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Abstract

Irx7, a member in the zebrafish iroquois transcription factor (TF) family, has been shown to control brain patterning. During
retinal development, irx7’s expression was found to appear exclusively in the inner nuclear layer (INL) as soon as the
prospective INL cells withdraw from the cell cycle and during retinal lamination. In Irx7-deficient retinas, the formation of a
proper retinal lamination was disrupted and the differentiation of INL cell types, including amacrine, horizontal, bipolar and
Muller cells, was compromised. Despite irx7’s exclusive expression in the INL, photoreceptors differentiation was also
compromised in Irx7-deficient retinas. Compared with other retinal cell types, ganglion cells differentiated relatively well in
these retinas, except for their dendritic projections into the inner plexiform layer (IPL). In fact, the neuronal projections of
amacrine and bipolar cells into the IPL were also diminished. These indicate that the retinal lamination issue in the Irx7-
deficient retinas is likely caused by the attenuation of the neurite outgrowth. Since the expression of known TFs that can
specify specific retinal cell type was also altered in Irx7-deficient retinas, thus the irx7 gene network is possibly a novel
regulatory circuit for retinal development and lamination.
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Introduction

The vertebrate retina has six types of neuron and one major

type of glial cell. All of which originate from the same progenitors

in a conserved order [1]. In general, ganglion cells (GCs) are born

first, followed by overlapping births of horizontal cells (HCs), cone

photoreceptors (cones), amacrine cells (ACs), bipolar cells (BCs),

rod photoreceptors (rods) and Muller cells (MCs). During their

differentiation, these cell types are organized into three cellular

layers, including ganglion cell layer (GCL) that contains primarily

GCs, INL that contains ACs, BCs, MCs and HCs, and outer

nuclear layer (ONL) that contains rods and cones. The GCL and

INL are separated by a synaptic layer called IPL, while INL and

ONL are separated by outer plexiform layer (OPL).

The molecular control of retinal differentiation and lamination

into three cellular layers [2], is still not clear [3]. Studies in

zebrafish have identified key signaling molecules and processes for

this control. These include Sonic hedgehog a (Shha) [4], cell

adhesion [5], cell polarity regulation [6] and chromatin remod-

eling [7]. A recent microarray study of chromatin remodeling on

zebrafish retinal differentiation have identified 731 genes regulated

by Smarca4, a component of chromatin remodeling complex [8].

In Smarca4-deficient retinas, all retinal cell types can be specified

and many of them are located in the correct location, but they fail

to terminally differentiate [9]; at the same time, retinal lamination

is compromised. Thus, Smarca4-regulated genes may play

important roles in these terminal differentiation, retinal lamination

and patterning processes [8]. For example, several members in the

iroquois (irx) TFs family, including irx1a, 3a, 4a, 4b, 5a and 7, are

transcriptionally activated by Smarca4. These TFs share a similar

structure that consists of a homeodomain and an Iro box [10].

Their genomic arrangement is also highly conserved in metazoans,

suggesting a conserved function in different species [11]. Indeed,

the irx genes in both invertebrate and vertebrate have been shown

to be an important mediator for embryo patterning. For example,

it has been shown that irx7 regulates the compartmentalization of

midbrain and hindbrain [10,12,13].

Several irx genes are expressed in the retina and regulate its

development. These include irx1a, 2a, 3a, 4a, 4b, 5a, 6a and 7 in

zebrafish [8,14,15,16,17] and all six Irx genes in mouse [18]. Most

of these irx genes are expressed in GCs region, except for mice Irx5

[19] that is expressed in GCL and INL, zebrafish irx6a that is

expressed a subset of outer retinal cells in addition to GCs (http://

zfin.org) and zebrafish irx7 that is only expressed in INL [17]. The

regulation of several irx genes by Smarca4 in retina [8] hints at the

possibility that they may regulate retinal differentiation and

lamination. Indeed, the propagation of the Shha neurogenic

waves in zebrafish retina [4,20] is mediated by the expression of
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irx1a and in turn irx2a in GCs [15,16]; and the knockdown of these

two irx genes compromises retinal differentiation and lamination

that resembles the shha mutants.

The exclusive expression of zebrafish irx7 in the INL at 52 hpf

[17] is particularly interesting because retinal lamination is

established at around this stage. Together with the issues in

retinal development in an initial Irx7 knockdown [8], these

observations suggest two non-mutually exclusive possibilities. First,

irx7 is essential for retinal patterning and formation of retinal

lamination. Second, irx7 is responsible for INL cells differentiation,

which in turn regulates the formation of retinal lamination. The

purpose of this study was to define the role of irx7 in retinal

development and lamination. The results indicate that irx7 is

necessary for differentiation of INL and ONL and projection of

neuronal processes into the plexiform layers. Compromising these

processes may in turn disrupt retinal lamination.

Results

Irx7 is specifically expressed in the INL during retinal
development

Irx7’s expression was first detected in a group of prospective INL

cells in the anterior ventral retina at 38 hours post-fertilization

(hpf) (Figure 1A and I, black arrowheads), when cells in the same

region begin to withdraw from cell cycle [21]. Additional irx7

expression was observed in the anterior dorsal retina (Figure 1B,

black arrowhead) by 43 hpf, when most cells in the prospective

INL have withdrawn from the cell cycle. At 46 hpf, irx7 began to

express in the posterior ventral retina (Figure 1C, black

arrowhead). Then, its expression domain in both anterior and

posterior retina gradually expanded to the dorsal side from 46 to

52 hpf (Figure 1C, D, E and J). At these stages, irx7 seemed to be

largely excluded from the basal INL region and was not expressed

homogeneously in the remaining INL cells. When retinal

lamination became apparent at 52 hpf, irx7 appeared in the

posterior dorsal retina, the last region to express irx7 (compare

Figure 1D and E, red arrowheads). By this stage, the initial

expression wave of irx7 in the prospective INL is completed. Since

this wave overlaps with the cell cycle withdrawal and cell

differentiation in INL, it is possible that irx7 regulates these

processes.

Then, irx7 expression was gradually restricted to a small group

of cells in the outer INL at 72 hpf (Figure 1F and K) and was

weakly detected in a few cells at 96 hpf (Figure 1G and L). These

cells were located next to the HCs, which have a distinctive

flattened morphology, and thus they might be a subset of BCs or

MCs. Nonetheless, these irx7+ cells rarely co-localized with ACs,

BCs and HCs labeled by anti-Islet1 (N = 7) (Figure 2A and A9),

and MCs labeled by anti-GS (N = 4) (Figure 2C and C9). There

was also no overlap between the irx7+ and proliferative cells that

were undergoing S-phase from 60 to 72 hpf (N = 6) and 72 to

80 hpf (N = 6) (Figure 2B, B9, D and D9). Thus, after its initial

expression wave at 52 hpf, irx7 is expressed in a small group of the

post-mitotic INL precursors or in a subtype of BCs that are not

labeled by anti-Islet1, but it is not likely to express in MCs.

Specific knockdown of Irx7
To study the roles of irx7 during retinal development, Irx7 in

developing embryos was knocked-down by microinjection of

morpholinos (MOs). One splice-blocking MO (irx7SMO) [13] and

two translation-blocking MOs (irx7MO1 and irx7MO2) [10,12]

were tested. Since the injection of irx7MO1’s mismatch control,

irx7MO1-5bms, always led to severe developmental defects (data

not shown), this set of MOs was not used for further

characterization. For the remaining two MOs, 10 ng of irx7SMO

and 3 ng of irx7MO2 were chosen for further characterization of

the retinal phenotype. The usage of these amounts was supported

by the following three lines of evidence: First, the injection of these

amounts led to an equivalent distribution of the resulting

phenotypic categories in the two groups of MO-injected embryos

(morphants), while controls did not show obvious developmental

defects (Figure 3). Specifically, there were three phenotypic

categories: mild, intermediate and severe (irx7SMO: N = 106,

444 and 86; irx7MO2: N = 38, 211 and 37 respectively) and there

was no difference in their distribution (chi-squared = 1.93, df = 2,

p-value = 0.38). Besides, the intermediate category was also the

most frequent in both types of morphants (irx7SMO: 69.8% (444/

636); irx7MO2: 73.8% (211/286)), and was further analyzed in the

following experiments except for in situ hybridization (see below).

