Pavement Rehabilitation Options in Indiana

Dave Holtz Tommy E. Nantung Lisa Egler-Kellems Indiana Department of Transportation

Decision to select treatment options

Rehabilitation Treatment Overview

Objectives

- Identify maintenance/rehabilitation treatments.
- Benefits of good timing.
- Preventive maintenance and its principles.

Introduction

- How do PCC pavements typically deteriorate?
- When is functional performance impaired?
- What about structural performance?
 What treatments are commonly
- used?

PCC Rehabilitation Treatments

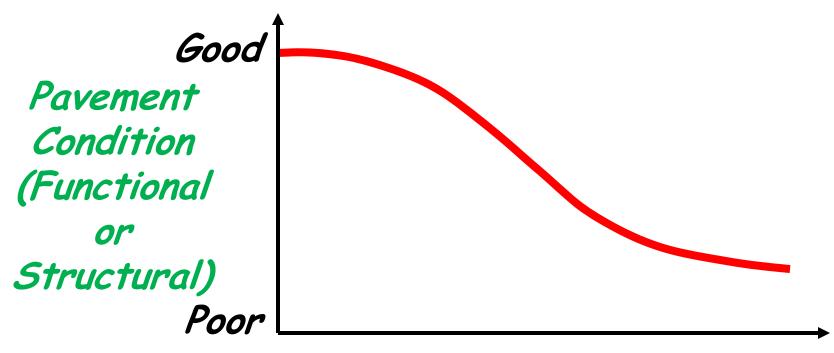
- PCC Overlays
- HMA Overlays
- PCC Pavement Recycling
- Accelerated Rigid Paving Techniques
- Feasible Treatment Identification

Treatment Information

- Definitions
- Purpose and Applications
- Limitations and Effectiveness
- Design Considerations
- Pavement Surveys
- Cost Considerations
- Construction Considerations
- Equipment

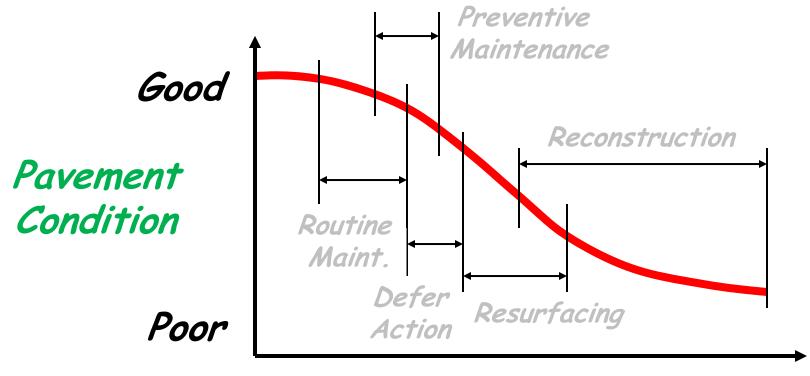
Identification of Candidate Treatments

- Specific Distresses Present
- Condition
 - Functional
 - Structural
- Loadings and Environment
- Available Tools
 - Decision trees
 - Decision matrices


Treatment Timing Issues

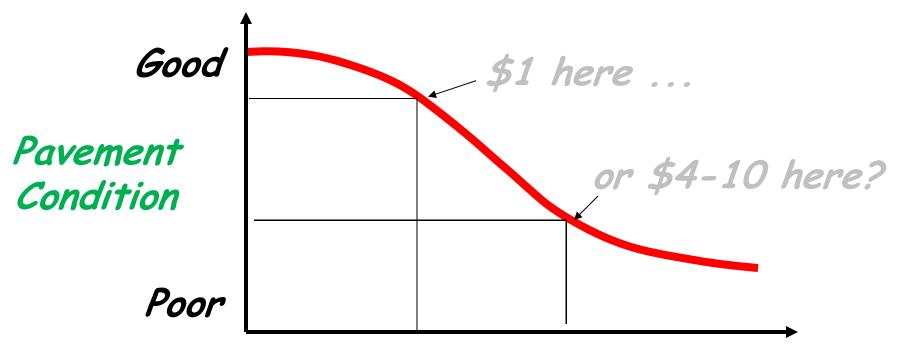
- What factors affect treatment timing?
- When is too soon?
- Too late?

