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Abstract

changes across classes or conditions.

stimulation.

Background: When flow cytometric data on mixtures of cell populations are collected from samples under
different experimental conditions, computational methods are needed (a) to classify the samples into similar
groups, and (b) to characterize the changes within the corresponding populations due to the different conditions.
Manual inspection has been used in the past to study such changes, but high-dimensional experiments necessitate
developing new computational approaches to this problem. A robust solution to this problem is to construct
distinct templates to summarize all samples from a class, and then to compare these templates to study the

Results: We designed a hierarchical algorithm, flowMatch, to first match the corresponding clusters across
samples for producing robust meta-clusters, and to then construct a high-dimensional template as a collection of
meta-clusters for each class of samples. We applied the algorithm on flow cytometry data obtained from human
blood cells before and after stimulation with anti-CD3 monoclonal antibody, which is reported to change
phosphorylation responses of memory and naive T cells. The flowMatch algorithm is able to construct
representative templates from the samples before and after stimulation, and to match corresponding meta-clusters
across templates. The templates of the pre-stimulation and post-stimulation data corresponding to memory and
naive T cell populations clearly show, at the level of the meta-clusters, the overall phosphorylation shift due to the

Conclusions: We concisely represent each class of samples by a template consisting of a collection of meta-
clusters (representative abstract populations). Using flowMatch, the meta-clusters across samples can be matched
to assess overall differences among the samples of various phenotypes or time-points.

Background

In multiparametric flow cytometry, fluorophore-conju-
gated antibodies are used to measure the expression of
multiple markers expressed on the surface and within the
interior of cells in a given sample. As cells flow in a fluid
stream, excitation by laser causes the fluorochrome with
the attached antibodies to emit light of a specific
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wavelength, and the detected fluorescence intensity gives
a measure of the identity and amount of expression of
the different markers per cell [1]. Thus a flow cytometric
sample consists of the quantitative measurement of par-
ticular cell characteristics such as its lineage, state or
function in terms of the expression of the selected mar-
kers under the given experimental conditions. It can be
represented as a matrix of size N x d, where N (typically
in the range 103—105) is the number of cells, and d, the
number of markers measured in the experiment, also
called the dimension of the sample, is in the range 4-20.
For a given set of markers, a population is a group of

© 2012 Azad et al, licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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cells in a sample with similar marker expression, and
thus biologically similar to other cells within the group
but distinct from those outside the group. Identifying cell
populations in a sample (traditionally a manual process
known as “gating”) is a well-studied clustering problem
that summarizes a sample with population parameters
[2]. From an algorithmic point of view, populations may
be described as multivariate clusters of d-dimensional
points where each cluster is represented by its distribu-
tion parameters such as location (mean, mode), variance,
size, etc. In this paper we will use the term population
and cluster interchangeably depending on the context.

The idea of characterizing a sample - a collection of cells
- with clusters can be extended to characterizing a cohort
or class - a collection of samples - with a higher-level
technical description. Towards this end, we assume that
samples belonging to a particular class show homogeneous
clustering, by which we mean that at least some of the
populations correspond from sample to sample. Such clus-
ters have small distances from corresponding clusters in
other samples of that class, when an appropriate measure
of distance is used. We note that clusters from samples
belonging to different classes might not have such corre-
spondences. Under this assumption, we can summarize
the samples of a class with a class template by algorithmi-
cally merging similar populations from different samples
into meta-clusters. A meta-cluster is an abstract popula-
tion formed by grouping together similar cell populations
across samples, and the template of a class is the collec-
tion of all the meta-clusters constructed in this manner.
For convenience, an illustration of these concepts is
shown in Figure 1.