Second, Irx7 protein from microdissected heads of irx7SMO

(N = 35) and irx7MO2 (N = 30) morphants was reduced by

69.01% and 87.58% respectively compared with controls at 3

days post-fertilization (dpf) (Figure 4). Together with the specific

effect on eye size and development that will be discussed below,

these results strongly indicate that the microinjection of the

optimized amount of MOs can specifically knock down Irx7 in

developing zebrafish retinas. The immunostaining results of the

knockdowns obtained from both MOs were very consistent and

those obtained from irx7SMO morphants are discussed below.

Irx7 knockdown reduces eye size and compromises
retinal lamination

The eye size of irx7SMO and irx7MO2 morphants was reduced,

as shown by cryosectioning at 72 hpf (Figure 5A–D, also see

Figure 3). The retinal area was measured from sections obtained

from ten independent experiments. For each section, attempts

were made to cut through the optic nerves in both eyes to

maximize comparability across sections. There were five condi-

tions in these experiments: irx7SMO (N = 70), control MO

(N = 69), irx7MO2 (N = 59) and irx7MO2-6 bms (N = 63) mor-

phants, and uninjected embryos (N = 49). Out of 310 sections

analyzed, 195 contained optic nerves in both eyes and the

remaining 115 contained a complete optic nerve in one eye. To

delineate the specific effect on retinal area by Irx7 knockdown and

to differentiate that from potential confounding effects caused by a

difference in sectioning plane (i.e. with optic nerve in one vs. both

eyes), and intrinsic variation of embryo size collected from

different experiments, a linear mixed-effects model was fit (File

S1). The results indicate that there was a specific and consistent

decrease in retinal area in the morphants compared with controls

(irx7SMO vs. control MO (ratio of area from the fitted model 6

standard error): 72.9265.81%; irx7MO2 vs. irx7MO2-6 bms:

71.5466.37%). This further supports that the optimized MO

injection amounts would reveal specific knockdown effect on

retinal development.

The retinal cells in the morphants appeared abnormal

compared with the controls (Figure 5A and B). For example, the

INL was not stained as an intense apical sub-layer and a less

intense basal sub-layer. Some INL cells appeared to be elongated

along the radial axis, while photoreceptors appeared less elongated

(Figure 5A and B, insets). Moreover, both IPL and OPL were

compromised and appeared thinner (Figure 5A–D, red arrows).

To determine the extent of the thinning of the INL, its thickness

was measured from sections collected from three independent

experiments (total N = 136 for each of the morphant and control

group). To facilitate comparison between sections and experimen-

tal conditions, the thicknesses of INL immediately dorsal and

ventral to the optic nerve was measured. A linear-mixed effect

Irx7’s Role in Retinal Development
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Figure 1. Irx7 is specifically expressed in the prospective INL during zebrafish retinal development. Whole-mount in situ hybridization
was conducted to elucidate the expression dynamics of irx7 in embryonic retinas. (A–G) Dissected eyes obtained from embryos between 38 to 96 hpf.
Anterior is to the left and dorsal is up. The black arrowheads indicate the irx7+ cells (blue colour) in the retina, the dashed lines indicate the choroid
fissure, while the red arrowheads in (D and E) indicate the posterior dorsal region of the retina, the last region to express irx7. (H) A schematic diagram
of irx7 expression dynamics in the retina from 38 to 52 hpf. The Roman numerals indicate the order of five retinal regions in which irx7 appears
sequentially. (I–L) Transverse retinal section of the corresponding whole-mount embryo at 38, 50, 72 and 96 hpf. Lateral is to the left and dorsal is up.
The black arrowheads indicate the irx7+ cells in the retina. Scale bars = 50 mm.
doi:10.1371/journal.pone.0036145.g001

Figure 2. Irx7 expresses in non-proliferative cells that are likely to be undifferentiated precursors in mature retina. To detect for the
co-localization of irx7 and ACs, BCs, HCs, MCs and proliferative cells in the more differentiated part of the WT retina, in situ hybridization of irx7 was
conducted in conjunction with immunostaining of anti-Islet1 for ACs, BCs and HCs, anti-GS for MCs and anti-BrdU for proliferative cells. (A) irx7 in situ
hybridization with anti-Islet1 immunostaining at 72 hpf. The blue arrowheads indicate the irx7+ cells (red colour) in the retina, while the red, cyan and
white arrowheads indicate ACs, BCs and HCs respectively (all in green colour). (A9) The magnified view of the white box in (A). (B and D) The retina of
embryos treated with BrdU from 60 to 72 hpf and 72 to 80 hpf respectively. The blue arrowheads indicate irx7+ cells (red colour), while the pink
arrowheads indicate BrdU+ cells (green colour). (B9 and D9) The magnified view of the white box in (B and D) respectively. (C) irx7 in situ hybridization
with anti-GS immunostaining at 80 hpf. The blue arrowheads indicate the irx7+ cells (red colour), while the yellow arrowheads indicate MCs (green
colour). (C9) The magnified view of the white box in (C). Lateral is to the left and dorsal is up for all sections. Note that the RPE layer also showed red
fluorescence but that was not a real signal. It was an artifact of the pigmentation in RPE. Since the images of the in situ hybridization were inverted
before combining with the fluorescent images obtained from the immunostaining, the darker pigment in RPE, as well as the intense in situ colour,
would appear as signal in this transformation. Scale bars = 20 mm.
doi:10.1371/journal.pone.0036145.g002

Irx7’s Role in Retinal Development
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model was fit for each thickness measurement. The results indicate

that the INL thickness was reduced in irx7SMO morphant (p-

values,0.0001 for both dorsal and ventral INL thickness). These

results suggest that Irx7 knockdown might affect retinal differen-

tiation and/or neurite outgrowth into the plexiform layers.

Irx7’s function is essential for INL cells differentiation
To investigate the effect of Irx7 knockdown on INL cells

differentiation, immunostaining was conducted with cell-type

specific markers for MCs, ACs, BCs and HCs at 72 hpf. Zebrafish

shows the first visual response at this stage [22], hence all INL cell

types should be present. First, MCs was absent in the morphants,

as indicated by a lack of anti-GS staining (Figure 5E and F, green

arrowheads) (File S1; multiple comparison test after Kruskal-

Wallis, adjusted p-value,0.05). Also, Irx7 knockdown eliminated

the GFP signal in the INL of Tg(gfap:GFP)mi2001 [23], a line that

labels MCs, compared with the controls at 59 hpf (Figure S1A and

B). At 72 hpf, the number of GFP+ MCs per retinal area was still

lower in the morphants compared with the controls (File S1;

multiple comparison test after Kruskal-Wallis, adjusted p-val-

ue,0.05). Further, some GFP+ MCs in the morphants were mis-

located to the apical INL and their radial processes were mostly

absent (Figure S1C and D). These analyses indicate that MCs

differentiation was compromised by Irx7 knockdown.

Second, BCs differentiation was investigated by anti-PKC and

anti-Islet1 stainings. At 72 hpf, much of the PKC+ signal was seen

in the IPL in the controls. This is presumably originated from the

BCs projections (Figure 5G, white arrowheads). Also, some BCs

were detected on the ventral side of the retina and in the middle

INL. These stainings were largely absent in the morphants

(Figure 5H) and the count distribution of PKC+ staining patterns

between the morphants and controls was different (File S1;

multiple comparison test after Kruskal-Wallis, adjusted p-val-

ue,0.05). In addition, Islet1+ signal was detected around the BCs

region in both morphants and controls, but the staining was less

intense and the BCs was slightly more elongated in the morphants

compared with the controls (Figure 5I–L, white arrowheads).

Together, these data suggest that at least a subset of BCs in the

morphants were not fully differentiated.

The anti-Islet1 staining also revealed issues with ACs and HCs

differentiation (Figure 5I–L, yellow and cyan arrowheads respec-

tively). First, the number of ACs per retinal area in the morphants

was reduced compared with the controls (File S1; two-tailed

Student’s t-test, p-value = 0.021). In addition, many of these Islet1+
ACs in the controls could extend neuronal projections into a single

IPL lamina (Figure 5K, yellow arrowheads), while this was rarely

observed in the morphants (Figure 5L, yellow arrowheads).