Typical Pavement Performance Curve



Time (Years)

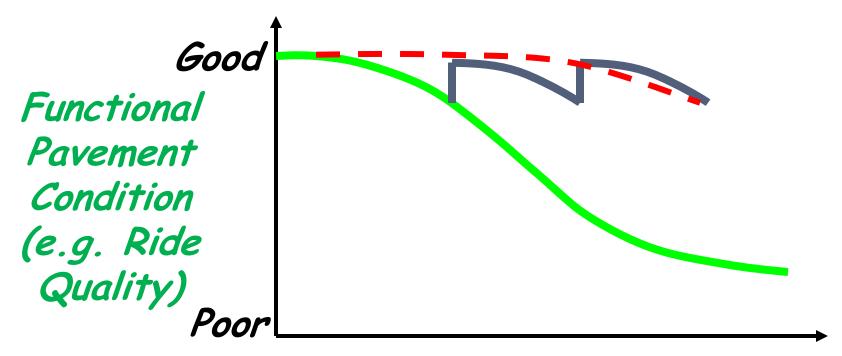
Typical Pavement Performance Curve



Time (Years)

Cost Effects

Time (Years)


Preventive Maintenance

- Planned strategy
- Preserves the system
- Retards future deterioration
- Maintains or improves functional condition

Anticipated PM Benefits

Time (Years)

Anticipated PM Benefits

- Functional Performance?
- Structural Performance?

Costs:

- To the agency?
- To the user?

Conventional Rehabilitation Treatment

HMA Pavement Overlay

Introduction

- Most popular method
- Relatively fast and cost-effective means for:
 - Correcting deficiencies
 - Restoring user satisfaction
 - Adding structural capacity
- Poor performance is NOT uncommon

Definitions

- Functional performance Ability to provide a safe, smooth riding surface
- Structural performance Ability to carry traffic without distress
- Empirical Design based on past experience or observation
- Mechanistic Design based upon engineering mechanics

Purpose and Applications

- Improve functional and/or structural characteristics
- Wide range of applications
 - Road surface categories
 - Climate and support conditions

Characteristics of Typical HMA Overlay

- Dense graded HMA
- Flexible or rigid surface
- 25 to 200 mm (1 to 8 in) thickness
- Mill and Fill

Limitations and Effectiveness

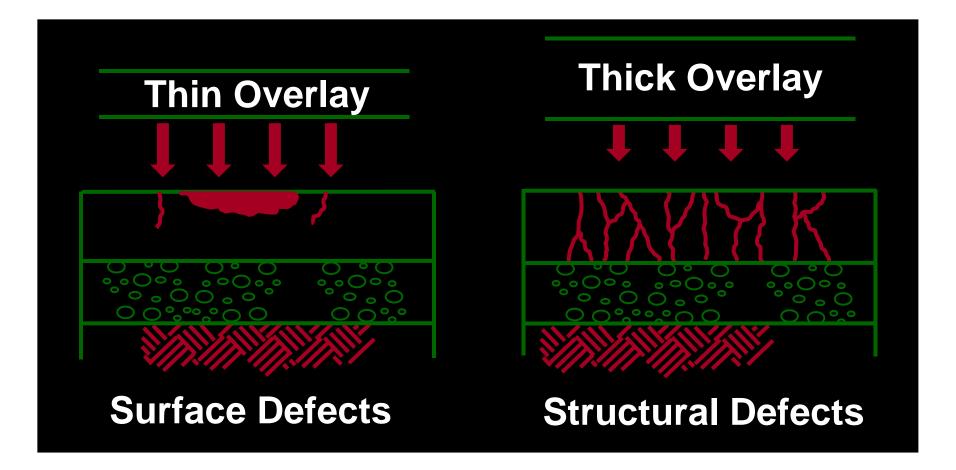
Why do we have premature failures?

- Improper selection
- Wrong type
- Inadequate design
- Insufficient preoverlay repair
- Lack of consideration of reflection cracking

Limitations and Effectiveness

- What limits the effectiveness of HMA overlays?
- Distress exhibited in HMA
- Intended design life of the overlay
- Availability of quality materials

Limitations and Effectiveness


How can we improve our overlays?

