
factor of 2.5 (66 )̊ at 90 KCAS. At 10,000 ft DA, the
maximum sustained turn performance is at the load factor
of 2.0 (60 )̊ at 81 KCAS, requiring about 490 lb of thrust.
Thrust and power required to make sustained 4.4-g steep-
turn at about 119 knots at SL ISA conditions is almost
1,070 lb and 400 HP, respectively. Thus, a significantly
higher power-to-weight ratio is required to compensate for
the significant induced drag increase incurred in sustained
high-g load turning performance. It is much more likely to
exceed structural limits by sudden (instantaneous) loading,
such as in pulling out of the spiral dive and/or violent gusts.
The power required curves as a function of load factor are
shown in Figure 5. Vinh (1993) gives particularly detailed
discussion of turning performance and calculation of
various turn parameters. Unfortunately, he does not
consider the effect of wing-speed differential in tight turns.

Static Lateral-Directional Stability of Fixed-Wing Aircraft

Airplane static stability in all three body axes requires
that (Etkin, 2005; Nelson, 1998):

Cma
v0 Clbv0 Cnb

w0 ð27Þ

These stability derivatives define pitch-stiffness (long-
itudinal stability), roll-stiffness (dihedral or lateral stabi-
lity), and yaw-stiffness (weathercock or directional
stability), respectively. It must be noted that these stability
derivatives for the given geometry are predominantly
functions of Mach number and AOA (Stevens & Lewis,
2003), for example, Clb~f a,Mð Þ. Some essential L-D
stability and control derivatives for a fictitious GA SEL
retractable utility-category airplane certified under FAR 23
and in cruise configuration are summarized in Table 2.
These are approximate values to show the relative
importance. The mass moment of inertia for the rolling
motion is, Ixx~1,000 slug-ft2~1,356 kg-m2, while the
mass moment of inertia around the vertical axis is taken as
Izz~3,500 slug-ft2~4,743 kg-m2.

Dynamic Lateral-Directional Stability of Fixed-Wing
Aircraft

Stick-fixed L-D stability using state-space (Nelson,
1998) or Laplace transforms (Roskam, 2007) results in
characteristic equations defining eigenvalues for essential
eigenmodes (eigenvectors). Stick-free stability problems

Figure 4. Thrust required in airplane turning performance.
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are generally more complicated. The full coupled ODEs L-
D model is given in many references (e.g., Ashley, 1992;
Etkin, 1959, 2005; Kolk, 1961; Nelson, 1998; Phillips,
2004; Roskam, 2007; Schmidt, 2012; Seckel, 1964; Stengl,
2004) and will not be repeated here due to lack of space. A
quite general, factorized form of the linearized L-D 3-DOF
(sideslip, roll, and yaw) flight dynamics results in:

ly
: l{lSð Þ: l{lRð Þ:

l2
DRz2zDRvn,DRlDRzv2

n,DR

	 

~0

ð28Þ

The lateral translational mode exhibits neutral stability
with the single real root zero and is not shown here. Unlike
in longitudinal stability where linearized equations can be
applied to quite large disturbances, the L-D small-
disturbance linear stability theory can only be applied to
truly small perturbations from the equilibrium points.
Practically, every L-D mode with larger amplitudes will
also involve coupling with longitudinal stability equations,
making it a truly 6-DOF problem (Phillips, 2004). The
most important variables in L-D stability are sideslip, roll,
and yaw and their interactions. The aircraft is completely
ignorant of a heading (yaw) angle in free flight and, once

disturbed, has no natural tendency to return to it. This
signifies neutral stability expressed through the real root,
ly~0.

In the case of a simple real root, l~lr~g, the
disturbance may converge (decay) for gv0 or diverge
(increase) for gw0 in an asymptotic, monotonic way
according to exponential growth/decay, D~D0 exp g tð Þ,
with the time to double or halve the original disturbance
T2 or T1=2~ln 2ð Þ= gj j. In the case of complex conjugate
roots (for D-R), the roots are l1,2~g+jv with the same
positive or negative stability damping requirements as
shown above. In that case, the dynamic response will be
oscillatory damped, neutral or divergent, depending on the
real part of the complex root, with the frequency close to
natural frequency v (imaginary part of the complex-
conjugate root).

The linear stability theory based on small perturbation
from the steady-state (Ashley, 1992; Etkin, 1959; Etkin,
2005; Kolk, 1961; Nelson, 1998; Phillips, 2004; Roskam,
2007; Russell, 1996; Schmidt, 2008; Seckel, 1964; Stengl,
2004; Stevens & Lewis, 2003) can give some reasonable
answers on the stick-fixed airplane’s L-D stability.
Essentially, the remaining four coupled linear ODE (plus

Figure 5. Power required in airplane turning performance.

Table 2
Stability and control derivatives of fictitious FAR 23 utility-category GA airplane in cruise.