Indeed, only two out of 16 ACs in one morphant showed signs

of neuronal projections. As a result, there were more ACs with IPL

projections in control retinas (median (M) = 43.1%, median

absolute deviation (MAD) = 7.4%, N = 6) than that in the

morphants (M = 0%, MAD = 0%, N = 7) (File S1; logistic regres-

Figure 3. The phenotypes of irx7SMO and irx7MO2 morphants at 72 hpf. Phenotypic analysis of the optimized irx7SMO (A–E) and irx7MO2
(F–J) injection experiments. (A) The lateral view of an uninjected control embryo for irx7SMO injection experiments. (B) An embryo injected with
10 ng of Control MO. (C–E) Three phenotypic categories of the morphants after injected with 10 ng of irx7SMO. The percentage of embryos that had
mild (C), intermediate (D) and severe (E) phenotypes was 13.52% (N = 106), 69.81% (N = 444) and 16.67% (N = 86) respectively. (F) The lateral view of
an uninjected control embryo for irx7MO2 injection experiments. (G) An embryo injected with 3 ng of irx7MO2-6 bms. (H–J) Three phenotypic
categories of morphants after injected with 3 ng of irx7MO2. The percentage of embryos that had mild (H), intermediate (I), and severe (J)
phenotypes were 13.28% (N = 38), 73.78% (N = 211) and 12.94% (N = 37) respectively. Scale bar = 200 mm.
doi:10.1371/journal.pone.0036145.g003
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sion; p-value = 1.33e-05). For HCs, there were fewer Islet1+ HCs

per retinal area in the morphants compared with the controls (File

S1; two-tailed Welch two sample t-test, p-value = 0.00056).

Together, these results indicate that the differentiation of all four

INL cell types is compromised in the Irx7-deficient retinas.

Irx7’s function is essential for photoreceptor
differentiation and the dendritic outgrowth of GCs into
the IPL

GCs in the morphants developed relatively well compared with

other cell types, as indicated by anti-zn8 (Figure 5M–T) and anti-

Islet1 (Figure 5I and J) stainings. For example, there was no

difference in the number of zn8+ GCs per retinal area in the

irx7SMO morphants (mean (x) = 0.0071 mm22, standard deviation

(s) = 0.0012 mm22, N = 9) compared with the controls

(x = 0.0068 mm22, s = 0.00067 mm22, N = 7) (File S1; two-tailed

Welch two sample t-test, t = 20.6317, df = 13.06, p-value = 0.54).

An optic nerve, which is composed of the GCs’ axons, was formed

in both conditions (Figure 5M and N). Nonetheless, the dendritic

outgrowth of zn8+ GCs into the IPL was absent in the morphants

(Figure 5R and T, yellow arrowheads; compared to the normal

projections in controls in Figure 5Q and S). This outgrowth issue

was also observed in Islet1+ GCs (Figure 5K and L, red

arrowheads), in which the projection into a single lamina was

entirely absent in the morphants.

Despite irx7 is only expressed in the INL, its knockdown also

affected the ONL (Figure 5A and B, insets). This was further

investigated by immunostaining with anti-zpr1 and anti-zpr3 for

red-green double cones and rods respectively at 72 hpf (Figure 6).

In controls, zpr1+ cells were detected in the whole ONL

(Figure 6A), while most morphants had a few zpr1+ cells in the

ventral ONL (Figure 6B) or there was no positive signal at all. (File

S1; two-tailed Wilcoxon rank sum test, p-value = 0.0034). In

addition, the staining was intense on both the apical and basal

sides of the zpr1+ cells in the controls (Figure 6A9, blue

arrowheads), but this was not apparent in the morphants

(Figure 6B9, blue arrowheads). A similar pattern was observed

for anti-zpr3, in which zpr3+ cells were detected in the entire ONL

in the controls (Figure 6C), while it was only detected in a small

group of cells in the ventral ONL in most morphants (Figure 6D)

(File S1; two-tailed Wilcoxon rank sum test, p-value = 0.00058).

Also, the intense zpr3 staining in the outer segments of rods in the

controls (Figure 6C9, cyan arrowheads) was not observed in the

morphants (Figure 6D9, cyan arrowheads).

To further characterize the effect of Irx7 knockdown on

photoreceptors, in situ hybridization of three opsins (opn1sw1: UV,

opn1sw2: blue and opn1lw1: red) for three cone types and rho for rods

was performed at 72 hpf. Since it was more difficult to differentiate

the phenotypic categories after treating the morphants with PTU

(phenylthiourea), all embryos were used in this type of in situ

hybridization analysis (File S1). First, all opsins were generally

widely expressed in the controls (Figure 6E, G, I and K; an

embryo from the most common category is shown). In particular,

they were all expressed in the ventral patch and extensively in the

ONL; while in the morphants, all opsins were expressed at a weaker

level in the ventral patch, especially for opn1lw1 (Figure 6F, H, J

and L). Also, these opsins were almost not expressed in the ONL

except for opn1sw2, which was weakly expressed in the ONL. The

in situ hybridization pattern of each gene was artificially classified

into different categories and the number of embryos in different

categories counted by the experimenter and a blind observer (File

S1 and Table S2). A similar approach has been previously used to

analyze photoreceptor differentiation defects in zebrafish devel-

opment [24]. The results between the two observers were highly

concordant and the data from the experimenter are presented.

The count distribution of the staining patterns in morphants and

Figure 4. Microinjection of irx7SMO (10 ng) and irx7MO2 (3 ng) drastically reduces Irx7 protein level. The heads of 35 embryos injected
with control MO and irx7SMO, and 30 embryos injected with irx7MO2-6 bms and irx7MO2 were dissected at 72 hpf. Proteins were then extracted
from these samples and Irx7 expression detected by Western blot using anti-Irx7-234 (A). C-tubulin was used as a loading control. The specificity of
the Irx7 antibodies was first confirmed by Western blot using various recombinant Irx7 proteins of different lengths (Table S1 and File S3) expressed
from bacterial culture (data not shown). Using the information extracted from the Western blot, the protein level of Irx7 was found to be reduced by
69.01% and 87.58% respectively in the dissected heads of irx7SMO and irx7MO2 morphants when compared to the corresponding controls (B).
doi:10.1371/journal.pone.0036145.g004

Irx7’s Role in Retinal Development
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controls was different for all opsins analyzed (File S1; Bonferroni-

adjusted p-value = 6.48e-05, 0.013, 6.04e-6 and 0.021 for opn1sw1,

opn1sw2, opn1lw1 and rho respectively). Thus, despite opsins

expression is somewhat affected in the controls compared with

the uninjected embryos (Bonferroni-adjusted p-value,0.05 in all

cases), Irx7 knockdown has specifically decreased opsins expression

even further. Taken together, these results suggest that despite irx7

only expresses in the INL, its function is essential for photoreceptor

differentiation and the dendritic outgrowth of GCs into the IPL.

A delay in cell cycle withdrawal and compromise of plexiform

layers, but not apoptosis, may contribute to the eye size reduction

in the Irx7 morphants.

To address the cause of the eye size reduction in the morphants,

cell cycle and apoptotic statuses were assessed. To detect apoptotic

cells, immunostaining of anti-active caspase3 was conducted at 28,

Figure 5. Irx7 knockdown reduces eye size and compromises retinal lamination, INL cells differentiation and dendritic projection of
GCs into the INL. Irx7 knockdown reduced eye size and compromised retinal lamination at 72 hpf, as indicated by the DAPI (A and B) and phalloidin
(C and D) stains that highlight nuclei and plexiform layers respectively. The red arrows indicate the IPL and OPL. The insets of (A) and (B) also show
that the normal elongated morphology of the photoreceptors in control was compromised in the Irx7 morphant. The INL cells differentiation was
analyzed by anti-GS for MCs (E and F), anti-PKC for BCs (G and H) and anti-Islet1 for ACs, BCs and HCs (I–L) at the same stage. Irx7 knockdown did not
decrease the zn8+ GCs (N) compared with the controls (M), except for the elimination of a fuzzy domain on the apical side of the GCL (compare Q and
R). This domain likely represents the dendritic projections of the GCs into the IPL, as it overlapped with the phalloidin staining of the IPL substantially
(O and S). This overlap was completely absent in the morphants (P and T). Lateral is to the left and dorsal is up for all sections, except for (K and L), in
which the apical side of retina is up. In addition, the retinal region in the samples with weak signal is highlighted by a dotted yellow line. The features
indicated by the arrowheads are further discussed in the text. Scale bars = 20 mm.
doi:10.1371/journal.pone.0036145.g005
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36, 52 and 72 hpf (Figure 7). All retinas at 28, 36 and 52 hpf had

fewer than five active-capsase3+ cells per retina, and there was no

difference in these numbers between all conditions at these stages

(data not shown). At 72 hpf, there was an increase in the number

of active-caspase3+ cells in the controls compared with morphants

(Figure 7D and H; File S1; multiple comparison test after Kruskal-

Wallis, adjusted p-value,0.05), but there was no difference

between the uninjected embryos and controls or morphants

(adjusted p-value.0.05 in both cases). While the results show that

control MO injection slightly induced apoptosis at 72 hpf, they

argue against the role of apoptosis in eye size reduction of

morphants.

