
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

7-2014

TimeTrader: Exploiting Latency Tail to Save
Datacenter Energy for On-line Data-Intensive
Applications
Balajee Vamanan
Purdue University, bvamanan@ecn.purdue.edu

Hamza Bin Sohail
School of Electrical and Computer Engineering, Purdue University, hsohail@ecn.purdue.edu

Jahangir Hasan
Google, Inc., jahangir@google.com

T.N. Vijaykumar
Purdue University, vijay@ecn.purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Vamanan, Balajee; Sohail, Hamza Bin; Hasan, Jahangir; and Vijaykumar, T.N., "TimeTrader: Exploiting Latency Tail to Save
Datacenter Energy for On-line Data-Intensive Applications" (2014). Department of Electrical and Computer Engineering Technical
Reports. Paper 465.
http://docs.lib.purdue.edu/ecetr/465

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/77940040?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages

1

TimeTrader: Exploiting Latency Tail to Save Datacenter Energy

for On-line Data-Intensive Applications
 Balajee Vamanan Hamza Bin Sohail Jahangir Hasan T. N. Vijaykumar
 Purdue University Purdue University Google Inc. Purdue University

bvamanan@ecn.purdue.edu hsohail@ecn.purdue.edu jahangir@google.com vijay@ecn.purdue.edu

Abstract

Datacenters running on-line, data-intensive applications

(OLDIs) consume significant amounts of energy. However,

reducing their energy is challenging due to their tight

response time requirements. A key aspect of OLDIs is that

each user query goes to all or many of the nodes in the

cluster, so that the overall time budget is dictated by the

tail of the replies’ latency distribution; replies see latency

variations both in the network and compute. Previous work

proposes to achieve load-proportional energy by slowing

down the computation at lower datacenter loads based

directly on response times (i.e., at lower loads, the proposal

exploits the average slack in the time budget provisioned for

the peak load). In contrast, we propose TimeTrader to

reduce energy by exploiting the latency slack in the sub-

critical replies which arrive before the deadline (e.g., 80%

of replies are 3-4x faster than the tail). This slack is present

at all loads and subsumes the previous work’s load-related

slack. While the previous work shifts the leaves’ response

time distribution to consume the slack at lower loads,

TimeTrader reshapes the distribution at all loads by slowing

down individual sub-critical nodes without increasing

missed deadlines. TimeTrader exploits slack in both the

network and compute budgets. Further, TimeTrader

leverages Earliest Deadline First scheduling to largely

decouple critical requests from the queuing delays of sub-

critical requests which can then be slowed down without

hurting critical requests. A combination of real-system

measurements and at-scale simulations shows that without

adding to missed deadlines, TimeTrader saves 15-19% and

41-49% energy at 90% and 30% loading, respectively, in a

datacenter with 512 nodes, whereas previous work saves

0% and 31-37%. Further, as a proof-of-concept, we build a

rack-scale real implementation to evaluate TimeTrader and

show 10-30% energy savings.

1 Introduction
Datacenters host many of modern Internet services today

such as Web Search, social networking, e-commerce, and

cloud computing. Datacenters consume tens of megawatts

of electric power [8], which accounts for millions of dollars

in annual operating costs [30]. Of their total power, modern

datacenters spend about 10% on cooling and power

distribution overheads (their Power Usage Effectiveness is

1.12 [15]) and about 5% on networking equipment, leaving

about 85% for servers of which memory and disk take up

45% and processors consume 55% (i.e., 47% of total) [8, 15,

23]. TimeTrader focuses on the substantial processor power.

Many of Internet services are provided by on-line, data-

intensive applications (OLDIs) which often process vast

amounts of Internet data (e.g., Web Search and Key-Value

stores) [25]. Such services typically operate under tight

response time budgets set by service-level agreements

(SLAs) (e.g., 200 ms for a Web Search query) [16].

Processing of a query often involves hundreds or thousands

of servers working in parallel on memory-resident data [7,

11]. OLDIs have two distinguishing characteristics. (1)

They employ a multi-level tree-like software architecture

where each query goes to all or many leaves. Consequently,

though only a few leaves’ replies are slow, the overall SLA

budget is dictated by the tail of the leaves’ reply latency

distribution [11] (e.g., the 99.9th percentile leaf latency in a

1000-leaf tree). Replies arriving after the deadline are

dropped for responsiveness. (2) Both the network and

compute at the leaf contribute to significant variability in the

latency of the leaves’ replies, as we explain in Section 2.1

(e.g., a request or reply takes 2-30 ms in the network [5, 37,

38] and leaf computation takes 40-120 ms [34]). Both

network and compute variations occur at all datacenter loads

though the spread is greater at higher loads.