Clb [rad21] Clp [rad21] Clr [rad21] Cnb
[rad21] Cnr

[rad21] Cnp
[rad21] Clda

[rad21] Cldr
[rad21] Cndr

[rad21]

20.090 20.480 +0.080 +0.060 20.100 20.030 +0.140 +0.015 20.060
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we could include some kinematic conditions) can be solved
using the state-space analysis, resulting generally in four
eigenvalues, of which two are real, and there is one
complex-conjugate solution describing D-R mode. The
location of characteristic equation roots is made very
convenient using the root-locus-technique developed by
W.R. Evans in 1949. The basic lateral-directional stability
modes are:

1. Spiral mode (asymptotic convergent or divergent)

a. Spiral divergence (divergent spiral mode)
b. Spiral convergence (convergent spiral mode)

2. Roll mode (asymptotic highly damped convergent)
3. Dutch-roll (oscillatory convergent or divergent)

The D-R mode lDR is usually a low-frequency,
oscillatory, lightly damped mode incorporating rolling,
yawing, and sideslipping dynamics. Accordingly, the D-R
mode is the complex-conjugate solution of the quadratic
equation (in Equation 28) with the real part describing
damping (positive, zero or negative) and the imaginary part
corresponding to the D-R oscillation frequency. Simple
analysis will show that D-R’s yawing frequency, damping,
and period are roughly (Kimberlin, 2003):

vn,DR!M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pa Cnb

S b

Izz

s

zDR!Cnr

ffiffiffiffiffiffiffiffiffiffiffiffi
sS b3

IzzCnb

s
TDR&

2p

vn,DR

Increasing the yaw stiffness (Cnb
) will reduce damping

of D-R oscillations, but it will increase its frequency. Only
by increasing yaw damping (Cnr

) and/or flying at lower
altitude (s) can D-R oscillations damping be increased for
given aircraft geometry.

The spiral mode is asymptotic motion in roll and yaw with
little sideslip. However, a true 6-DOF spiral divergence
incorporates longitudinal changes with rolling into sideslip,
turning, and descending into ever tighter spiral (i.e., ‘‘grave-
yard’’ or ‘‘death’’ spiral). The spiral divergence mode is often
the preferable stability mode in light GA airplanes and is
subconsciously corrected by pilots. The spiral divergence
mode simply means that the directional stability is ‘‘stronger’’
than the lateral stability. The stable spiral mode represents
converging spiral and implies insufficient directional stability
(e.g., small vertical tail surfaces). However, too much lateral
stability and stable spiral convergence can induce dangerous
‘‘heading divergence’’ in which an airplane keeps wings
almost level in an ever increasing sideslip (lack of directional
stability), resulting in the airplane flying sideways and
ultimately leading to main wing stall, structural damage, or
vertical tail stall. Additionally, a too stable spiral mode will
significantly degrade the D-R characteristics, often making it
quite annoying if not outright hazardous. Thus, too much

lateral stability is actually avoided in airplane design. As a
matter of fact, effective dihedral effect is often relaxed to the
point of neutral stability to make maneuvering and handling
crisper. The spiral divergence and the ever increasing bank
and yaw angle to address the sideslip are examples that
Langewiesche (1972) used in his explanation of OBT.

Airplanes often have a slightly positive, neutral, or
slightly negative spiral mode leading to asymptotic (non-
oscillatory) dynamics. In some respects, one may think of
the spiral mode to be almost neutrally stable so that any
sideslip (or sudden heading change) induced will remain
unchanged unless the pilot corrects for it. While spiral
divergence sounds dangerous, the time constant to double
diverging roll amplitudes can be several tens of seconds
and is easily corrected. Moreover, the spiral divergence
improves D-R damping. The roll-mode lR is essentially
highly damped pure-rolling motion described herein later.

The most important L-D stability derivatives are
summarized in Table 3 (Stevens & Lewis, 2003). The
sheer number of stability coefficients (some are omitted)
hints to the complexity of the L-D dynamics even for a
linear small-perturbation theoretical approach. A very good
example of wind-tunnel measurements and determination
of stability and control characteristics of a new FAR 23
airplane was given recently by Biber (2006).

Spiral Lateral-Directional Mode

The spiral mode depends on single real root in complex
plane, which describes asymptotic (convergent, neutral, or
divergent) behavior. Typically, spiral stability will be set,
slightly positive, or slightly negative, that is, close to neutral
stability. Stable spiral mode implies, relatively speaking, larger
influence of the roll stability over yaw stability. Spiral
approximation can be used to roughly describe dynamic
stability in terms of the static and dynamic stability coef-
ficients. Spiral approximation neglects some very important
contributions (Phillips, 2004), but has been historically used to
determine relative influence of important stability derivatives.
The spiral approximation leads to a real root (Etkin, 1959,
2005; Nelson, 1998; Roskam, 2007; Schmidt, 2012):

lS~
L
_

bN
_

r{L
_

rN
_

b

L
_

b

~N
_

r{N
_

b
L
_

r

L
_

b

 !

~
QS b2

2 V0 Izz

Cnr
{Cnb

Clr

Clb

 !
L
_

bv0

ð29Þ

Since the dihedral stability derivative is always negative
for conventional airplanes, the condition for spiral stability
(convergent spiral) is:

Clb
:Cnr

{Cnb
:Clrw0 ð30Þ

Phillips (2004) does not recommend the use of Equation
30. However, despite the fact that some important stability
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derivatives are omitted and that the numerical result can be
in error compared to full eigenvalue problem by as much as
a factor of 10, it is still an acceptable and simple
approximation of the spiral mode. The alternative would
be to address the full eigenvalue problem of four coupled
ODE, which is not difficult, but is not elaborated here.