Recently developed computational methods for flow
cytometry have focused on automating gating via clus-
tering [3], but not on the equally important problem of
constructing and matching meta-clusters for heteroge-
neous samples. Here we report the design of a hierarchi-
cal algorithm, flowMatch, to construct class templates
consisting of a set of meta-clusters summarizing a set of
samples from a particular class, and to study how these
meta-clusters change under different experimental
conditions.
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The ability to systematically characterize a class of
multi-dimensional samples with a well-defined template -
in terms of its meta-cluster components - is useful in
applications of flow cytometry. In addition to providing a
cogent description of the core population structure that is
shared among samples within a class, the templates also
allow an objective way to assess the overall differences in
those structures across classes. Here we applied the con-
cepts of template and meta-cluster in quantifying tyrosine
phosphorylation differences in different CD4* T cell popu-
lations in a cohort of thirty human subjects, before and
after stimulation of whole blood with anti-CD3 monoclo-
nal antibody (mAb) [4]. Previous studies have shown that
different T cell subsets (naive, memory, effector) show
different overall phosphorylation responses upon stimula-
tion [4-7]. In these approaches each sample was gated to
identify cell populations of interest, and pairs of samples,
before and after stimulation, were compared to detect the
phosphorylation responses. However, Maier et. al.
reported that the autoimmune disease-associated allele at
CTLA4 gene on chromosome 2q33 alters phosphorylation
responses in naive and memory T cells [4]. Thus depend-
ing on the genetic profile of the subject, samples may dif-
fer in their response upon stimulation. It is therefore
challenging to summarize the phosphorylation responses
of all the samples in a class from manual observations of
the phosphorylation effect in individual samples. In this
setting, the samples belonging to each class (pre-stimula-
tion and post-stimulation classes in this paper) can be
described by a class template, and by matching meta-clus-
ters across templates we can better assess the population-
specific effects of the stimulation experiment.

To address the problem of systematic template con-
struction, we designed and developed an agglomerative
hierarchical meta-clustering algorithm, flowMatch, that
is similar in spirit to the well-known UPGMA clustering
algorithm [8,9]. The algorithm begins with clustered
samples obtained from a Dirichlet Process Mixture
(DPM) Model as described in [10]. It then proceeds hier-
archically by selecting the closest pair of samples, mer-
ging them into an intermediate template, and repeating
until all the samples of a class are merged into a final
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Figure 1 Example. Meta-clusters and a class template: Construction of a class template by merging three samples. Cells are denoted with dots,

JeIsno-ea

=

Class Template

Sample - 3




Azad et al. BMC Bioinformatics 2012, 13(Suppl 2):510
http://www.biomedcentral.com/1471-2105/13/52/S10

template consisting of a set of meta-clusters for the class.
After computing the class templates, we match meta-
clusters from one template to another using a generalized
edge cover in an underlying bipartite graph [10].

In a recent approach, FLAME, Pyne et. al. [11] formed
class templates from many samples of a particular class
by first clustering the locations of all clusters using Parti-
tioning Around Medoids (PAM). Then they refined the
clusters by comparing each sample with the templates
using an integer programming formulation of a weighted
b-matching in a bipartite graph. The templates of the two
classes (pre-and post-stimulation) were then compared
by using weighted bipartite matching. However, this
approach has a few drawbacks. First, in a collection of
heterogenous samples, multiple templates might be
necessary to effectively model the whole class, whereas
FLAME tries to form a single PAM-based template for a
class assuming limited heterogeneity. A hierarchical mer-
ging of samples can tackle the problem by using a thresh-
old value to create a merge forest (instead of a merge
tree). Second, FLAME uses within-class Euclidean dis-
tances between the mode of a cluster and the medoid of
a meta-cluster as edge weight, ignoring the underlying
distributions. To address this, we used Kullback-Leibler
divergence from the distributions as a dissimilarity mea-
sure, which takes into account both the location and the
shape of the distributions. Third, in their bipartite
b-matching formulation, FLAME uses the population
size as the capacity of a vertex to match multiple clusters
to a meta-cluster. This could cause a problem if the num-
ber of cells within clusters varies widely across the sam-
ples. Finally, possible outlier populations present in only
a few samples seem to be ignored by their model. In con-
trast, we use a generalized edge cover (GEC) formulation
[10], where a meta-cluster is allowed to match with zero,
one, or multiple clusters from the other class, while mini-
mizing a suitable objective function.