- Preoverlay treatments
- Better materials and practices
- Sound engineering judgment

Overlay Selection to Correct Deficiencies

What Are Considerations in Overlay Selection?

Construction feasibility

- Traffic control
- Constructibility
- Vertical clearances
- Utilities
- Performance period
- Funding

Preoverlay Treatment and Repair

Dependent upon:

- Type of overlay
- Structural adequacy of existing pavement
- Existing types of distress
- Future traffic
- Physical constraints
- Cost

To Repair or Not to Repair?

Types of Preoverlay Treatments

- Localized repair (patching)
- Surface leveling
- Controlling reflection cracking
- Drainage improvements

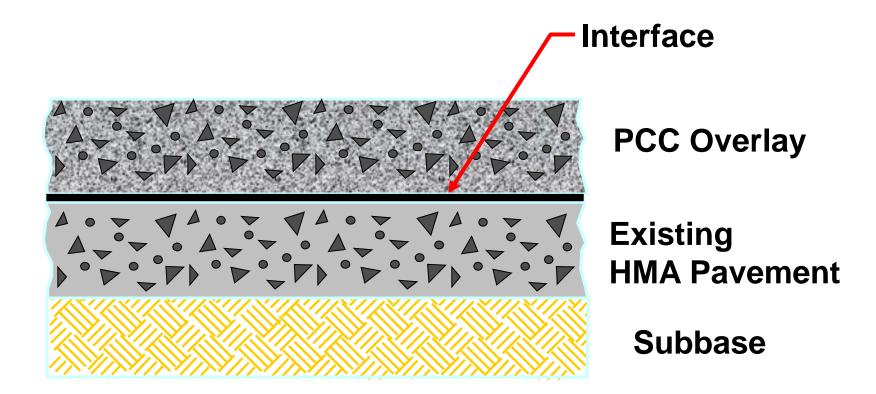
Conventional Rehabilitation Treatment

Concrete Pavement Overlay

Types of Whitetopping Overlays

Conventional Whitetopping

- Slabs greater than 100 mm thick
- Placed directly on HMA pavement (little preoverlay repair)


Ultra-Thin Whitetopping

- Thin slabs (50 to 100 mm thick)
- Short joint spacing (0.6 to 1.8 m)
- Bonded to existing HMA to increase loadcarrying capacity

Conventional Whitetopping

Applicability

Conventional Whitetopping

- Badly deteriorated HMA pavements
- Most any traffic volume

Ultra-Thin Whitetopping

- Low volume roads exhibiting rutting, shoving, potholing
- Urban intersections where recurrent rutting/washboarding has been a problem

Overlay Selection

- Detailed pavement evaluation (distress, FWD, coring)
- Construction feasibility
- Performance period
- Cost effectiveness

Whitetopping Feasibility—Constructibility

Conventional

Vertical Clearance

Can be a problem

Traffic Control May be difficult to construct under traffic

Construction

No special equipment

Whitetopping Feasibility—Performance Period

Conventional

Existing Condition

Very deteriorated HMA pavements

Extent of Repair

Limited to very severe areas

Future Traffic

Any traffic level

Historical Reliability

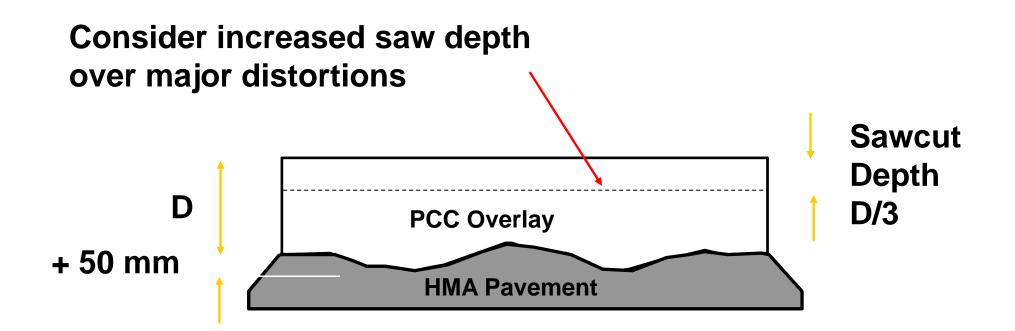
Very good

Design Considerations

- Slab thickness
- Joint design
- Drainage design
- Reinforcement design
- PCC mix design
- Preoverlay repair and surface preparation