To investigate the potential change in the cell cycle status,

immunostaining was conducted on cryosections using an M-

phase (anti-PH3) and an S-phase marker (anti-BrdU). The

former analysis was conducted on samples collected at 28, 36, 52

and 72 hpf. There was no difference in the number of PH3+
cells per retinal area as well as the distribution of the staining

pattern counts between morphants and controls at 28, 36 and

52 hpf (data not shown). At 72 hpf, PH3+ cells were only

detected in the proliferative marginal zone (MZ) in control

retinas (Figure 7I, green arrowhead). While in irx7SMO

morphants, PH3+ cells were detected in both MZ (Figure 7J,

green arrowhead) and on the apical side of retina (Figure 7J,

yellow arrowheads), an ectopic location for these cells at this

stage. There was an increase in the number of PH3+ cells per

retinal area in the morphants compared with controls and

uninjected embryos (Figure 7K and File S1; multiple comparison

test after Kruskal-Wallis, adjusted p-value,0.05 in both

comparisons), but not among the latter two groups (adjusted p-

value.0.05). To detect cells that had gone through the S-phase

of the cell cycle from 36 to 52 hpf and from 52 to 72 hpf,

embryos were treated with 10 mM BrdU during these periods

and the labeled cells detected by anti-BrdU immunostaining.

These two periods cover the approximate stage when the

progenitors in the prospective INL and ONL withdraw from

the cell cycle [21], and the initial wave of irx7 expression in the

retina (Figure 1). In the morphants, most progenitors in the

prospective GCL and INL in the 36–52 hpf group (Figure 7M,

yellow arrowheads), and many of them in the INL and ONL in

the 52–72 hpf group (Figure 7P, yellow arrowheads) were

BrdU+. While in the corresponding controls, cells in these areas

were primarily BrdU- (Figure 7L and O, yellow arrowheads). As

a result, the BrdU+ area per total retinal area, as traced in the

cryosections, was evidently higher in the irx7SMO morphants

(Figure 7N and Q). Since many cells in the GCL and INL in the

morphants became BrdU- in the 52 to 72 hpf group ultimately

(Figure 7P), together with the over-abundance of PH3+ cells in

the morphant retinas at 72 hpf (Figure 7J), these results suggest

that the lack of a functional Irx7 in developing retinas delays but

not completely blocks cell cycle withdrawal.

Figure 6. Irx7 knockdown compromises photoreceptor differentiation at 72 hpf. Irx7 knockdown compromised the staining of anti-zpr1
for red-green double cones and anti-zpr3 for rods in the morphants (B and D) compared with the controls at 72 hpf (A and C). (A9, B9, C9 and D9) The
corresponding magnified view of the positive signal area in the white box in A, B, C and D. The features indicated by the arrowheads are further
discussed in the text. Lateral is to the left and dorsal is up for all sections. In addition, the retinal region in the samples with weak fluorescent signal is
highlighted by a dotted yellow line. (E–L) Whole-mount in situ hybridization of three cone opsins (uv, blue and red) and one rod opsin (rho) also
indicate the differentiation of these photoreceptors was compromised. The most common staining pattern is shown. The black arrowheads indicate
the specific staining (blue colour) of the ventral patch, while the red arrowheads indicate the staining in the ONL. Embryos were imaged from the
ventral side and anterior is up. Scale bars = 20 mm for (A)–(D) and 50 mm for (E)–(L).
doi:10.1371/journal.pone.0036145.g006
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Figure 7. Irx7 knockdown does not induce apoptosis but can delay cell cycle withdrawal. Immunostaining of embryos injected with
10 ng of control MO or irx7SMO were conducted with anti-active caspase3 antibody (green colour) at 28, 36, 52 and 72 hpf. The nuclei were
counterstained with DAPI (blue colour). In both controls (A–D) and irx7SMO morphants (E–H), only a few active caspase3+ cells (white arrowheads)
were detected in some retinas at all stages. All cells that showed a positive anti-active caspase3 signal had the characteristic cell shrinkage and
rounded morphology, as shown by the DAPI staining. While all active caspase3- cells looked healthy. Mitotic cells were detected by anti-PH3 in the
retinas of controls (I) and morphants (J) at 72 hpf. PH3+ cells in the MZ and in the ectopic apical retina are indicated by green and yellow arrowheads
respectively. (K) A stripchart of the number of PH3+ cell per retinal area in uninjected embryos, controls and morphants. Retinal cells that had gone
through S-phase in controls and morphants were also detected by BrdU incorporation from 36 to 52 hpf (L and M) and from 52 to 72 hpf (O and P).
(N and Q) The corresponding stripcharts of BrdU+ area per retinal area in the uninjected embryos, controls and morphants. The asterisks in all
stripcharts represent the median of each group. Lateral is to the left and dorsal is up for all sections. The retinal region in these samples is highlighted
by a dotted yellow line. Scale bar = 20 mm.
doi:10.1371/journal.pone.0036145.g007
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Irx7 regulates the expression of TFs that specify INL cells
Irx7’s effects on retinal differentiation and lamination could be

mediated through downstream TFs that specify different retinal

cell types. To determine these downstream targets in the INL, in

situ hybridization was performed at 52 and 72 hpf, using probes

for genes that can specify different retinal cell types (Figure 8 and

Figure 9; see File S3 for literature references for these probes).

These include vsx1 and vsx2 for two distinct sub-populations of

BCs, ptf1a for ACs and HCs, neurod and vsx1 for ACs and vsx2 for

MCs. All phenotypic categories of the knockdown embryos were

used in the analysis. For each gene, there would be a unique range

of staining patterns (Table S2), which were counted and analyzed

as in the case of opsins (File S1). All comparisons for the count

distribution of staining patterns of morphants and controls

discussed below were significant (Bonferroni-adjusted p-val-

ue,0.05). The most representative pattern is shown in the figures.

In addition, the regulations of Irx7 on these genes are summarized

in Table 1 and discussed below.

Vsx1 was widely expressed in the INL in the controls at both 52

(Figure 8A) and 72 hpf (Figure 8C), its expression at 72 hpf was

also slightly more intense than the uninjected embryos (data not

shown). While its expression was down-regulated in the morphants

at 52 hpf (Figure 8B), it was slightly up-regulated by 72 hpf

(Figure 8D). Vsx2 was expressed in the MZ at 52 (Figure 8E) and

72 hpf (Figure 8G) in the controls, while it was also expressed at a

weaker level in the INL at 72 hpf (Figure 8G). In the morphants,

vsx2 showed a slightly stronger expression in the MZ and the

ventral temporal retina compared with the controls at 52 hpf

(Figure 8F). By 72 hpf, its expression pattern was similar to that in

the controls, except it was still more intense in the INL and MZ

(Figure 8H). Ptf1a was expressed in the prospective ACs and HCs

in the INL of the controls at 52 hpf (Figure 8I), while its expression

was restricted to the MZ by 72 hpf (Figure 8K). Its expression at

52 hpf was also slightly stronger than the uninjected embryos (data

not shown). In the morphants, ptf1a’s expression was consistently

up-regulated at both 52 (Figure 8J) and 72 hpf (Figure 8L); and its

up-regulation at 72 hpf originated from an ectopic expression in

the INL. Neurod was primarily expressed in the prospective AC

region in the INL at both 52 (Figure 9A and data not shown) and

72 hpf (Figure 9C and data not shown) in the controls. In the

morphants, neurod expression in the INL was more intense and

widespread at 52 hpf (Figure 9B and data not shown); while its

expression became more restricted to the AC region at 72 hpf but

was still relatively widespread compared with the controls

(Figure 9D and data not shown). Taken together, these results

indicate that in the INL, irx7 is essential for the transcriptional

activation of vsx1 at 52 hpf, and the transcriptional repression of

vsx1 and vsx2 at 72 hpf, and neurod and ptf1a at both 52 and 72 hpf.