Results and discussion

Dataset

We analyzed raw flow cytometric data generated ex vivo
by Maier et. al. originally intended to determine the alle-
lic variation of the phosphorylation responses [4]. In
their work, whole blood samples from thirty subjects was
stained using phospho-site-specific labelled antibodies
against CD4, CD45RA, SLP76 (pY128), and ZAP70
(pY292), before and after stimulation with anti-CD3 anti-
body. Of these antibodies, CD4 and CD45RA were used
to differentiate among different T cell subpopulations,
and the tyrosine phosphorylation sites SLP76 and ZAP70
were used to detect the effect of stimulation. Following
the convention of Maier et al., we used the CD4" clusters
CD4*CD45RAMe" and CD4"CD45RAY to represent the
naive and memory T cell populations respectively [4,12].
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(Here a ‘+” symbol means that a marker is expressed,
‘high’ means that it is expressed at a high level; similarly,
‘low’ means that a marker is expressed at a low level, and
a " symbol means that it is not expressed at all. Thus
both these T cell populations have the CD4 marker
expressed, and the naive T cell population has a higher
expression level corresponding to CD45RA relative to
the memory T cell population.)

Clustering

We consider each sample as a mixture of Gaussian
components and used Dirichlet Process Mixture (DPM)
Model for the clustering [13,14]. One reason for select-
ing DPM over other clustering methods is its ability to
detect the number of clusters automatically. We used a
publicly available Matlab implementation of DPM clus-
tering by Teh [15]. We observed that the DPM cluster-
ing was not able to obtain well-separated clusters in
several samples. We are currently exploring the use of
other clustering methods for the entire data set. Mean-
while, here we choose to study in detail a subset of ten
samples for which well-separated clustering structure
could be obtained. We also report the results from all
thirty samples and compare them with the ten well-clus-
tered samples in our discussion.

Class templates

We first construct templates from the ten well-clustered
samples before stimulation (pre-stimulation template)
and after stimulation (post-stimulation template). The
two templates are shown in Figure 2. The average num-
ber of clusters present in a sample before stimulation is
6.3, and after stimulation it is 7.1. The flowMatch algo-
rithm identifies six meta-clusters in both templates, indi-
cating that the algorithm does not over-split or merge
populations within a class. However, the small difference
in the number of meta-clusters is because flowMatch
combines a few clusters within a sample that were possi-
bly incorrectly split by the initial DPM clustering.

Table 1 describes the membership of clusters from the
original samples among the different meta-clusters. Each
row in the Table corresponds to a meta-cluster. Each
sample usually has a representative cluster in most meta-
clusters, which confirms the presence of similar popula-
tions across samples (e.g., sample 7 has clusters present
in the five meta-clusters before stimulation and in all six
meta-clusters after stimulation). However, flowMatch is
flexible in placing none, one, or more than one cluster
from a sample into meta-clusters, reflecting the absence
of a particular population or the presence of one or more
populations (due to splitting in initial clustering phase) in
a sample. Some of the meta-clusters in the Table include
two clusters from some samples, and one includes three
clusters from one sample; the meta-cluster in the last
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Figure 2 Templates. Structures of templates: Templates from ten well-clustered samples before (left) and after (right) stimulation (projection into
three dimensions, ZAP70 is not shown). In a template, each meta-cluster is indicated with a distinct color; four meta-clusters are present in each
template. Corresponding meta-clusters across templates are plotted with the same color. Naive CD4"CD45RAM" T cell population is colored in
blue, and Memory CD4"CD45RA™" T cell population is colored in red. Details of the clusters in each meta-cluster are shown in Table 1.
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rows has clusters from few samples. This flexibility gives
the algorithm the opportunity to correct the initial clus-
tering via the meta-clustering process. Notice also that
the stimulation with anti-CD3 monoclonal antibody
changes the composition of the meta-clusters in subtle
ways.