Preoverlay Repairs Whitetopping Overlays

- Localized repair of failed areas
- Filling of potholes
- Milling if rutting greater than 50 mm
- Repair of severe alligator cracking if poor support would otherwise result


Construction — Whitetopping Overlays—

- Conventional PCC paving equipment and construction practices are used
- PCC may be placed directly on HMA or on milled or leveled HMA surface
- Whitewashing of HMA surface may be required on hot days

Whitetopping —Joint Sawing—

SR-161 Whitetopping

SR-161 Whitetopping

Rehabilitation Option

Hot In-Place Recycling

Hot In-Place Recycling Description

- Three methods
 - Surface recycling
 - Remixing
 - Repaving
- Typical depth: 15 mm -50 mm (0.6 in - 2.0 in)
- RAP mixed with additives and relaid
- Immediate opening to traffic
- Applicable for all traffic levels

Indiana

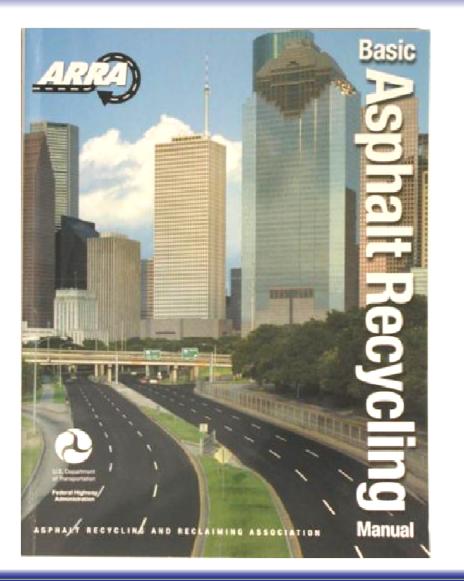
Rehabilitation Option

Cold In-Place Recycling

Cold In-Place Recycling Description

- Cold process
- Milling depth: 50 mm
 - 100 mm (2 in to 4 in)
- RAP mixed with additives and relaid
- Resurfacing is typically required
- Most commonly used on secondary and lowvolume roads

ndiana


Benefits

- Conserves energy and materials
- Preserves geometrics
- Many surface distresses eliminated
- Improves profile
- Modifies material characteristics
- Relatively inexpensive

Basic Asphalt Recycling Manual

5-46

In-Place Recycling

Measure of Effectiveness

Corrects	Slows/Reduces Severity
Poor friction Roughness Bleeding Raveling Rutting Poor cross slope	Cracking Moisture damage
Prevents/Delays	Negatively Affects
Cracking Raveling Roughness	None

Full Depth Reclamation (FDR)

Definition of Full-Depth Reclamation

 Method of flexible pavement reconstruction that utilizes the existing asphalt, base, and subgrade material to produce a new stabilized base course for a chip seal, asphalt, or concrete wearing surface.

Types of Reclamation Methods

- Mechanical Stabilization
- Bituminous Stabilization
 - emulsified asphalt
 - expanded (foamed) asphalt

Chemical Stabilization

 Portland cement, slag cement, lime, fly ash, other

Challenges Facing Our Roadways

- Continuing growth
- Rising expectations from users
- A heavily used, aging system
- Environmental compatibility
- Changes in the workforce
- Funding limitations

Combined with large increases in traffic volumes and/or allowable loads often leads to serious roadway base failures!