Irx7 regulates the expression of TFs that specify
photoreceptors and GCs

To identify the downstream TF targets of irx7 that specify

photoreceptors and GCs, a similar in situ hybridization analysis

was conducted as in the case of INL. The specific gene probes used

in this investigation include neurod and crx for rods and cones, nr2e3

and nrl for rods, and atoh7 for GCs. The regulations of Irx7 on

these genes are summarized in Table 1 and are discussed below.

Figure 8. Irx7 regulates the expression of TFs that specify retinal cell types in INL at 52 and 72 hpf. Whole-mount in situ hybridization of
vsx1 (A–D), vsx2 (E–H), ptf1a (I–L) was conducted. The most common staining pattern is shown. Embryos were imaged from the ventral side and
anterior is up. See text for further discussions. The results for neurod, a TF that specifies cells in both INL and ONL, will be presented in Figure 9. Scale
bar = 50 mm.
doi:10.1371/journal.pone.0036145.g008
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Neurod was intensely expressed in the ONL of controls at both 52

(Figure 9A and data not shown) and 72 hpf (Figure 9C and data

not shown); while its expression was first suppressed in the ONL at

52 hpf (Figure 9B and data not shown) and became more

widespread but not uniformly expressed at 72 hpf in the

morphants (Figure 9D and data not shown). Crx was strongly

expressed in the ONL and the outer INL in controls at 52

(Figure 9E and data not shown) and 72 hpf (Figure 9G and data

not shown). Its expression in the morphants was strong in the inner

INL and weak in the ONL except for the ventral patch at 52 hpf

(Figure 9F and data not shown). By 72 hpf, the expression pattern

of crx in these embryos became similar to that in the controls, but

its expression level in the INL and ONL was slightly higher and

lower comparatively (Figure 9H and data not shown). The

expression of nr2e3 was mainly restricted to ONL at 52 (Figure 9I

and data not shown) and 72 hpf (Figure 9K and data not shown)

in the controls, with an obvious decrease in the expression level

and a restriction to the ONL in the ventral temporal retina at the

latter stage (Figure 9K and data not shown). In the morphants,

nr2e3 expression was intense and more widespread in the INL, and

was weaker in the ONL compared with the controls at 52 hpf

(Figure 9J and data not shown). By 72 hpf, nr2e3 expression

became more restricted to the ONL with an obvious ventral patch

expression, and its expression level was substantially higher than

the controls (Figure 9L and data not shown). There was still

ectopic nr2e3 expression in the INL of the morphants at this stage

(data not shown). For nrl, it was intensely expressed in the controls’

ONL, particularly in the posterior-ventral region at 52 hpf

Figure 9. Irx7 regulates the expression of TFs that specify retinal cell types in ONL and GCL at 52 and 72 hpf. Whole-mount in situ
hybridization of neurod (A–D), crx (E–H), nr2e3 (I–L), nrl (M–P) and atoh7 (Q–T) was conducted. The most common staining pattern is shown. Embryos
were imaged from the ventral side and anterior is up. See text for further discussions. Scale bar = 50 mm.
doi:10.1371/journal.pone.0036145.g009
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(Figure 9M), while it was also expressed in the dorsal ONL in the

uninjected embryos (data not shown). In the morphants, the

expression of nrl was suppressed except for a small ventral patch in

the ONL at 52 hpf (Figure 9N). The expression pattern between

the morphants and controls became more similar at 72 hpf

(Figure 9O and P). In particular, it was expressed in a very

restricted area on the posterior-ventral ONL. Nonetheless, nrl

expression in the morphants was slightly higher at this stage.

Finally, the expression pattern of atoh7 was different between the

morphants and controls at 52 hpf (Figure 9Q and R). In controls,

atoh7 expression was primarily restricted in the MZ, while it had a

wider expression pattern in the retinas of many morphants in

addition to the MZ. Also, the expression level of atoh7 in the MZ of

the morphants seemed to be higher than the controls. At 72 hpf,

the expression of atoh7 was similar between the morphants and

controls (Figure 9S and T). While it was restricted to the MZ, the

expression level remained slightly higher in many morphants. In

short, irx7’s expression in the INL can ultimately activate the

transcription of neurod and crx at both 52 and 72 hpf in the ONL,

while it can activate nr2e3 and nrl at 52 hpf but suppress them

at 72 hpf. Further, irx7’s activity seems to be necessary for

suppressing atoh7 in the central retina at 52 hpf, and in the MZ at

both 52 and 72 hpf.

Irx7 is necessary but likely not sufficient for the
development of INL and ONL

To rescue the phenotypes of irx7SMO and irx7MO2 mor-

phants, five pgs of full-length irx7 mRNA was co-injected with

irx7SMO and irx7MO2 (See File S3 for optimization). First, there

was a partial expansion in the staining domain of anti-zpr1 but not

anti-zpr3 in rescued irx7SMO morphants. Specifically, in most

irx7SMO morphants, zpr1+ signal was only detected in the ventral

retina (Figure 10A); while in most of the corresponding rescued

embryos such signal was detected not only in the ventral retina,

but also in the central retina (Figure 10B). Despite the change in

the pattern and seemingly large increase in the median of zpr1+
cells per retinal area in the rescued irx7SMO morphants

(M = 0.0013 mm22, MAD = 0.0012 mm22, N = 10) compared

with the irx7SMO morphants (M = 0.00021 mm22, MAD =

0.00031 mm22, N = 9), the increase in the zpr1+ cells was not

different between the two groups (File S1; two-tailed Wilcoxon

rank sum test, W = 25, p-value = 0.12). The main reason is that the

phenotypic variation in the rescued embryos was large. Even

Table 1. The change in the expression level and/or pattern of target genes in Irx7 knockdown experiments.

Gene Name Stage
Expression pattern
in control MO morphants

Chang in expression level and/or pattern
in representative irx7SMO morphants

Inferred regulation by
irx7 in WT embryos

atoh7 52 hpf MZ Higher & wider in neural retina Negative

atoh7 72 hpf MZ Higher Negative

crx 52 hpf ONL Lower Positive

INL Higher Negative

crx 72 hpf ONL Lower Positive

INL Higher Negative

neurod 52 hpf ONL Lower Positive

INL Higher Negative

neurod 72 hpf ONL Lower Positive

INL Higher Negative

nr2e3 52 hpf ONL Lower Positive

INL Higher Negative

nr2e3 72 hpf ONL Higher Negative

nrl 52 hpf ONL Lower Positive

nrl 72 hpf ONL Higher Negative

opn1sw1 (uv) 72 hpf Ventral patch & ONL Lower Positive

opn1sw2 (blue) 72 hpf Ventral patch & ONL Lower Positive

opn1lw1 (red) 72 hpf Ventral patch & ONL Lower Positive

ptf1a 52 hpf INL Higher Negative

ptf1a 72 hpf MZ Higher in INL Negative

rho 72 hpf Ventral patch & ONL Lower Positive

vsx1 52 hpf INL Lower Positive

vsx1 72 hpf INL Higher Negative

vsx2 52 hpf MZ Higher Negative

vsx2 72 hpf MZ Higher Negative

INL Higher Negative

The expression level and/or pattern of the candidate target genes were determined from representative irx7SMO morphants and controls. The resulting regulatory
relationship between Irx7 and these candidate genes was also inferred by comparing these two sample groups. See Figure 11 for the resulting network, Figure S2 for
the comprehensive network that also includes additional connections of the candidate genes as extracted from literature references (File S2).
doi:10.1371/journal.pone.0036145.t001
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though quite a few embryos had more zpr1+ cells in the central

retina of the rescued group that was not observed in the morphant

group, there were also a few embryos in the rescued group that

number of zpr1+ cells was comparable to the morphant group;

hence a lack of significance in this statistical test. Second, there was

also an expansion in the staining domain of anti-zpr3 in the

rescued irx7MO2 embryos (Figure 10D). In particular, additional

staining was observed in the central retina compared to the

corresponding irx7MO2 morphants (Figure 10C). The number of

zpr3+ cells per retinal area in the rescued irx7MO2 morphants

(M = 0.00083 mm22, MAD = 0.00025 mm22, N = 9) was higher

compared with the irx7MO2 morphants (M = 0.00044 mm22,

MAD = 0.00015 mm22, N = 9) (File S1; two-tailed Wilcoxon rank

sum test, W = 16, p-value = 0.031). Also, there was no noticeable

change of the immunostaining pattern for the markers that can

recognize different cell types in the INL (data not shown). These

data indicate that microinjecting 5pgs of irx7 mRNA at one-cell

stage can only partially rescue the effects caused by Irx7

knockdown at 72 hpf.