Effect of stimulation on phosphorylation responses

From Figure 2, most CD4" T cell populations display
overall increased SLP76 phosphorylation upon stimula-
tion with anti-CD3 antibody, which agrees with the
observations in [4,11]. Similar results were obtained for
ZAP70. We consider meta-clusters representing naive
CD4"CD45RAME" and Memory CD4*CD45RA™ T cell
populations, and show the effect of stimulation on these
subsets in Figure 3. Previous studies performed with
individual samples [4,11] reveal that memory CD4" T
cells display a lower baseline SLP76 phosphorylation
level than naive CD4" T cells. Our approach obtains
this result with the entire class of samples (Figures 3(a)
and 3(b)), by identifying corresponding meta-clusters

Table 1 Composition of meta-clusters

between the two class-templates. We also notice the low
phosphorylation shift in ZAP70 residues (Figures 3(c)
and 3(d)) relative to the SLP76 residues upon stimula-
tion. This demonstrates that flowMatch can match cor-
responding meta-clusters across templates despite the
variable amount of phosphorylation shifts.

Stability of templates
The flowMatch algorithm builds a binary merge forest
with the class templates at the roots of the trees, by
merging a pair of samples or sub-templates at a time.
Let T be a sub-template (or template) constructed by
merging Tieg (left child) and Tyign, (right child). Then,
Cr, the cost of the template T, is the cost of merging
Thee and Tyigne, which is the cost of the generalized edge
cover, given in Equation 1 (see the Methods section).
We show the merge tree for the templates before and
after stimulation in Figure 4, and indicate the cost asso-
ciated with each internal node in that tree.

A large template cost indicates heterogeneity among
the samples participating in the template construction.

Type Meta-clusters before stimulation Meta-clusters after stimulation
Memory T cell 1-10 1-2, 3%, 4-10
Naive T cell 1-3, 4%, 5-7,8%,9-10 1-3, 4%, 5-10
1%, 2, 3%, 4% 5-10 1,2 3,4, 5% 6", 7,810
1-4,5%, 6%, 7-10 1%, 24,5 6%, 75,8, 9,10
1-6,7%,8%, 9%, 10
1-4, 8 1,2% 36,7 810
1,59

The composition of each meta-cluster: Each entry denotes the list of samples that contribute a cluster to a particular meta-cluster. A '+ in the superscript of a
sample s indicates that multiple clusters from s appear in a meta-cluster (e.g., s** means three clusters from sample s appear in that meta-cluster.) Matching
meta-clusters across templates are shown in same row, and the known cell population types are also shown.
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Figure 3 Stimulation. Templates before and after stimulation: Detection of increased phosphorylation (shown with arrows) in naive CD4
*CD45RAM" (left column) and Memory CD4CD45RAPY (right column) T cell populations at the meta-cluster level before (blue) and after (red)
stimulation. Top row (subfigures (a), (b)) shows the effect on SLP76 and the bottom row (subfigure (c), (d)) shows the effect on ZAP70.

How much heterogeneity (merge cost) should we tolerate  stimulation) should be more heterogenous than a pair of
while building a template? We argue that any pair of samples in the same class. For example, when we con-
samples taken from different classes (pre- and post-  sider the ten samples that are well-clustered, the pre-stim

219

stimulation

Figure 4 prePostTree. The pre-stimulation and post-stimulation merge trees: The hierarchy of sample-merges to construct a template from ten
well-clustered samples before (left) and after (right) stimulation. The leaves denote original samples and are marked with numerical labels. The
internal nodes indicate sub-templates with the final template at the root. The cost of forming a sub-template (the merge cost of two children) is
also shown at each non-leaf node.
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template and post-stim template costs are respectively 20
and 21.9 in Figure 3, whereas the minimum cost of mer-
ging any pair of cross class samples is 31.3. We call the
former stable templates since they compactly represent
all samples in the class. However, if we construct a single
template from all the thirty samples (Figure 5 for post-
stimulation) the cost is approximately 45 for both pre-sti-
mulation and post-stimulation templates, whereas the
minimum cost of merging any pair of cross-class samples
is 23:3. This suggests that we need more than one tem-
plate to represent all of the samples. We use the mini-
mum merge-cost among all cross class pairs as a cut-off
value for all thirty samples to decompose the merge tree
into a merge forest, and declare all sub-templates con-
structed up to that point as the templates of the cohort
of samples. In Figure 5 we denote unstable merges by
broken red edges, and removing those edges will produce
six templates for the thirty samples.