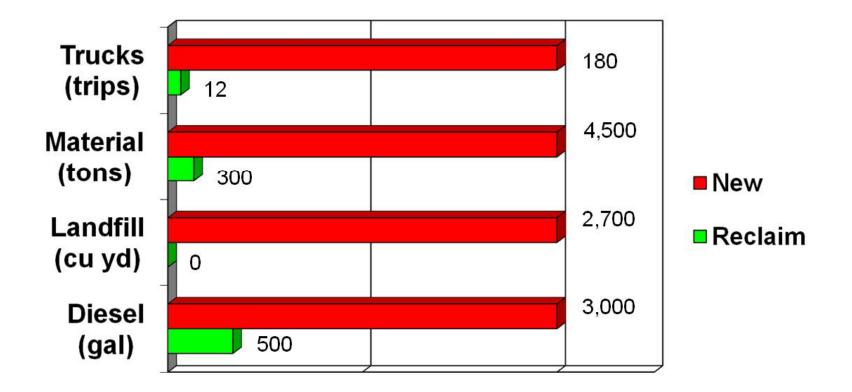
How do you know if you have a base problem and not just a surface deficiency?

Examples of Pavement Distress

- Alligator cracking
- Rutting
- Excessive patching
- Base failures
- Potholes
- Soil stains on surface

Advantages of the FDR Process

- Use of in-place materials
- Little or no material hauled off and dumped
- Maintains or improves existing grade
- Conserves virgin material
- Saves cost by using in-place "investment"
- Saves energy by reducing mining and hauls
- Very sustainable process


Rehabilitation Strategies

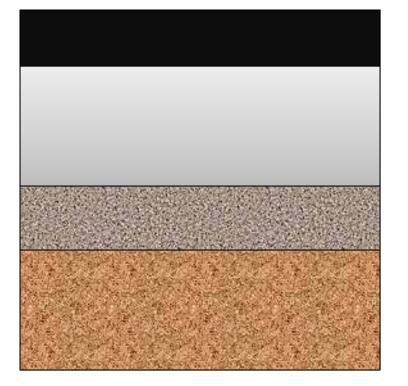
	Reh	abilitation Stra	ategy
Attribute	FDR	Structural Overlay	Removal and Replacement
New pavement structure	\checkmark	\checkmark	\checkmark
Fast construction	\checkmark	\checkmark	Х
Minimal traffic disruption	\checkmark	Х	Х
Minimal material in/out	\checkmark	Х	Х
Conserves resources	\checkmark	Х	Х
Maintains existing elevation	\checkmark	Х	\checkmark
Low cost	\checkmark	Х	Х