For the particular airplane used here, using Equation 30
with the values from the Table 2 leads to a numerical value
of z0:0042, signifying spiral stability. The spiral root
(Equation 29) is then lS~{0:1672 (converging spiral),
and the time to halve the disturbance amplitude is
T1=2~4:15 s for an airplane flying at 75 KCAS with a
density altitude (s~0:8) of about 7,500 ft. The amount of
stability (or instability) changes with airspeed, altitude, and
so forth. Unfortunately, too much spiral stability may lead
to unacceptable D-R mode and ultimately to large-
amplitude (longitudinal-lateral-directional) ‘‘heading diver-
gence’’. In fact, it is very common in GA airplane designs
to have slight spiral instability (divergence) where the time
to double the bank angle is long (several tens of seconds at
least) and is easily corrected in flight. For this fictitious
airplane, a simple increase in roll-due-to-yaw cross stability
derivative (e.g., Clr~0:2) will result in a value of {0:003,
which signifies spiral divergence. The spiral root in that
case is ls~z0:1194 (diverging spiral), and the time to
double the disturbance amplitude is T2~5:81 s. Solving
the full eigenvalue problem to double the disturbance will
be almost a whole order of magnitude, larger signifying
gentle spiral divergence. A way to design certain stability
behavior in airplane design is discussed in many stability
and control engineering books (Nelson, 1998; Phillips;
2004; Raymer, 1999; Schmidt, 2012; Stengl, 2004).

Generally, larger vertical tail surfaces will increase both
the yaw stiffness, Cnb

, and the yaw damping, Cnr
, but will

also generate additional drag. Increasing yaw stiffness will
reduce D-R damping, which is not good. As Nelson (1998)
and Phillips (2004) have noted, the best way to simulta-
neously achieve spiral stability and good D-R damping is
by increasing the yaw damping alone. Modern high-
performance airplanes have smaller vertical stabilizing
surfaces to reduce drag while utilizing yaw dampers (rate
controllers) to rapidly detect and dampen any D-R oscillatory
dynamics while exhibiting stable spiral mode. Stability

augmentation systems (SAS) are becoming common today
when no simple geometric (passive) design solutions alone
would suffice to meet various conflicting stability, control,
and performance requirements. Adding fixed strakes, dorsal,
and ventral fins can only go so far in achieving desired
aircraft stability and control characteristics.

Roll Control

The roll rate and the bank angle control in a GA airplane
are typically accomplished using the conventional ailerons
(differential and/or Frise type). Opposite aileron deployment
creates differential lift, which produces rolling moment
about the longitudinal axis. Ailerons control the rolling rate,
but not the bank angle directly. FAR 23 regulates some roll
control requirements (FAR 23.157), which dictate aileron
design. Aileron ‘‘control power’’ is described by the aileron
control derivative (Nelson, 1998; Roskam, 2007):

Clda
~

LCl

Lda

~
2CLaw

tda

S b

ðy2

y1

c yð Þydy

CLaw
~

LCL

Law

tda
~

daw

dda

ð31Þ

Rolling moment, which is positive in a clockwise
direction as seen from the cockpit, is created by differential
aileron deployment, and its magnitude is determined from
the aileron roll control power Clda

and averaged displace-
ment angle, da~ dL

a zdR
a

� ��
2 (Phillips, 2004):
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_
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_
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 !
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Each degree of aileron deflection for the fictitious GA
airplane used here (Tables 1 and 2) creates specific rolling
moments of about 493 ft-lb/deg and 277 ft-lb/deg at speeds
of 100 KCAS and 75 KCAS respectively if aileron control
derivative of 0.14 rad21 is used.

Roll Damping

Any rolling motion (in pre-stall region) will be opposed
by roll damping. The chief contributor to roll damping is
the wing. Roll damping does not exist in static stability
sense, but only during dynamic response. Horizontal and
vertical tail surfaces (stabilizers) also contribute to roll
damping, but to a lesser degree. In the pre-stall region, any
rolling motion changes the main wing’s AOA, which then
causes an increase of lift on the down-going wing and a
decrease of lift on the up-going wing. Such lift distribution
creates (linear) resistance to rolling and is thus proportional
to the roll rate. The best way to validate roll damping data
for a specific aircraft model is to perform flight tests and
scale model wind tunnel experiments at different speeds and

Table 3
Lateral-directional derivatives and their importance.

Clb Dihedral derivative (,0 for positive stiffness)
Cnb

Yaw stiffness (. 0 for positive stiffness)
Clp Roll damping (,0 for roll damping)
Cnr

Yaw damping (,0 for yaw damping)
Cnp

Yawing moment due to roll rate (usually ,0) (cross-derivative)
Clr Rolling moment due to yaw rate (usually. 0) (cross-derivative)
CYb

Sideforce due to sideslip
CYr

Sideforce due to yaw rate
CYp

Sideforce due to roll rate
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configurations. A relatively simple theoretical approach for
wing roll-damping contribution is given, among others, in
Nelson (1998):

Clp~
LCl

Lp

2V0

b

� �
~{

4CLaw

S b2

ðb=2

0

c yð Þy2 dyv0 ð33Þ

Pure Roll Dynamics

In stability and control theory, the pure rolling motion
(1-DOF) of a rigid body airplane is described with the
following ODE (Nelson, 1998):

X
Rolling Moments~
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L
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d p

d t

p~ _w

ð34Þ

The roll (speed) p defines the bank angle change in time.
Control rolling moments are the result of the aileron (and/or
spoiler) deployment to induce rolling motion, which may be
opposed by roll-damping moments. In the small-perturbation
linear stability theory, the pure rolling dynamics yields:
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This ODE can be rearranged to obtain a first-order linear
ODE with constant coefficients (LTI), which describes a first-
order (asymptotic) linear time-invariant dynamic system
(Nelson, 1998):
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Bank angle is controlled by varying the roll speed
(aileron and/or spoiler deflection angle) and the duration of
aileron/spoiler deployment. The magnitude of the roll rate
will cause variable intensity coupling with the yaw rate. A
simple asymptotic solution of Equation 36 for step change
in aileron deflection with zero ICs yields:

