How structural complexity of vegetation facilitates invasion: Integrating LiDAR and FIA invasive species plot data in the Appalachian Mountains of the USA Buddhika Madurapperuma, Basil lannone III, Jinha Jung, Bryan Pijanoswki, Songlin Fei and Gang Shao

DEPARTMENT OF FORESTRY AND NATURAL RESOURCES

Introduction

Structural complexity of vegetation at regional scale is useful for ecological applications such as aboveground biomass estimation (Jung and Pijanowski, 2012), carbon mapping (Asner et al. 2011), understanding invasion mechanisms (Jung et al. 2013; Asner et al. 2008), and detecting anthropogenic disturbances (Jung et al. 2013; loki et al. 2014).

Light detection and ranging (LIDAR) technology is advantage of ascertain vegetation characteristics in a three dimensional scale to gauge canopy gap areas, canopy height, and stratum of vegetation (Jung and Crawford, 2012; Jung et al. 2013).

We investigated how the structural complexity of forests and the variation in forest canopy tree composition relates to where forest plant invasions occur at the regional scale.

Research questions

(1) How LiDAR data measures associate with invasive species?

(2) How LiDAR data measures associate with native species?

Fig. 1. LiDAR data matrices derived from point cloud data acquired in 2005

- Forest Inventory Analysis (FIA) plot data from 2003 -2010
- 575 FIA plots/ 160 invaded plots
- Invaded plots were separated as closed canopy and clear-cut/ canopy gap

(iii) Modeled measurements of invasive/native species as a function of LiDAR measures

This project was funded by NSF Grant No. 1241932

richness with aspect (p<0.05), while it is a positive relationship for native species (p<0.001) (Table 3).

- The most commonly occurring invasive species of the 22 recorded invasive species were *Rosa*
- Majority of species in both closed canopy and clear cut areas are dispersed by birds/ small

Plant Species	Commo
Acer rubrum	red map
Liriodendron tulipifera	yellow-p
Oxydendrum arboreum	sourwoo
Quercus prinus	chestnut
Robinia pseudoacacia	black loc
Quercus rubra	northern
Quercus alba	white oa
Betula lenta	sweet bi
Nyssa sylvatica	blackgur
Quercus coccinea	scarlet c

The FIA data showed that Acer rubrum (red maple; present in 76% of all plots), plots), and Oxydendrum arboretum (Table 2, Fig. 5).

ecosystem invasion.

ecies	Fixed effects	Coefficient	SE	t Value	Pr(> t)
asive	Intercept	2.1694	0.1089	19.925	0.000 ***
	DTM	-0.2456	0.1095	-2.242	0.027 *
	RH75	-0.2009	0.1094	-1.836	0.069•
	Aspect	-0.2832	0.1094	-2.588	0.011 *
m(formula = Invasive ~ DTM + RH75 + Aspect) AIC: 406 Adj. r2=0.08					
ive	Intercept	7.7984	0.2143	36.397	0.000 ***
	CC	-1.3147	0.3901	-3.37	0.001**
	NG	2.5476	0.2797	9.11	0.000 ***
	NOL	1.2104	0.328	3.69	0.000 ***
	Aspect	0.9109	0.2153	4.231	0.000 ***
$lm(formula - Native - CC + NC + NOI + Aspect) AIC: 574 Adj r^2 - 0.54$					

References

Asner, G.P., Mascaro, J., Muller-Landau, H.C., Vieilledent G., Vaudry, R., Rasamoelina M., Hall, J.S., van Breugel M. 2011. A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia. DOI 10.1007/s00442-011-2165-z Asner, G.P., Hughes, R.F., Vitousek, P.M., Knapp, D.E., Kennedy-Bowdoin, T., Boardman, J., Martin, R.E., Eastwood, M. and Green, R.O. 2008. Invasive plants transform the three-dimensional structure of rain forests. PNAS 105: 4519-4523.

- loki, K., Tsuyuki, S., Hirata, Y., Phua, Wonga, M.W.V.C., Ling, Z., Saito, H., Takao, G. 2014. Estimating above-ground biomass of tropical rainforest of different degradation levels in Northern Borneo using airborne LiDAR. Forest Ecology and Management 328:335-341
- Jung, J., Pekin, B.K. and Pijanowski B.C. 2013. Mapping open space in an old-growth, secondary-Growth, and Selectively-Logged Tropical Rainforest Using Discrete Return LIDAR. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6:2453-2461.

Jung, J. and Crawford, M.M. 2012. Extraction of features from LIDAR waveform data for characterizing forest structure. IEEE Geoscience and Remote Sensing Letters,9: 492-496.

Jung, J. and Pijanowski B.C. 2012. Mapping Vegetation Volume in Urban Environments by Fusing LiDAR and Multispectral Data. Korean Journal of Remote Sensing, 28:661-670.