Using low-power or sleep modes is a common approach to

saving energy. Unfortunately, OLDIs’ time budgets and

inter-arrival times are too short for the transition latencies of

low-power modes [24, 25]. As such, the low-power modes

would incur many deadline violations [23]. Alternately, an

insightful recent work, called Pegasus [23], achieves load-

proportional energy by slowing down the leaf computation

at lower datacenter loads while carefully ensuring that SLAs

are not violated (e.g., at night times [25]). Pegasus exploits

the mean slack at lower loads in the time budget provisioned

for the peak load.

In contrast, we propose TimeTrader to reduce energy by

exploiting sub-critical leaves’ latency slack (e.g., 80% of

leaves in every query complete within a 3rd-4th of the

budget.). This slack is present at all loads (modern

datacenters operate at high loads during the day [25]); and

subsumes Pegasus’ load-related slack. Pegasus exploits the

mean load-related slack, common to all leaves at lower

loads, to shift the response time distribution. Instead,

TimeTrader reshapes the response time distribution at all

2

loads by slowing down individual sub-critical leaves so that

they are closer to, but within, the deadline than the default

distribution. While TimeTrader saves more energy than

Pegasus at low loads, TimeTrader achieves significant

savings even at the peak load, which occurs often and where

Pegasus has no opportunity. Thus, TimeTrader converts the

performance disadvantage of latency tails [11] into an

energy advantage.

 TimeTrader employs two ideas. First, TimeTrader trades

time across system layers, borrowing from the network layer

and lending to the compute layer. Each query results in a

request-compute-reply-aggregate sequence where the

requests from parents to the leaves and replies from the

leaves to their parents see variability in the network, and the

compute phase sees variability in the leaf server. OLDIs

break up the total time budget into a component each for

request, compute, reply, and aggregate. We make the key

observation that because request comes before compute, the

slack in faster requests can be transferred to their

corresponding compute without any prediction or risk of

missing the deadline. To exploit the variations in compute,

we make the key observation that while Pegasus captures

average variations due to datacenter-wide load changes,

each individual query’s queuing at the leaf server varies

significantly even under a fixed load providing more

opportunity (e.g., due to “instantaneous” variations in work

and load). Unlike request and compute-queuing,

unfortunately, reply comes after compute and reply latency

is unpredictable due to the highly-timing-dependent nature

of network latencies (Section 2.1). Therefore, the slack in

faster replies cannot be transferred easily to their compute.

As such, TimeTrader exploits the request and compute

slacks but not the reply slack.

Second, despite the slack, such slowing down is challenging

in the presence of long tails and SLA guarantees. Even

though a sub-critical request has slack, slowing it down may

hurt another, critical request that is queued behind the sub-

critical request. To address this issue, we leverage the well-

known idea of Earliest Deadline First (EDF) scheduling [22]

to decouple critical requests from the queuing delays of sub-

critical requests by placing the former ahead of the latter in

the leaf servers’ queues. Conventional implementations and

Pegasus cannot exploit EDF because they do not distinguish

between critical and sub-critical requests. Due to its

decoupling, EDF pulls in the tail and reshapes the leaves’

response time distribution (without improving the mean),

enabling TimeTrader to use the per-leaf slack to shift further

the distribution closer to the deadline than with network

slack alone. Though this shift lengthens the mean service

time, such an increase does not worsen throughput. Because

OLDIs’ response times are sensitive to tail latencies,

compute-queuing delays are kept low even at high loads via

high throughput-parallelism (i.e., there is compute-

throughput slack even at high loads). As such, TimeTrader’s

longer service times tap into this throughput slack without

causing loss of throughput.

Finally, TimeTrader employs two key mechanisms to

realize the above ideas. Transferring the request slack from

the network to the compute is challenging due to lack of

fine-grained (sub-ms) synchronization between a parent and

the leaves. To address this issue, we leverage the well-

known Explicit Congestion Notification (ECN) in IP [32]

and TCP timeouts to inform the leaves whether a request

encountered timeout or congestion in the network and hence

does not have slack. Further, because the slack lengths are

tens of milliseconds, we use power management schemes

with response times of 1 ms, similar to Pegasus (e.g.,

Running Average Power Limit (RAPL) [1]).

In summary, the paper’s contributions are:

 TimeTrader reshapes the response time distribution at

all loads by slowing down individual sub-critical leaves

without increasing SLA violations;

 TimeTrader exploits the request and compute slack on a

per-leaf, per-query basis;

 TimeTrader leverages EDF to largely decouple critical

requests from the slowing down of sub-critical requests;

and

 TimeTrader leverages (a) network signals such as TCP

timeouts and ECN to circumvent the lack of fine-

grained synchronization between parent and leaves and

(b) modern, low-latency power management to fit

within OLDI timescales.