Sustainable Element of FDR Process

1 mile of 24-foot wide, 2-lane road, with a 6-inch base

FDR in Indiana

Other Options for FDR


Design Issue

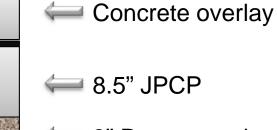
Pavement Rehabilitation Design

Existing pavement section

⇐ 8.5" JPCP

🦛 Soil subgrade

Proposed rehabilitation

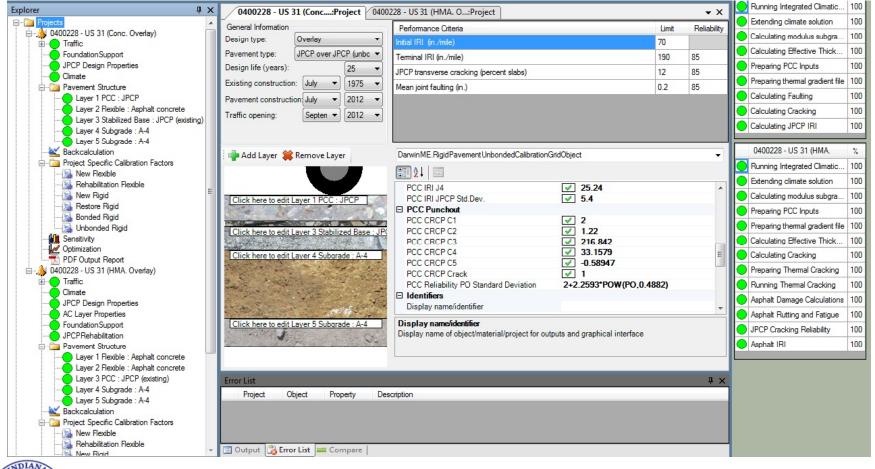

12 year LCCA

HMA overlay

🚧 8.5" JPCP

- 年 3" Dense sand
- 🧀 Soil subgrade

25 year LCCA



- 🚧 3" Dense sand
- Soil subgrade

Indiana

Design alternatives

Backcalculation inputs

	Select Station		Modulus Subgrade Reaction		
	V	NB	260	FWD Backcalculation data by layer	2 back calculation layers
		SB	276	□ Identifiers	2 Duck calculation layers
-			1.1.5	Display name/identifier	NB
				Description of object	FWD testing
				Author	YJ
				Date created	8/8/2011
				Approver	TEN
				Date approved	8/8/2011
				State	IN
				District	LaPorte
				County	St. Joseph
				Highway	US-31
				Direction of travel	NB and SB
				From station (miles)	253+74
				To station (miles)	255+43
				User defined field 1	
				User defined field 2	
				User defined field 3	
				Revision Number	0
				Item Locked?	False

JPCP optimization

Layer Thickness	Results	Use	Layer	Default Th	ickness	Minimum Thickness	Maximum Thickness
6	Failed	V	Layer 1 PCC : JPCP	9		6	12
12	Passed						
	Passed						
.5	Failed						
	Failed						
3.5	Failed						
		•	Use Property Dowel Diame	ter (in.) 🔹	Rules	Ci	iteria
		- Optim	nization Rules		Dulas	0	
		*					
					-		

JPCP optimization result

Design Structure

Traffic

Layer 1 PCC . JPC Layer 2 Stabilized Layer 4 Subgrade

Layer type	Material Type	Thickness (in.):	Joint Design:	
PCC	JPCP	9.0 (Optimized)	Joint spacing (ft)	15.0
Flexible	Asphalt concrete	2.0	Dowel diameter (in.)	1.25
Stabilized	JPCP (existing)	8.5	Slab width (ft)	12.0
Subgrade	A-4	24.0	k Lot Son S	
Subgrade	A-4	Semi-infinite	1	

Age (year)	Heavy Trucks (cumulative)
2012 (initial)	6,000
2024 (12 years)	14,273,700
2037 (25 years)	31,794,300

Design Outputs

Distress Prediction Summary

Distress Type	the second se	Distress @ Specified Reliability		Reliability (%)	
	Target	Predicted	Target	Achieved	Satisfied?
Terminal IRI (in./mile)	190.00	120.37	85.00	99.96	Pass
Mean joint faulting (in.)	0.20	0.07	85.00	100.00	Pass
JPCP transverse cracking (percent slabs)	12.00	9.49	85.00	92.70	Pass

HMA optimization

0400228 - US 31 (Conc. O:Project 0400	0228 - US 31 (HMA. O:Proje	ct 0400228 - US	31:Optimization	• ×
Last Optimized Thickness	Design Layers			
Layer Thickness Results	Use Layer	Default Thickness	Minimum Thickness	Maximum Thickness
	Layer 1 Flexible : As	1.5	1.5	3.0
	Layer 2 Flexible : As	2.5	2.5	5
	Optimization Rules Optimization rules are curre	ently available only for	JPCP analyses.	
Adding a ba	se layer	is more	e appro	opriate
Optimize Thickness				

HMA sensitivity

e	Property	Layer	Default	Minimum	Maximum	# of Increments
	Two-way AADTT		6000			
	Thickness (in.):	Layer 1 Flexible : Asp	1.5			
	Binder Content (%)	Layer 1 Flexible : Asp	11.61			
	Air voids (%)	Layer 1 Flexible : Asp	8			
	Thickness (in.):	Layer 2 Flexible : Asp	2.5	2.5	5	5
	Binder Content (%)	Layer 2 Flexible : Asp	10.66			
	Air voids (%)	Layer 2 Flexible : Asp	8			
	Thickness (in.):	Layer 3 PCC : JPCP (8.5			
1	Thickness (in.):	Layer 4 Subgrade : A-4	24			
1	Unbound Modulus	Layer 4 Subgrade : A-4	6000			
	Dowel diameter (in.)		1.25			
	PCC joint spacing (ft)		15			
1	Slab width (ft)		12			
1	PCC coefficient of th	Layer 3 PCC : JPCP (5.4			
1	28-Day modulus of ru	Layer 3 PCC : JPCP (350			