Dp tð Þ~D _w tð Þ~ 1{e{t=tR

	 

:K :Dda~pss 1{e{t=tR

	 

q~

pssb

2V0
~{

Clda

Clp

Dda

ð37Þ

Here, pssstands for the steady-state roll, and q is the helix
roll angle (dimensionless steady-state roll). Required helix
angle is used to design/size ailerons and roll control power.
For step (Heaviside function) aileron input, roll history is
given by Equation 37. The roll rate (acceleration) is then
the time derivative of Equation 37, resulting in:

D _p tð Þ~D€w tð Þ~ K :Dda

tR

e{t=tR~
pss

tR

e{t=tR ð38Þ

The bank angle temporal history is the integral of the roll
(Equation 37), yielding:

Dw tð Þ~
ðt
0

Dp tð Þdt~K :Dda
: t{tRztR e{t=tR

	 


~pss t{tR
: 1{e{t=tR

	 
h i ð39Þ

Transfer functions (TF) for the roll and bank angle
response using the Laplace transforms are (Nelson, 1998;
Roskam, 2007):

Dp sð Þ
Dda sð Þ~

K

1zstRð Þ
Dw sð Þ
Dda sð Þ~

K

s 1zstRð Þ

sDw sð Þ~Dp sð Þ
ð40Þ

Results of computations for roll acceleration, roll, and
bank angle for the fictitious airplane with important design
parameters given in Tables 1 and 2 are shown in Figure 6.
To stop the steady roll, one has to neutralize ailerons and
wait for the roll damping to decrease the roll to zero to
establish the desired bank angle. In practice, it is often
necessary to apply some opposite aileron to achieve more
expeditiously desired bank angles. However, rigging
problems and friction could lead to the situation where
the control roll rate is not actually zero with ailerons
apparently neutralized. In order to model deceleration of
rolling motion, one can solve ODE similar to Equation 36
with the zero aileron deflection (homogeneous ODE). With
the ICs designating initial steady roll rate p0 at the moment
ailerons are neutralized, the solution for the roll decelera-
tion, decreasing roll, and bank angle become:

D _p tð Þ~{
p0

tR

e{t=tR Dp tð Þ~p0e{t=tR

Dw tð Þ~p0tR 1{e{t=tR

	 
 ð41Þ

After one roll time-constant tR elapsed, the remaining
roll is 36.8% of the initial (p0). If in an airplane with the roll
time-constant of 0.2 s and the steady roll rate of 25˚ per
second, the ailerons are suddenly neutralized at bank angle
of 55 ,̊ the final bank angle will then asymptotically
stabilize at 60˚ (dw&p0tR~50) after about one second
(five roll time-constants). Accordingly, a pilot needs to lead
aileron neutralization in order to achieve correct bank angle
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asymptotically without overshooting and taking opposite-
aileron corrective action.

For example, Grenestedt and Maroun (2006) were
analyzing and flight testing simple canted tabs installed on
trailing edges of ailerons to improve the stability of airplanes.
Such canted tabs can be installed on almost any GA airplane
to improve the stick-free L-D stability characteristics.

Lateral-Directional Stability and Control Requirements for
FAR 23 Airplanes

Certification of normal, utility, aerobatic, and commuter
category airplanes in the USA is conducted under 14 CFR
Part 23 (FAA, 2013b). Equivalent regulations exist in
EASA’s CS 23 as well as in similar regulations in others’
national aviation regulatory agencies. Interestingly, as a
phenomenon, OBT is never mentioned in FAR 23.
Generally, FAR 23.171 requires airplanes to have positive
static stability. The L-D certification requirements in FAR
23.177 define conditions for the static lateral and directional
stability. Similarly, FAR 23.181 spells out the requirements
for longitudinal, lateral, and directional dynamic stability
with controls free and fixed. Interestingly, only D-R mode is
explicitly mentioned in FAR 23.181, and it is expected that
roll mode is heavily damped while nothing is said on the
spiral mode. There is no explicit requirement for spiral
convergence. Consequently, the spiral divergence is not
explicitly prohibited in FAR 23. The flight test guide for
FAR 23 airplanes is given in AC 23-8C (FAA, 2011) and
covers many details not specifically mentioned in FAR 23.
Military specifications in USA MIL-F-8785B/C allow for

spiral divergence, but the time to double bank angle should
not be less than 20 seconds. The flight testing method to
establish compliance with MIL-F-8785B/C spiral-mode is
deceptively simple—aircraft is banked with rudder only,
which is then neutralized. The subsequent history of bank
angle changes with time is recorded (Kimberlin, 2003).

Required roll performance for utility-category airplanes
is covered in FAR 23.157 (FAA, 2013b). For example,
FAR 23.157(a) requires roll control to change the bank
from 30˚ in one direction to 30˚ in the other direction (60˚
total) in less than 5 seconds for airplanes in takeoff
configuration with MGTOW at or less than 6,000 lb.
Similarly, FAR 23.157(c) sets roll performance require-
ments for airplanes in approach configuration weighing
6,000 lb or less to roll airplane a total of 60˚ from 30˚bank
angle in one direction in less than four seconds. Approach
configuration means landing gear is extended, flaps are in
landing position, power is set for 3˚ approach, and airspeed
is at VREF. Without going into detail, the directional control
requirements are addressed in FARs 23.143, 23.147(b),
23.149, and 23.233 for different flight conditions.

