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Disparity Decoding

Fig. 2) Examples of disparity decoding from a natural stereo image pair using different model settings. Each model returns a map of model cell 
responses (binocular complex cells) tuned to a range of spatial frequencies and orientations. The disparity decoder then sums the responses 
over orientations and spatial frequencies and returns the value of disparity with maximal summed response. Left) Original image (Left image 
shown). ((Nakamura et al., 1996) Middle) Disparity map from the subtractive inhibition model (Tanabe, Haefner, Cumming, 2011). Accuracy 
showed marginal improvement over the original stereo energy model. Right) Same map generated from the contrast normalization model 
(Tanabe, Haefner, Cumming, 2011; Rust et al., 2005) . Comparable performance as can obtained from the model described in divisive 
suppression model with strong suppressive power. From the mathematical viewpoint, the suppressive signals represent the mismatch 
between left and right eye image patches whereas excitatory signals represent the overall feature strength. The results confirms our belief that 
the excitatory signal, if not properly discounted by further processing stages, creates detrimental bias.

Model Components

Fig. 1) A depiction of the excitatory (Left) and the suppressive 
(Right) pools as direct extension to the binocular Energy model 
(Ohzawa, DeAngelis, Freeman, 1990). Each pool sums the 
responses of 4 simple-cell components. The two pools are 
combined in different ways as described in Fig. 2. Each simple cell 
component have binocular receptive field with fixed phase disparity (0 
or 180). The linear filter output is half-wave rectified and squared.
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Fig. 4) (Left) Spike-triggered covariance analysis of a model cell. (divisive 
suppression model shown). The top two rows represent the eigenvectors with the 
highest eigenvalues and the bottom two rows represent those with the lowest 
eigenvalues. Both the excitatory and the suppressive components are fully 
recovered for all models that combine both pools. (Right) Simulation of ocular 
dominance (lower left figure) and depth of modulation (lower right) across disparity 
(Ohzawa, Freeman, 1990). The classical energy model produced better fit to 
overall tuning curves (upper two figures) than any model with suppressive input, 
suggesting that either the neurophysiological data of the original study was taken 
by the cells without suppressive components or additional mechanism for adapting 
baseline response exists.

Fig. 3) The ‘iso-disparity’ group. 
The five tuning curves represent 
the group of cells with different 
combinations of position and 
phase disparities such that the 
peak of their tuning curves lie on 
the same disparity (dotted vertical 
line). The blue curves represent 
the disparity tuning to correlated 
random stimuli whereas the red 
line represents the tuning to anti-
correlated stimuli. We found that 
an excitatory interaction between 
these units coupled with proper 
normalization results in significant 
relative attenuation of the 
amplitude of tuning curve to anti-
correlated stimuli. We also found 
that such a mechanism mildly 
improves disparity decoding, 
adding to the list of possible roles 
that a variety of phase disparity-
tuned units might play.
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