Conclusions

We concisely represent each class of samples by a tem-
plate consisting of a collection of meta-clusters (repre-
sentative abstract populations). We have developed a
hierarchical template formation algorithm, flowMatch,
that is able to construct representative class templates in
the presence of tolerable variations in the samples.
Using flowMatch, the meta-clusters across samples can
be matched to assess overall differences among the sam-
ples of various phenotypes or time-points.

Methods

Problem description

Consider N samples S3, S,...Sy belonging to a class A,
where each sample is individually clustered. Let the ith
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sample consist of n; clusters, S; = {ci,c2,...,cy}. From
the N samples we wish to construct a class template 74
with K meta-clusters {M;, M,,..., My}, where K > 1. The
i meta-cluster M; consists of k; clusters from the sam-
ples. If k; = 1, a meta-cluster is an original cluster from
one of the samples. In this setting, every cluster from all
samples is uniquely assigned to some meta-cluster. After
constructing a template 74 for class A and a template
Ty for class B, we wish to match meta-clusters from the
two class templates.

Formation of templates: the flowMatch algorithm

We use a bottom-up pairwise merging of samples to
construct class templates. The procedure constructs a
binary forest, where initial samples are leaves, and the
roots of the trees are the class templates for the subset
of samples in each tree. If there is only one tree in the
forest, then all the samples have one class template. In
Figure 4 we show the trees for the pre-and post-stimula-
tion samples. The internal nodes of the tree consist of
meta-clusters from subsets of samples and we refer to
them as sub-templates. A high level description of the
template construction procedure is given below:

1. Initialize

Consider each sample as a sub-template with each clus-
ter as meta-cluster. Construct the set of current sub-
templates S for each sample. Calculate the similarity
between every pair of samples (as explained below).

2. Merge closest pair

Find the most similar pair of sub-templates T and T
from S and merge them into a new sub-template T.
Remove T and T° and add T to S. If |[5| =1 or the
cost of merging is too high, stop and return S as the
final template(s).

1131

6 9 320

16 1514511 10 1812 19 2 8

29 24 2325 2722 264 28

Figure 5 fullTree. The merge forest of thirty samples: The hierarchy of sample-merges to construct templates from all thirty samples after
stimulation. Numerical labels are used to denote samples at the leaves. Unstable sub-templates are indicated with broken red lines. The costs of
the unstable sub-templates are also shown in their corresponding nodes.
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3. Calculate similarity

Calculate the similarity of T to all other sub-templates
in G, and return to Step 2.

Merging a pair of sub-templates The building block of
the procedure is the merging of a pair of sub-templates.
Consider merging two sub-templates T = {m;, ms,...,
my} and T' = {m}, m), ..., my}, where T has K meta-
clusters and 77 has K’ meta-clusters. We calculate the
dissimilarity between a pair of original clusters ¢ and ¢’
with the average Kullback-Leibler (KL) divergence (also
known as relative entropy) from their corresponding dis-
tributions [16]. We then define the dissimilarity between
two meta-clusters m = {c;, cq,., ¢} and
m' = {c},c5,...,c,} as the average of the distance
between each pair of clusters:

d(m,m') = (1/Imllm') ) Y d(ei, ).

ciemciem

We model the sub-template pair T and T° by a com-
plete bipartite graph G = (T, T’, E), where every meta-
cluster m; € T is a vertex in one part, every meta-cluster
m]’ € T' is a vertex in the other part, and each pair of
vertices {m; m]{} is joined by an edge with weight
w({m, m]/}) =d(m;, m]/) We compute a minimum
weight generalized edge cover [10] in the bipartite graph
G = (T, T, E). A generalized edge cover (GEC) is a sub-
set of uncovered vertices V,, € T U T and a subset of
edges such that each vertex m ¢ V. has at least one
edge incident on it while minimizing the objective func-
tion:

min E

{m;,m'}}€GEC

d(mi, m'’j) + & |Vye| | . (1)