To determine if Irx7’s activity is sufficient for driving the TFs

that specify different cell types precociously, a slightly lower

amount of irx7 mRNA (3 or 4 pgs) that is not toxic to embryonic

development or equal amount of eGFP were injected into

wild-type (WT) embryos at one-cell stage. The expression of atoh7,

neurod, nr2e3, ptf1a and vsx1 was investigated by in situ hybridization

at 52 hpf. There was no noticeable difference in the expression

pattern and level of these TFs between the irx7 mRNA and eGFP

injected embryos (data not shown). Thus, the results indicate that

over-expression of up to 4 pgs of irx7 is likely not sufficient for

driving the expression of these TFs precociously.

Shha does not activate irx7 in the INL
During zebrafish eye development, the expression of shha in

GCs starting at 28 hpf is responsible for the propagation of

neurogenic wave in the GCL [4]. A second, independent wave of

shha expresses in the ACs starting at about 32 hpf [20] is essential

for INL cells differentiation and retinal lamination. Since irx7

starts to express in the INL at 38 hpf (Figure 1A) and Irx7-

deficient retinas have defects in differentiation and lamination, it

was hypothesized that Shha regulates these processes through

activating irx7 in the INL. To test this hypothesis, the Shha signal

transduction was inhibited by treating the embryos with

cyclopamine, a Shh inhibitor, starting at 24, 26, 30 and 36 hpf.

The embryos were collected at 52 hpf and the irx7 expression

pattern in the retinas (regions I–V; as defined in Figure 1H)

detected by in situ hybridization. The efficiency of the cyclopamine

treatment on inhibiting Shha signaling pathway was confirmed by

the suppression of ptc1, the receptor of Shh, with in situ

hybridization [25]. The number of embryos with irx7 expression

up to a particular region in the cyclopamine-treated, ethanol

(carrier)-treated and untreated embryos was counted. All treat-

ment lengths yielded similar results in different trials, and the

longest one, the 24–52 hpf group, is discussed here. In theory, this

longest treatment would give the most drastic results because all

known neurogenic waves mediated by Shha in the retina would

have been sufficiently inhibited. The results showed that the count

distribution of irx7 expression patterns in these experimental

groups was not different (File S1; two-tailed Fisher exact test,

Bonferroni-adjusted p-value.0.5). Thus, the data do not support

the hypothesis that Shha mediates its effects on retinal develop-

ment through activating irx7 in INL.

Discussion

The expression of Irx7 in the prospective INL is essential
for INL cells differentiation and retinal lamination

This study has revealed several key roles of Irx7 in the INL

development. First, the commencement of irx7 expression in the

prospective INL cells coincides with their cell cycle withdrawal

[21]. Together with irx7’s extensive expression in the INL

(Figure 1), they suggest that Irx7 is potentially involved in INL

cells differentiation and retinal lamination. Indeed, Irx7 knock-

down has compromised both processes (Figure 5). Irx7 likely

controls retinal differentiation by transcriptionally regulating

known TFs that specify various retinal cell types (Figure 8 and

Figure 9). This specification circuit (Figure 11, also see a

comprehensive circuit with additional connections from literature

in Figure S2) will in turn regulate specific genes in the

differentiation circuit that mediate essential functions in the

corresponding differentiated cells, including the neuronal projec-

tions into the plexiform layers (Figure 5A–D, K and L).

Alternatively, Irx7 may drive the genes in this differentiation

circuit directly, but this is not determined by the current

experimental design. Thus, the results from this study are more

consistent with the hypothesis that Irx7 controls retinal lamination

through regulating INL cells differentiation.

Figure 10. Irx7 mRNA can partially rescue the effects caused by
Irx7 knockdown. (A and B) Immunostaining of anti-zpr1 for cones on
the retinal section of an morphant and a rescued embryo at 72 hpf
respectively. (C and D) Immunostaining of anti-zpr3 for rods on the
retinal section of an irx7MO2 morphant and a rescued embryo at 72 hpf
respectively. Lateral is to the left and dorsal is up for all sections. The
retinal region in the samples is highlighted by a dotted yellow line. The
comparable regions in the retinas are highlighted by white arrowheads.
Scale bar = 20 mm.
doi:10.1371/journal.pone.0036145.g010
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How does the exclusive expression of irx7 in the INL mediate

retinal lamination? The results from this study suggest a possibility

that this is through the regulation of the differentiation of INL

cells. In Irx7-deficient retinas, the neuronal projections from ACs

(Figure 5K and L), BCs (Figure 5G and H) and GCs (Figure 5K–T

and data not shown) into the IPL were eliminated or reduced, and

this in turn compromised the IPL (Figure 5A–D). Interestingly,

GCs differentiation was not severely compromised (Figure 5M–T)

despite a slight cell cycle withdrawal delay (Figure 7) and an early

alteration of atoh7 at 52 hpf but not 72 hpf in the central retina

(Figure 9). This is likely because most prospective GCs have

already withdrawn from cell cycle by the stage when irx7 first

expresses in the prospective INL at 38 hpf (Figure 1) [21]. The

lack of GCs’ dendritic projections into the IPL is likely a

consequence of the differentiation issues in the INL. MCs are

not likely a mediator for lamination even though their differen-

tiation is also compromised (Figure 5E and F) and they have

rudimentary processes in the IPL at 55 hpf [26]. This is because

they are generally the last cell type to differentiate in the retina and

that precludes them as a prime driver of retinal lamination, which

begins at an earlier stage. Indeed, Williams et al. have

demonstrated that MCs also do not play a role in the formation

of outer retinal synapses, further supporting this idea. Among the

remaining two cell types that project to the IPL, BCs are also a late

Figure 11. Irx7 gene regulatory network for zebrafish retinal development. A gene regulatory network was constructed using the
expression patterns of irx7 downstream targets as characterized in this study. The specification circuit of the network consists of TFs that specify
different retinal cell types while the differentiation circuit consists of genes that carry out cell type specific functions. For example, opsins in the
photoreceptors are responsible for visual signal transduction. Genes that have not been fully characterized yet are represented by a generic gene (cell
type-genes) in the differentiation circuit. The activation of these ‘‘cell type-genes’’ by irx7, as well as by other TFs, symbolizes the differentiation of the
corresponding cell types driven by the specification circuit. For GCs, an additional ‘‘GC genes for dendritic outgrowth’’ is created to distinguish the
specific effects of irx7 knockdown on their dendritic outgrowth (Figure 5). If the actual location of the interaction is not well defined, the domain/cell
type in which the effector gene is expressed will be used. In addition, different retinal regions, including, GCL, INL and ONL can have cellular
interaction (%-&) that can trigger signal transduction and in turn modulate gene expression. Note that the network topology is a static global view
which consists of information obtained from different stages and studies, thus some genes may have both positive and negative inputs if the
regulation is dynamical during development. See File S2 for supporting evidence of the connections and Figure S2 for a comprehensive network with
additional connections between these genes as extracted from other literature references.
doi:10.1371/journal.pone.0036145.g011
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cell type. Thus ACs, being an early cell type, are the likely

candidate that drives the formation of IPL.

Research from others has indicated that ACs, rather than GCs,

can mediate retinal lamination for the inner retina. For example,

despite the null mutants of atoh7 in mice [27] and zebrafish [28] do

not possess GCs, retinal lamination in these mutants is relatively

normal. These suggest that a cell type in the INL or the INL itself

is essential for establishing retinal lamination. It has been observed

that the first ACs extend neuronal projections to form a neuropil,

which will ultimately become a laminated IPL, in WT embryos as

early as 42 hpf [29] and in the zebrafish mutant that lacks GCs

[30]. At the same time, it has been observed that RGC dendrites

appear to target pre-laminated amacrine plexuses [31] and that

misplaced RGCs always projected dendrites toward nearby

neuropil that is formed with amacrine and bipolar cell neurites

[32]. These indicate that ACs can potentially give guidance cue for

retinal lamination. One possible early-born ACs that may give

such guidance cue is the cholinergic ACs [33]. Coincidentally, the

anti-Islet1 marker used in this study stains for and Islet1 itself

controls the differentiation of cholinergic ACs [34]. Since irx7 is

essential for the neurite outgrowth of these Islet1+ ACs (Figure 5K

and L), it is tempting to speculate that irx7 mediates retinal

lamination through the regulation of this process. Nonetheless,

ablation of the cholinergic ACs in postnatal ferret by L-glutamate

treatment did not seem to affect the formation of other

stratifications within the IPL [35]. However, this experimental

design did not exclude the possibility that RGC dendrites had

already received a cue before the pharmacological ablation of

ACs. This can potentially be demonstrated by a specific genetic

ablation of cholinergic ACs in the retina.