Kimberlin (2003), Phillips (2004), and Roskam (2007)
discuss certification requirements regarding L-D stability
and control. Askue (2006) offers simple and practical flight
testing guidelines for designers and builders of homebuilt
aircraft. Askue also offers many practical advices on
rigging and adjusting flight controls. In addition, he gives a
very simple definition in testing of spiral mode: ‘‘The
tendency to reduce bank is called spiral convergence and
the tendency to increase bank angle is called spiral
divergence’’ (Askue, 2006, p. 92).

Figure 6. Roll control performance history with step aileron deflection.
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FAR 23 provides only the minimum standards for
stability and control requirements. One of the first
analytical approaches to aircraft flying or handling qualities
were given by Kolk (1961), which was later also noted and
praised by Ashley (1992). Many pilot rating scales have been
developed to improve flying (handling) qualities. Among
these, the Cooper-Harper scale (1969), consisting of 10
levels in four assessment groups, is the most popular
(Hodgkinson, 1999; Kimberlin, 2003; Nelson, 1998;
Roskam, 2007). However, the MIL-F-8785C (1980) sim-
plifies the flying qualities ratings of the Cooper-Harper
rating scale by summarizing them into only three levels of
acceptable flying qualities (Kimberlin, 2003), which is in
common use today. Since 1997, the flying qualities of
piloted aircraft are evaluated according to MIL-HDBK-
1797, replacing the MIL-F-8785C (Nicolai & Carichner,
2010). A more detailed review of aircraft handling qualities
is given by Hodgkinson (1999). For example, Field et al.
(2004) presented results of flight testing and model
validation of large transport category airplanes (Boeing
and MD) using frequency sweeps. Time histories of airplane
responses were presented as frequency responses (gain and
phase in Bode-type diagrams). Subsequent identification and
application of flying qualities parameters can be then used
for more accurate models and better design of flight control
systems.

Results and Discussion

The overbanking functions discussed previously are all
functions of the bank angle. The sine, cosine, and tangent
functions are all familiar elementary trigonometric func-
tions. The more exotic overbanking function FAOA(w)

achieves the maximum when:

d

dw
FAOA(w)½ �~ d

dw
sin w

ffiffiffiffiffiffiffiffiffiffiffi
cos w

ph i
~0 0ƒwv90o ð42Þ

The extremum condition from Equation 42 leads to the
following transcendental equation, cos2 w{sin2 w

�
2~0,

with the solution wo~ sin{1 +
ffiffiffiffiffiffiffiffi
2=3

p� �
~54:736o&55o,

for which FAOA(w0)&0:62 in the interval, 0ƒwv90o. The
constant-radius overbanking function reaches maximum
when, w0~45o, in which case FR(w0)~1:0.

At 45˚ bank angle, the airplane’s CG airspeed of 100
knots and for SL altitude, the load factor is 1.4142, the
ROT 0.1905 rad/s (or 10.916 /̊s), and the radius of turn is
886.4 ft. The speed differential between the upper and the
lower wing midpoints is according to all four equations
(Equations 12–15) 2.35 fps or 1.396 knots (i.e., 1.4 knots
for all practical purposes or 1.4% of airplane’s CG speed).
Thus, the higher wing-half midpoint will experience
airspeed of about 100.7 knots, the lower midpoint 99.3
knots, and the airplane’s CG exactly 100 knots. For
uniform coefficient-of-lift for both wing halves, the lift
differential at a weight of 2,600 lb is only 51.35 lb. At 75

knots (level flight stall speed is 95.87 fps or 56.8 knots) and
just 7 knots above the stalling speed and for the same bank
angle and SL altitude, ROT is 0.254 rad/s or 14.55 deg/s,
the radius of turn is 498.6 ft and the speed differential is
3.14 fps or 1.861 knots (2.48% of airplane’s airspeed).
Hence, the rolling moment induced by banked wings
definitely exists in horizontal turns, but it is also very small
in most instances, with a few exceptions. The underlying
reason for OBT may thus not be in the differential lift of a
horizontally turning airplane, but in the built-in spiral
divergence.

However, Etkin (2005, p. 300), Raymer (1999, p. 505),
and McCormick (1995, p. 518), among many others, point
out explicitly that the rolling moment cannot depend on the
bank angle w. Bank angle by itself creates no aerodynamic
moments and is fundamentally different than angle of
attack and sideslip angles that govern longitudinal and L-D
dynamics. Similarly, the yaw (heading) angle has no
aerodynamic importance. Thus, turning-induced rolling
motion due to wing speed-differential may be considered as
a part of the rolling (dihedral) stiffness Clb (Etkin, 2005) or
of the cross derivative roll-due-to-yaw Clr , which are solely
sideslip and yaw-rate dependent.