Here A is a free parameter that represents the penalty
for leaving a vertex uncovered, and is used to control
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the number of such vertices. The generalized edge cover
matches each vertex to zero or more vertices in the
other part while avoiding edges with high weights. In
the generalized edge cover, we merge all the meta-clus-
ters (vertices) matched together into a single meta-clus-
ter. Figure 6 shows an example that merges two sub-
templates into a new one. Notice that a vertex not cov-
ered in the generalized edge cover (the vertex my in T
in Figure 6) is included in a a meta-cluster by itself,
indicating the presence of a cluster in only one sub-tem-
plate. All newly formed meta-clusters constitute the
merged sub-template T, which then replaces the two
templates 7 and T" in S.

Order of merging We pick a pair of sub-templates to
merge such that the cost of merging them is the mini-
mum among all possible pairs in current list S. The
cost of merging a pair of sub-templates T and T’ is the
cost of the generalized edge cover computed using
with the bipartite graph model shown in Equation 1.

Comparison of templates

After constructing two class templates we again use a
generalized edge cover to match meta-clusters across
classes.

The time complexity of the flowMatch algorithm
Let N be the number of samples and K be the maxi-
mum number of meta-clusters among all sub-templates
generated by the flowMatch algorithm. The similarity
between a pair of sub-templates can be computed in
time O(K® log K) [10]. The initialization step requires O
(N?) similarity computations. The hierarchical merging
step needs O(N) iterations, with each iteration comput-
ing O(N) similarity measures. Hence the time complex-
ity of the algorithm is O(N’K® log K).

The algorithm runs under a minute on a 2.4 GHz PC
for our dataset with N = 30 and K = 11.

my m (v i = "i
(b) : ( ): meem, m
: : om, |
m2 m 2 [ i
GEC ] merge i meem; | n,
= g M: o)
P M@ @My |5
m' E .
o : @ ) i
T T T
Figure 6 GEC. Generalized edge cover: The use of generalized edge cover to merge two sub-templates T and T'. (a) The bipartite graph model
from two sub-templates. A pair with high dissimilarity is connected with a broken edge. (b) The generalized edge cover (GEC) solution which
matches each vertex to zero or more vertices on the other side. The solution tries to avoid the broken edges. (c) The sub-template obtained
from the GEC solution by merging matched vertices.




Azad et al. BMC Bioinformatics 2012, 13(Suppl 2):510
http://www.biomedcentral.com/1471-2105/13/52/S10

Acknowledgements

The research of the first and third authors was supported by the National
Science Foundation grant CCF-0830645 and by the U.S. Department of
Energy through the CSCAPES Institute grant DE-FC02-08ER25864.

This article has been published as part of BMC Bioinformatics Volume 13
Supplement 2, 2012: Proceedings from the Great Lakes Bioinformatics
Conference 2011. The full contents of the supplement are available online at
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/52

Author details

'Department of Computer Science, Purdue University, West Lafayette, IN
47906, USA. “Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, MA 02115, USA. >Broad Institute of MIT and
Harvard University, Cambridge, MA 02142, USA.

Authors’ contributions

Pyne and Pothen conceived the study; Azad and Pothen designed the
meta-template creation algorithm; Pyne guided the statistical aspects of the
work; and Azad implemented the algorithms. All three authors participated
in writing the paper.

Competing interests

The authors declare that they have no competing interests.

Published: 13 March 2012

References

1. Macey M: Flow Cytometry: Principles and Applications Humana Pr. Inc; 2007.

2. Chan C Feng F, Ottinger J, Foster D, West M, Kepler T: Statistical mixture
modeling for cell subtype identification in flow cytometry. Cytometry Part
A 2008, 73(8):693-701.

3. Lugli E, Roederer M, Cossarizza A: Data analysis in flow cytometry: The
future just started. Cytometry Part A 2010, 77:705-713.