Much less is known about the regulation of the formation of

OPL. While this study did not directly investigate the neuronal

projections into the OPL, the observation that Irx7 knockdown

also compromised the OPL in a way analogous to the IPL

(Figure 5C and D) suggests that the OPL may also have a lower

number of neuronal projections. Again, MCs do not seem to be

necessary in the establishment and stabilization of the newly

formed cone synapses [26], or do they, or BCs, born early enough

to mediate IPL formation. There are also evidences that cones are

not playing a major role in retinal lamination. For example, the

overexpression of NRL, a TF that specifies rod fate, can lead to the

production of an all rods retina in mice without altering retinal

lamination [36]. Also, it has been shown that even though cone

terminals are stratified before HC stratification in mice, the

dendritic stratification of HC are not affected in coneless

transgenic mice [37]. Nonetheless, cones afferents do play a role

in refining the connection with HCs because it has also been

noticed that the proper dendritic branching and terminal

clustering of HCs within the OPL is dependent on the cone

afferents. Together, these observations suggest that HCs may play

a role in mediating the formation of OPL. Intriguingly, ptf1a is

transiently expressed during the development of all HCs and ACs,

and quickly turned off after terminal division [38] and Ptf1a’s

function is essential for the determination of HCs and GCs

[39,40,41,42]. Since ptf1a is over-expressed in the Irx7-deficient

retinas at both 52 (Figure 8I and J) and 72 hpf (Figure 8K and L),

it is possible that irx7 represses ptf1a and in turn allows for a proper

differentiation of both ACs and HCs to mediate retinal lamination.

While there are reports that show either suppression [40,42] or

overexpression [39,41] of Ptf1a disrupts retinal lamination, these

studies also demonstrate that the Ptf1a levels determines ACs and

HCs and yields a corresponding change in their numbers.

However, ACs and HCs number were not increased in the ptf1a

overexpression caused by Irx7 knockdown. One possible reason

for this difference is that the overexpression of ptf1a in these other

studies starts at an earlier stage of development (E2 in chick by

virus infection [41] and stage 22 in frog by dexamethasone

induction of an inducible construct [39]), while in the current

study the overexpression is an indirect outcome of Irx7

knockdown. Furthermore, Irx7’s expression wave spreads through

the zebrafish retina (Figure 1) slightly later than the documented

ptf1a’s expression [38] which completes very quickly between 35

and 40 hpf. It is possible that the ACs and HCs specification

driven by ptf1a mostly takes place during this period and the

subsequent control of ptf1a expression by irx7 mediates another

functional role of ptf1a.

It should be noted that despite a specific knockdown of Irx7, the

retinal lamination has not been completely eliminated (Figure 5A–

D). One obvious possibility is that knockdown is transient and

incomplete, and the residual Irx7 can mediate a partial formation

of the retinal lamination. Alternatively, there is an independent

genetic circuit that can also mediate this process. A likely

candidate for this would be Shha.

The expression of Irx7 in the prospective INL is essential for

photoreceptors differentiation Despite its exclusive expression in

the INL, irx7 is also essential for the photoreceptors differentiation

(Figure 6). The regulation of this differentiation circuit is likely

through the transcriptional regulation of TFs that specify

photoreceptors, including crx, neurod, nr2e3 and nrl (Figure 9 and

11) [43]. In this study, the expression of crx and neurod in the ONL

was generally lower at both 52 and 72 hpf in Irx7-deficient retinas

(Figure 9). The decrease of their expression and the potential

attenuation of their functions are consistent with the observed

defects in photoreceptor differentiation (Figure 6). Interestingly,

the differentiation problems found in the Irx7 morphants are

similar to that in the Crx knockdown, in which photoreceptors are

immature, all opsins are down-regulated, vsx1’s expression is

suppressed at 48 hpf but become relatively normal by 72 hpf,

and the cell cycle withdrawal is delayed [44]. These suggest that

the photoreceptor phenotypes in the morphants are very likely

mediated through the transcriptional regulation of crx. Both nrl and

nr2e3, TFs that specify rod fate [45], were substantially up-

regulated in the ONL of the morphants at 72 hpf (Figure 9). This

suggests that Irx7 normally suppresses these TFs and that there is a

potential rod fate bias in Irx7-deficient retinas. However, such bias

was not observed (Figure 6). This may be due to the suppression of

upstream regulators crx and neurod which compromised the

permissive environment for rod overproduction.

Since irx7 only expresses in the prospective INL, this restricts the

location at which the genetic interaction with these photoreceptor

TFs can occur. There are at least two non-exclusive possibilities.

First, irx7 can co-express in the precursors that express these TFs.

For example, this study and others have demonstrated that there is

expression of crx, neurod and nr2e3 in INL at 52 hpf (Figure 9)

[46,47], when irx7 is expressing extensively in the same region.

While not characterized in this study, it is possible that these TFs

may co-express in the same INL cells. A potential candidate would

be the INL progenitors that will ultimately generate rods [48,49].

Nonetheless, it has been shown that these progenitors can still

undergo division, while the irx7+ cells are post-mitotic (Figure 2),

thus this argues against the possibility. Second, retinal progenitors

that will begin to withdraw from the cell cycle at 48 hpf and form

the ONL [21] may come in close proximity of the irx7+ cells in the

prospective INL by interkinetic nuclear migration, a process

through which the cell body of the progenitors will migrate

between the apical and basal surfaces of the retina [50].
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Irx7-regulatory network for zebrafish retinal
differentiation and implications

Irx7 was originally identified as a promising candidate in the

Smarca4-regulated network that might regulate retinal differenti-

ation and lamination [8], which is defined in the current study.

Further, a tentative gene regulatory network through which Irx7

exerts its functions is established (Figure 11). Additional mutual

regulatory details on those factors that were analyzed in this study

have been incorporated from research on zebrafish and other

model systems (Figure S2). This is by no means an exhaustive

attempt to build a comprehensive network but rather a beginning

step of establishing a global gene network for retinal development.

An additional investigation on the regulation of Smarca4-

regulated differentiation genes [17] by irx7 is currently in progress,

and will further expand the coverage of the network. It should be

noted that the current Irx7-regulatory network has a static

topology and has not incorporated and/or addressed many

dynamical aspects of gene regulation including expression level,

temporal and spatial information. Nonetheless, the knowledge on

gene regulatory network for retinal development will lay down the

foundation that may aid designing new strategies to treat retinal

degeneration and regenerating damaged retinas by guiding

therapeutic stem cells to differentiate properly.

Materials and Methods

Fish maintenance
Zebrafish, WT AB and Tg(gfap:GFP)mi2001, were maintained

according to standard procedures [51]. All protocols were

approved by the Purdue Animal Care and Use Committee.

Embryo collection
Parental fish were bred for 10 minutes before collection to

ensure all embryos would be collected at a similar stage. Embryo

staging was done as described [52]. Some embryos were treated

with 0.003% PTU (Sigma) in E3 medium [53] between 12 and

23 hpf to prevent melanization. All embryos collected at

appropriate stages were fixed and stored as described [17].

In situ hybridization
In situ hybridization was performed as described [17]. The

riboprobes that were used in this study are as follows: atonal homolog

7 (atoh7); cone-rod homeobox (crx); iroquois homeobox protein 7 (irx7),

neurogenic differentiation (neurod); neural retina leucine zipper (nrl); nuclear

receptor subfamily 2 group E member 3 (nr2e3); opsin 1 (cone pigments),

short-wave-sensitive 1 (opn1sw1); opsin 1 (cone pigments), short-wave-

sensitive 2 (opn1sw2); opsin 1 (cone pigments), long-wave-sensitive 1

(opn1lw1), pancreas specific transcription factor 1a (ptf1a); patched1 (ptc1);

rhodopsin (rho); visual system homeobox 1 homolog, chx10-like (vsx1); visual

system homeobox 2 (vsx2). The original references for these probes are

listed in File S3.