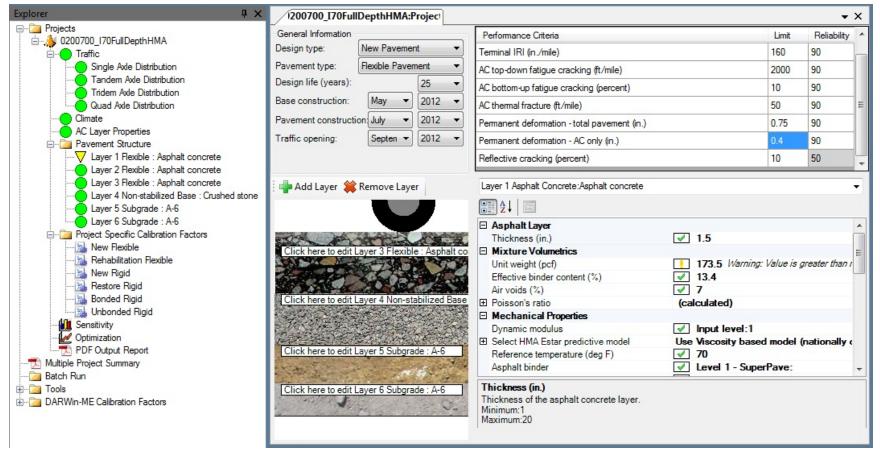
HMA Sensitivity result

AND AND AND
Leyer 3 PCC : JPC
Laver 4 Subgrade
111111
and the second s
and the state of the
Layer 5 Subgrade
1 84 St.

	Layer type	Material Type	Thickness (in.):	Volumetric at Constru	uction:
IPC	Flexible	Asphalt concrete	1.5	Effective binder	11.6
	Flexible	Asphalt concrete	2.5	content (%) Air voids (%)	8.0
de	PCC	JPCP (existing)	8.5		0.0
	Subgrade	A-4	24.0		
	Subgrade	A-4	Semi-infinite		

Traffic						
Age (year)	Heavy Trucks (cumulative)					
2012 (initial)	6,000					
2018 (6 years)	6,461,420					
2024 (12 years)	13,661,300					

Design Outputs


Distress Prediction Summary

Distress Type		Distress @ Specified Reliability		Reliability (%)	
	Target	Predicted	Target	Achieved	Satisfied?
Terminal IRI (in./mile)	172.00	105.11	90.00	100.00	Pass
Permanent deformation - total pavement (in.)	0.75	0.20	90.00	100.00	Pass
Total Cracking (Reflective + Alligator) (percent)	100.00	7.33	-	-	-
AC thermal fracture (ft/mile)	250.00	217.40	90.00	95.93	Pass
JPCP transverse cracking (percent slabs)	15.00	19.72	90.00	74.75	Fail
AC bottom-up fatigue cracking (percent)	25.00	1.45	90.00	100.00	Pass
AC top-down fatigue cracking (ft/mile)	2000.00	257.71	90.00	100.00	Pass
Permanent deformation - AC only (in.)	0.25	0.20	90.00	98.85	Pass

FDR and New HMA design inputs

Decision making process

Treatment Selection

Treatment Selection Factors

- Available Funds
- Staged Construction
- Traffic Control
- Lane Closure
- Minimum Desired Life
- Future Maintenance
- Geometric Issues

Treatment Selection Factors (continued)

- Present and Future Utilities
- Right-of-Way Restrictions
- Regulatory Restrictions
- Available Materials and Equipment
- Contractor Expertise and Manpower
- Agency Policies

Selection Process

- Develop feasible alternatives for evaluation
- Identify key decision factors important to agency (e.g., cost, service life, traffic control, duration of construction, etc.)
- Assign weighting values for each decision factor
- Assign scoring values for each alternative
- Add scores and rank alternatives

Selection Worksheet

	Decision Factor 1	Decision Factor 2	Decision Factor 3	Decision Factor 4	TOTAL
Weight	Weight 1	Weight 2	Weight 3	Weight 4	SCORE
Alt 1					
Alt 2					
Alt 3					
Alt 4					

Questions???