4. Maier L, Anderson D, De Jager P, Wicker L, Hafler D: Allelic variant in
CTLA4 alters T cell phosphorylation patterns. Proceedings of the National
Academy of Sciences 2007, 104(47):18607.

5. Farber D, Acuto O, Bottomly K: Differential T cell receptor-mediated
signaling in naive and memory CD4 T cells. European Journal of
Immunology 1997, 27(8):2094-2101.

6.  Ahmadzadeh M, Hussain S, Farber D: Effector CD4 T cells are
biochemically distinct from the memory subset: evidence for long-term
persistence of effectors in vivo. The Journal of Immunology 1999,
163(6):3053.

7. Ahmadzadeh M, Hussain S, Farber D: Heterogeneity of the memory CD4 T
cell response: persisting effectors and resting memory T cells. The
Journal of Immunology 2001, 166(2):926.

8. Gan G, Ma C, Wu J: Data clustering: theory, algorithms, and applications.
ASASIAM Series on Statistics and Applied Probability 2007, 20:219-230.

9. Jain A, Murty M, Flynn P: Data Clustering: A Review. ACM Computing
Surveys (CSUR) 1999, 31(3):264-323.

10. Azad A, Langguth J, Fang Y, Qi A, Pothen A: Identifying rare cell
populations in comparative flow cytometry. In Lecture Notes in
Bioinformatics. Volume 6293. Springer; 2010:162-175.

11. Pyne S, Hu X, Wang K, Rossin E, Lin T, Maier L, Baecher-Allan C,

Mclachlan G, Tamayo P, Hafler D, et al: Automated high-dimensional flow
cytometric data analysis. Proceedings of the National Academy of Sciences
2009, 106(21):8519.

12. Young J, Ramage J, Gaston J, Beverley P: In vitro responses of human
CD45R0°™M RA” and CD45R0™ RA”™M T cell subsets and their
relationship to memory and naive T cells. European Journal of
Immunology 1997, 27(9):2383-2390.

13. Antoniak C: Mixtures of Dirichlet processes with applications to Bayesian
nonparametric problems. The Annals of Statistics 1974, 2(6):1152-1174.

4. Neal R: Markov chain sampling methods for Dirichlet process mixture
models. Journal of Computational and Graphical Statistics 2000,
9(2):249-265.

15.  DPM Clustering Software. [http://www.gatsby.ucl.ac.uk/~ywteh/research/
software.html].

16.  Kullback S, Leibler R: On information and sufficiency. The Annals of
Mathematical Statistics 1951, 22:79-86.

Page 8 of 8

doi:10.1186/1471-2105-13-52-510

Cite this article as: Azad et al: Matching phosphorylation response
patterns of antigen-receptor-stimulated T cells via flow cytometry. BMC
Bioinformatics 2012 13(Suppl 2):S10.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolMed Central



http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S2
http://www.ncbi.nlm.nih.gov/pubmed/9295050?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9295050?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10477569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10477569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10477569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11145669?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11145669?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9341784?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9341784?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9341784?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9341784?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9341784?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9341784?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9341784?dopt=Abstract
http://www.gatsby.ucl.ac.uk/~ywteh/research/software.html
http://www.gatsby.ucl.ac.uk/~ywteh/research/software.html

	Purdue University
	Purdue e-Pubs
	3-13-2012

	Matching Phosphorylation Response Patterns of Antigen-Receptor-Stimulated T Cells Via Flow Cytometry
	Ariful Azad
	Saumyadipta Pyne
	Alex Pothen
	Repository Citation
	Comments


	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Dataset
	Clustering
	Class templates
	Effect of stimulation on phosphorylation responses
	Stability of templates

	Conclusions
	Methods
	Problem description
	Formation of templates: the flowMatch algorithm
	1. Initialize
	2. Merge closest pair
	3. Calculate similarity


	Comparison of templates
	The time complexity of the flowMatch algorithm

	Acknowledgements
	Author details
	Authors' contributions
	References