Chambers and Anglin (1969) discuss the L-D dynamics
at high AOAs. Some phenomena associated with the high
AOAs are also given in Hurt (1965). In the case of stall/
spin, the OBT is a natural airplane response where
significant rolling, yawing, pitching, and sideslipping
coexist. Mason (1982) and Kershner (1996) reported many
interesting phenomena in spinning aircraft. Although
Askue (2006) gives some recommendations on measuring
the effective dihedral effect in medium banked turns, there
is nothing in FAR 23 that requires testing aircraft L-D
stability in turns (accelerated flight). Also, Kimberlin
(2003) does not report on any such requirement or make
such flight test recommendations. The small-perturbation
linear stability theory cannot provide answers to all stability
questions and one needs instrumented flight tests, wind-
tunnel scale model testing, and simulation of the full
nonlinear models that include all the coupling and energy
transfers between various pure (normal) modes.

Interestingly, a rolling moment can be also triggered by
pitching and yawing and when the difference between mass
moments of inertia for vertical and lateral axes is not zero,
which often is the case. Also, the product of inertia term
coupled with the yaw acceleration and constant pitching
and rolling rate induces roll moments (Abzug & Larrabee,
1997). Gyroscopic forces from turning propellers may also
become important in specific scenarios (pitching induces
yawing, which induces rolling).

A factor that may lead to ‘‘pilot-induced’’ OBT is that
rapid aileron roll must often be stopped with the opposite
aileron deployment (Lohmann, 2003), giving the impres-
sion that this is due to OBT. In the case of weak lateral
(spiral) stability (convergence), even small aileron misrig-
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ging and misalignments can induce noticeable rolling
moments, which again may be interpreted as OBT. Flight
control friction, cable tension, loose pushrods, and other
problems in reversible flight control systems may lead to an
impression that OBT exists. To make things even more
complicated, one needs to consider all propulsive moments.
A clockwise turning propeller will cause the opposing
torque and the left roll, which may become important in
high-power left steep-turns, giving an impression of OBT.
Some likely causes of apparent OBT can be summarized:

1. Spiral divergence (weak and slow spiral instability)
inherent in many (often older) fixed-wing aircraft
designs.

2. The above spiral divergence phenomenon supported
in steep turns in aircraft with low wing loading (low
stalling speed) and tight radii of turn.

3. Propeller slipstream effects (only SE airplanes) on
upper (raised) wing in sideslip from the lowered wing
side. ME airplanes may experience OBT if the
propeller thrust on the upper wing is higher than on
the lower wing.

4. Possible nonlinear effects caused by coupled high-
rate rolling, yawing, and pitching.

5. Possible inertial coupling at high rotations.
6. Gyroscopic (turning propellers) effects.
7. Flight at very high AOA where dihedral effect (roll

stiffness) and roll damping are significantly reduced
(spin entry).

8. Inertia of rolling (banking motion) and constant
changes of bank angle (pilot-induced OBT).

9. Airplane rigging and flight control system friction
and misalignments.

10. Subjective human behavior interpreting overbanking
in steep turns for any reason as threatening while
UBT is disregarded as non-threatening and annoying.

The most likely explanation of what is referred to as
OBT is thus based on the stick-fixed aircraft spiral
divergence supported by the wing speed differential effect
in steep turns. As the sideslip will invariably develop in
turns, the effective dihedral effect Clbv0 will attempt to
roll the aircraft away from it. Simultaneously, the
directional static stability term Cnb

w0 will seek to remove
sideslip aligning aircraft’s longitudinal axis with the
relative wind. As the airplane initially rolls away from
sideslip due to lateral stiffness and yaws into it due to yaw
stiffness, the dynamic cross-derivative Clrw0 induces roll
opposite of dihedral effect (roll into sideslip). As the
yawing rotation starts the yaw (dynamic stability), the
damping term Cnr

v0 opposes yawing motion in a way
similar to roll damping opposing roll motion. To make
things more complicated (or interesting), the conjugate of
the roll-due-to-yaw Clrw0 is now yaw-due-to-roll dynamic
stability cross-derivative Cnp

v0, which is typically
negative for FAR 23 airplanes, and which now yaws the

airplane away from the roll direction in support of dihedral
effect. Yaw-due-to-roll is a phenomenon that many pilots
have truly mastered, and it is commonly called ‘‘adverse
yaw’’. If yaw damping and negative yaw-due-to-roll is
powerful enough, then it will slow down roll-due-to-yaw,
reduce speed, and lift differential as well as the induced roll
moment opposing dihedral, reducing the bank angle. The
question is thus if the combined effect of dihedral, negative
yaw-due-to-roll, and yaw damping will overpower yaw
stiffness, roll damping, and roll-due-to-yaw. It is the
relative magnitude of these different static and dynamic
stability derivatives that define which prevails. Generally, if
directional characteristics overpower lateral characteristics,
an airplane will continuously yaw and roll into a sideslip
resembling the OBT phenomenon. If the lateral character-
istics overpower directional, an airplane will ultimately roll
away from sideslip. Due to longitudinal coupling and
stability, an airplane experiencing spiral divergence will
start losing altitude and speed up in ever tightening spiral. It
is almost impossible to explain spiral stability in simpler
terms. This explanation is similar to how the great genius of
flying, Wolfgang Langewiesche (1972), described OBT,
which apparently was later lost in translation. This
probably also explains why the engineering stability,
control community, and aircraft designers never acknowl-
edged or appreciated anything called OBT.

There are arguments made that dihedral effect cannot
provide any resistance to roll if the turn is made perfectly
coordinated. However, that is impossible as the airplane is
straight (almost rigid) and relatively long (finite size) and is
not a mathematical point. An airplane cannot follow the
curvature of the turn perfectly. It cannot flex and bend itself
to meet an arbitrary curvature of the turning flow, and there
will always be freestream sideslip (a sort of directional
AOA) in turns.