Immunohistochemistry
Immunohistochemistry was performed on 10-mm thick cryosec-

tions as described [8]. The antibodies used in this study and their

dilutions are as follows: mouse anti-zn8 (1:500, ZIRC), mouse anti-

Islet1 (1:50, Developmental Studies Hybridoma Bank), rabbit anti-

PKC bI (PKC) (1:300, Santa Cruz), mouse anti-Glutamine

Synthetase (GS) (1:500, Millipore), mouse anti-zpr1 (1:200, ZIRC),

mouse anti-zpr3 (1:200, ZIRC), rabbit anti-phospho-Histone H3

(PH3) (1:500, Millipore), mouse anti-BrdU (1:100, Roche), rabbit

anti-active caspase3 (1:500, BD Biosciences), Alexa Fluor 488/555

goat anti-rabbit/mouse IgG (1:1000, Invitrogen). Alexa Fluor 633

phalloidin (Invitrogen) was included in the first antibody to stain

for F-actin. The original references for these antibodies are listed

in File S3.

5-Bromo-2-deoxyuridine (BrdU) incorporation
experiments

Embryos were incubated in 10 mM BrdU (Sigma) and 1%

DMSO in E3 medium. To detect the BrdU that were

incorporated into the DNA of the cells that had undergone S

phase, immunohistochemistry of cryosectioned embryos was

performed as described [8], except the cryosections were first

incubated with 2N HCl for 1.5 hours and washed with 16
Phosphate buffered saline (PBS) extensively before the blocking

step.

Double labeling by in situ hybridization and
immunostaining

Irx7 in situ hybridization with anti-Islet1 or anti-GS whole-

mount immunostaining was performed as follows: on the first day,

embryos were hybridized with the anti-irx7 probe (DIG-labeled)

using the same procedures as in the regular in situ hybridization

[17], except the embryos used for irx7 and Islet1 co-staining were

not digested with proteinase K. On the second day, the embryos

went through the regular stringency washes and then incubated

with a mixture of anti-DIG and anti-Islet1 or GS in the blocking

solution for overnight at 4uC. On the third day, irx7 expression

was detected by the regular signal detection steps for in situ

hybridization. Then, embryos were washed extensively in PBST

and blocked again with 5% normal goat serum (Sigma) and 1%

Triton-X 100 before incubated with the appropriate secondary

antibodies against anti-Islet1/GS for overnight at 4uC. Finally,

embryos were cryosectioned and imaged by fluorescent microsco-

py. In addition, embryos used for irx7 in situ hybridization and

BrdU immunostaining were treated with 10 mM BrdU from 60 to

72 and 72 to 80 hpf. In situ hybridization for irx7 was first

conducted regularly as above, and then the embryos were

cryosectioned before proceeding to the normal BrdU immuno-

staining staining procedure as described. The resulting embryos

were imaged by fluorescent microscopy.

Morpholinos (MOs) and mRNA injections
All MOs used in this study for Irx7 (Genbank accession number:

BC095012) knockdown were purchased from Gene Tools and are

listed in File S3. Irx7 and EGFP mRNA was transcribed from

linearized Irx7-pCS2 [10] with mMessage mMachine Kit (Am-

bion). All MOs and mRNA were injected into the yolk of embryos

at one-cell stage as described [53]. Injection optimization is

described in File S3. Three nanograms of irx7MO2, which were

co-injected with equal amount of p53MO (referred to as

‘‘irx7MO2’’ in this study), and ten nanograms of irx7SMO were

chosen for all knockdown experiments. The injection volumes for

these two conditions were 1.5 nl and 1.3 nl respectively.

Anti-Irx7 antibody generation and characterization
Two antigenic peptide sequences: KESDKSDTLTKRE-

SYKQI (corresponding to amino acids 234–251, named Irx7-

234) and WPSRDSYSPVNLSTHDLLKQSQ (corresponding to

amino acids 293–314, named Irx7-293) were selected to generate a

rabbit polyclonal antibody against Irx7 (PRF&L). Additional

peptide selection criteria and resulting antibody characterization

are shown in File S3 and Figure 4. The cloning and expression

conditions of the recombinant proteins that were used in antibody

characterization are shown in File S3 and Table S1 respectively.
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Cyclopamine treatment
AB WT embryos were treated with 100 mM cyclopamine (LC

laboratories) in 1% ethanol or just 1% ethanol as controls starting

at 24, 26, 30 and 36 hpf. All embryos were collected at 52 hpf for

in situ hybridization analysis.

Image acquisition and analysis
Bright-field and fluorescent images were acquired by a SPOT-

RT3TM colour slider camera (Diagnostic Instruments) mounted on

an Olympus BX51 fluorescence compound microscope or SZX16

stereomicroscope. Features of the samples in the images were

extracted by i-Solution (IMT i-Solution).

Statistical analysis and data visualization
All descriptive statistics and data analyses were performed in the

R version 2.11.1 (http://www.r-project.org). All raw data and

further descriptions on the details of the analyses can be found in

File S1 and Table S2. Gene regulatory network was constructed

using BioTapestry [54].

Supporting Information

Figure S1 Irx7 knockdown compromises differentiation
of MCs. Ten nanograms of control MO and irx7SMO was

injected into Tg(gfap:GFP)mi2001 embryos. Expression level of the

GFP in the retinas was examined in at 59 and 72 hpf. The red

arrowheads indicate GFP+ cells, except for the morphant at

59 hpf, which indicate a comparable region of the retina as the

control. The retinal area is highlighted by a dotted yellow line.

Scale bar = 20 mm.

(TIF)

Figure S2 A comprehensive Irx7 gene regulatory net-
work for zebrafish retinal development. A gene regulatory

network was constructed using the expression patterns of irx7

downstream targets as characterized in this study, as well as the

mutual interactions of these targets from zebrafish and/or other

organisms that are found in the literature (File S2). The

specification circuit of the network consists of TFs that specify

different retinal cell types while the differentiation circuit consists

of genes that carry out cell type specific functions. For example,

opsins in the photoreceptors are responsible for visual signal

transduction. Genes that have not been fully characterized yet are

represented by a generic gene (cell type-genes) in the differentiation

circuit. The activation of these ‘‘cell type-genes’’ by irx7, as well as

by other TFs, symbolizes the differentiation of the corresponding

cell types driven by the specification circuit. For GCs, an

additional ‘‘GC genes for dendritic outgrowth’’ is created to distinguish

the specific effects of irx7 knockdown on their dendritic outgrowth

(Figure 5). If the actual location of the interaction is not well

defined, the domain/cell type in which the effector gene is

expressed will be used. The nodes ‘‘INL progenitors’’ and ‘‘rod

precursors’’ represent cells that will ultimately migrate to the ONL

and give rise to rods [48,49]. In addition, different retinal regions,

including, GCL, INL and ONL can have cellular interaction (%-

&) that can trigger signal transduction and in turn modulate gene

expression. Note that the network topology is a static global view

which consists of information obtained from different stages and

studies, thus some genes may have both positive and negative

inputs if the regulation is dynamical during development. See File

S2 for supporting evidence of the connections.

(TIF)

File S1 Statistical analysis appendix.

(DOCX)

File S2 Supporting evidence for the connections in the
irx7 gene regulatory network. Experimental evidence was

obtained either from this study or from literature. Each edge

(regulator-effector) is described by the Regulation type, Connec-

tion type (for irx7 only), Domain in the retina and Stage analyzed

(for irx7 only). In addition, further references for the edge from

different animal models are listed. The same regulation type for an

edge at different stages is represented by one connector (2. or

2|) in Figure 7, while different regulation types for an edge are

always represented by a different connector in the same diagram,

regardless of the stage. The differentiation circuit in different cell

types is represented by a generic gene ‘‘cell type-genes’’.

(DOCX)

File S3 Supplementary materials and methods.

(DOCX)

Table S1 Expression conditions of recombinant Irx7
proteins. The expression and tested conditions of various

recombinant Irx7 proteins are listed. These proteins were used

to confirm the specificity of the Irx7 peptide antibodies (File S3).

(DOCX)

Table S2 Count data for in situ hybridization experi-
ments. The count distribution of specific staining patterns for

different riboprobes in uninjected embryos, controls and mor-

phants at 52 and/or 72 hpf. The most common pattern for the

controls and irx7SMO morphants are presented in Figure 6, 8 and

9.

(XLSX)
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