Based on flight conditions such as altitude and airspeed,
the stability derivatives can change and an airplane may
show totally different behavior. For example, an airplane
with an acceptable D-R mode at lower altitude may become
outright dangerous at high altitudes (and high M-numbers
and AOAs). Additionally, flight at high AOA presents a
real problem, and the ultimate limit of the small-
disturbance flight dynamics theory. Chambers and Anglin
(1969) show how the roll stiffness becomes positive
(unstable) around stalling AOAs for the case of a twin-
engine fighter jet. Similarly, directional stiffness is lost,
resulting in severe heading divergence converging spiral
mode with the occurrence of unstable D-R oscillatory
mode. Additionally, low Reynolds numbers (corresponding
to high altitudes) reduce longitudinal stability in connection
with the leading-edge droop utilized to reduce aforemen-
tioned heading divergence. At stalling angle, the lateral
stability (dihedral effect) and positive roll damping are lost
entirely, and it is the raison d’etre for spin origin. Indeed,
OBT becomes stronger as airspeed decreases and where the
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aileron control authority is weaker, requiring larger control
deflections to arrest unwanted roll.

Conclusions

Differential lift generated in constant-altitude, constant-
airspeed turning flight will generate a rolling moment
toward the inside of the turn, giving credence to what is
called OBT. A generalized yet simple theory of differential
lift in horizontal turns was developed here. Uniform lift
distribution has been assumed over two wing halves
resulting in lift acting at midpoint of each half-span. It
has been shown that the largest rolling moment is generated
exactly at 45˚ bank angle for constant airspeed turns. If the
constant stall margin is maintained throughout the steep
turn, then the maximum rolling moment will be generated
closer to 55˚ bank angle. However, it is not clear if this
turning induced lift-differential is already included in roll-
stiffness and/or other stability derivatives. The linear
stability theory does not give any space to the notion that
rolling moment will depend on the bank angle. It is thus
most likely that apparent OBT is simply a consequence of
the weakly stable or unstable spiral-mode L-D stability
which leads to interplay of sideslip, yaw, and roll into ever
tightening high-speed downward spiral combined with the
lift differential from a banked wing and accelerated flight.
Nevertheless, gentle spiral divergence with large times to
double amplitudes is intentionally designed in many
airplanes while simultaneously minimizing annoying D-R
mode. Several other factors that may contribute to apparent
OBT are also discussed. Aggressive rolling into steep-turn
often must be arrested by opposite aileron. Rigging
problems, friction and misalignment of flight controls
may also lead to apparent OBT. A human pilot will always
interpret OBT as a bigger threat than any UBT. However,
steep turns at very high AOAs may have more pronounced
OBT due to changes in stability derivatives close to critical
AOAs. If propeller slipstream in turning sideslips indeed
induces OBT, that argument alone then does not support
OBT origin in unpowered gliders.

References

Abzug, M. J., & Larrabee, E. E. (1997). Airplane stability and control: A
history of the technologies that made aviation possible. Cambridge,
UK: Cambridge University Press.

Anderson, D. F., & Eberhardt, S. (2001). Understanding flight. New York,
NY: McGraw-Hill.

Anderson, J. D., Jr. (1999). Aircraft performance and design. New York,
NY: McGraw-Hill.

Ashley, H. (1992). Engineering analysis of flight vehicles. Mineola, NY:
Dover.

Askue, V. (2006). Flight testing of homebuilt aircraft. Newcastle, WA:
Aviation Supplies and Academic.

Asselin, M. (1997). An introduction to aircraft performance. Reston, VA:
American Institute for Aeronautics and Astronautics.

Biber, K. (2006). Stability and control characteristics of a new FAR 23
airplane. Journal of Aircraft, 43(5), 1361–1368.

Campbell, R. D., & Tempest, B. (1989). Basic aerobatics. Shrewsbury,
UK: Airlife Publishing Ltd.

Chambers, J. R., & Anglin, E. L. (1969). Analysis of lateral-directional
stability characteristics of a twin-jet fighter airplane at high angles of
attack (NASA TN D-5361). Washington, DC: NASA.

Conway, C. (1989). The joy or soaring. Hobbs, NM: Soaring Society of
America.

Cooper, G. E., & Harper, R. P., Jr. (1969). The use of pilot rating in the
evaluation of aircraft handling qualities (NASA TN D-5153).
Washington, DC: NASA.

Cram, J. R., & Brimm, D. J., Jr. (1940). Civil pilot training manual.
Civil Aeronautics Bulletin No. 23. Washington, DC: United States
Government Printing Office.

Denker, J. S. (2001). See how it flies. Retrieved from www.av8n.com/how/
Eshelby, M. E. (2000). Aircraft performance: Theory and practice.

Boston, MA: Elsevier.
Etkin, B. (1959). Dynamics of flight: Stability and control. New York, NY:

John Wiley & Sons.
Etkin, B. (2005). Dynamics of atmospheric flight. Mineola, NY: Dover.
Federal Aviation Administration. (2002a). Private pilot; Practical test

standards for airplane (SEL, MEL, SES, MES) (PTS FAA-S-8081-
14A). Washington, DC: Author.

Federal Aviation Administration. (2002b). Commercial pilot; Practical
test standards for airplane (SEL, MEL, SES, MES) (PTS FAA-S-8081-
14B). Washington, DC: Author.

Federal Aviation Administration. (2004). Airplane flying handbook
(Advisory Circular FAA-H-8083-3A). Washington, DC: Author.

Federal Aviation Administration. (2011). Flight test guide for certification
of Part 23 airplanes (Advisory Circular AC 23-8C). Washington, DC:
Author.

Federal Aviation Administration. (2013a). Glider flying handbook
(Advisory Circular FAA-H-8083-13A). Washington, DC: Author.

Federal Aviation Administration. (2013b). Part 23, Airworthiness
Standards: Normal utility and aerobatic airplanes. Washington, DC:
Author.

Field, E. J., Rossitto, K. F., & Hodgkinson, J. (2004). Flying qualities
applications of frequency responses identified from flight data. Journal
of Aircraft, 41(4), 711.

Garrison, P. (2011, November). Is there an overbanking tendency? Flying,
138(11), 70.

Grenestedt, J. L., & Maroun, W. (2006). Flight testing a simple fix to
lateral stability deficiencies. Journal of Aircraft, 43(5), 1399.

Hale, F. J. (1984). Introduction to aircraft performance, selection, and
design. New York, NY: John Wiley & Sons.

Hodgkinson, J. (1999). Aircraft handling qualities. Reston, VA: American
Institute for Aeronautics and Astronautics (AIAA).

Hubin, W. N. (1992). The science of flight: Pilot-oriented aerodynamics.
Ames, IA: Iowa State University Press.

Hurt, H. H., Jr. (1965). Aerodynamics for naval aviators. Renton, WA:
Aviation Supplies and Academic.

Kershner, W. K. (1994). The advanced pilot’s flight manual. Ames, IA:
Iowa State University Press.

Kershner, W. K. (1996). The basic aerobatic manual. Ames, IA: Iowa
State University Press.

Kimberlin, R. D. (2003). Flight testing of fixed-wing aircraft. Reston, VA:
American Institute for Aeronautics and Astronautics (AIAA).

Kolk, R. W. (1961). Modern flight dynamics. Englewood Cliffs, NJ:
Prentice-Hall.

Langewiesche, W. (1972). Stick and rudder: An explanation of the art of
flying. New York, NY: McGraw-Hill.

Lohmann, D. (2003, May). Lift or speed: Questioning the overbanking
tendency. Mentor, 5(5), 12–13.

Mair, W. A., & Birdsall, D. L. (1992). Aircraft performance. Cambridge,
UK: Cambridge University Press.

Mason, S. (1982). Stalls, spins, and safety. New York, NY: McGraw-Hill.

18 N. E. Daidzic / Journal of Aviation Technology and Engineering

www.av8n.com/how/


McCormick, B. W. (1995). Aerodynamics, aeronautics and flight
mechanics (2nd ed.). New York, NY: John Wiley & Sons.

Nelson, R. C. (1998). Flight stability and automatic control (2nd ed.).
New York, NY: McGraw-Hill.

Nicolai, L. M., & Carichner, G. E. (2010). Fundamentals of aircraft and
airship design: Volume I—Aircraft design. Reston, VA: American
Institute for Aeronautics and Astronautics (AIAA).

Perkins, C. D. (1969). The development of airplane stability and control
technology. 1969 von Karman lecture, AIAA Paper No. 69-1137,
American Institute for Aeronautics and Astronautics (AIAA) 6th
Annual Meeting and Technical Display, Anaheim, CA, October, 20–
24, 1969.

Phillips, W. F. (2004). Mechanics of flight. New York, NY: John Wiley &
Sons, Inc.

Piggott, D. (2002). Gliding: A handbook on soaring flight (8th ed.).
London, UK: A & C Black Publishers Ltd.

Raymer, D., P. (1999). Aircraft design: A conceptual approach (3rd ed.).
Reston, VA: American Institute for Aeronautics and Astronautics
(AIAA).

Roskam, J. (2007). Airplane flight dynamics and automatic flight controls.
Part I, Lawrence, KS: DAR Corporation.

Russell, J. B. (1996). Performance and stability of aircraft. London, UK:
Arnold & Porter LLP.

Saarlas, M. (2007). Aircraft performance. Hoboken, NJ: John Wiley &
Sons.

Schmidt, D. K. (2012). Modern fight dynamics. New York, NY: McGraw-
Hill.

Seckel, E. (1964). Stability and control of airplanes and helicopters. New
York, NY: Academic Press.

Smith, H. C. (1992). The illustrated guide to aerodynamics (2nd ed.). New
York, NY: McGraw-Hill.

Stengl, R. F. (2004). Flight dynamics. Princeton, NJ: Princeton University
Press.

Stevens, B. L., & Lewis, F. L. (2003). Aircraft control and simulation (2nd
ed.). Hoboken, NJ: John Wiley & Sons.

Stewart, K. (2001). The glider pilot’s manual (3rd ed.). Shrewsbury, UK:
Airlife Publishing Ltd.

Swatton, P. J. (2008). Aircraft performance: Theory and practice for pilots
(2nd ed.). Chichester, UK: John Wiley & Sons.

Swatton, P. J. (2011). Principles of flight for pilots. Chichester, UK: John
Wiley & Sons.

Vinh, N. X. (1993). Flight mechanics of high-performance aircraft.
Cambridge, UK: Cambridge University Press.

N. E. Daidzic / Journal of Aviation Technology and Engineering 19


	A Contribution Toward Better Understanding of Overbanking Tendency in Fixed-Wing Aircraft