Using a combination of real-system measurements and at-

scale simulations, we show that without adding to missed

deadlines TimeTrader saves 15-19% and 41-49% energy at

90% and 30% loading, respectively, in a datacenter with 512

nodes, whereas previous work saves 0% and 31-37%. We

also build a rack-scale real implementation to evaluate

TimeTrader and show 10-30% energy savings.

The rest of the paper is organized as follows. Section 2

describes the background and the challenges. Section 3

describes TimeTrader’s details. Section 4 describes our

experimental methodology and Section 5 and 6 present our

results. Section 7 discusses related work. Finally, Section 8

concludes the paper.

2 Challenges and opportunities

2.1 Background

As discussed, OLDIs typically employ a tree-based software

architecture where the data to be queried resides in the leaf

nodes’ memory for fast access [7, 11] (see Figure 1). For

instance, in Web Search and Key-Value store, the search

index and the key-value pairs are partitioned across the

leaves in a well load-balanced manner (e.g., using good

hashing). In Web Search, every query is broadcast to all the

leaves whose results are aggregated based on some ranking

scheme (e.g., Google’s PageRank). Typical use of key-value

stores involve looking up several keys, so that each top-

level request generates lookups in several hundreds of

3

leaves, as noted in [23] (e.g., a user’s Facebook page

typically comprises of several hundreds of objects).

Each query involves a request-compute-reply-aggregate

sequence where the query generates requests to the leaves

going through multiple levels in the tree (see Figure 1); each

leaf looks up its memory to compute its result and sends a

reply to its parent which often aggregates the replies from

all the children and sends the aggregated result up the tree

potentially involving aggregations on the way to the root

which sends the overall response. The key point here is that

each query needs to wait for the replies from either all the

leaves (Web Search) or several hundreds of leaves (Key-

value stores). Consequently, the overall response time of a

query is affected by the slowest leaf so that the mean overall

response time, and therefore the SLA budget, includes the

99th - 99.9th percentile leaf latency in a 1000-node cluster,

known as the latency tail problem [11]. To maintain

interactive user experience, the parents wait for replies only

until the deadline and drop the replies that miss the deadline.

Because the dropped replies affect response quality and

revenue, OLDIs keep the fraction of missed deadlines low

(e.g., 1%).

There is a wide variation in the leaves’ reply latency due to

variations in network and compute; as noted before, this

variation is among the sub-queries within a query, not

across queries. Requests from parents to leaves (and

responses) may take varying time due to collisions at the

packet buffers with the leaves’ replies for multiple queries.

Due to the tree-like software architecture and mostly

balanced workload among the leaves, the leaves send their

replies to the parent at about the same time; this

phenomenon is called in-cast [5, 37, 38]. Because all the

replies are destined for the same input port of the same node

(parent), the replies are queued in the same packer buffer at

the relevant datacenter network switch. Because in-casts are

inevitable, the switches are provisioned with enough

buffering to handle a few in-casts. However, the buffers are

kept shallow for cost and latency reasons [5]. Therefore,

multiple queries’ in-casts occurring at about the same time

and colliding at the buffers result in delays and buffer

overflows; multiple queries are processed in parallel for

high throughput. Further, there are also background flows

from other applications on the cluster due to consolidation

or to updating the OLDI data (e.g., Web index). Such

collisions cause TCP time-outs and re-transmits resulting in

the replies falling in the tail or exceeding the time budget.

While such collisions are uncommon in general, they are

common enough to affect the 90th-99.9th percentile latencies

(e.g., in every query, 80% of replies incur 5 ms latency

whereas the last 1% incur 20 ms). Further, such collisions

are highly timing-dependent and therefore are highly

unpredictable; the TCP-flow propagation delay for a leaf to

realize that a collision has occurred is too long for the leaf to

delay or slow down its sending rates (hence reactive

schemes are unlikely to work).

While in-casts occur for replies, requests are also affected

by a multiplexing strategy used to distribute the network

load among most, if not all, of the datacenter’s nodes. If the

roles of the nodes serving as a parent or a leaf were fixed

and unchanging, then the reply in-casts would cause hot

spots in the network where the parent nodes would become

repeated bottlenecks. To alleviate this problem, the role of a

sub-tree parent for a query is randomized among the sub-

tree’s nodes i.e., a node is a parent for one query and a leaf

for another. Such randomization ensures that in-casts are

uniformly distributed among all the nodes [5]. We found in

our simulations that using just one or two dedicated roots

for 32 children exacerbates the reply in-casts and results in

elongating the 99th percentile of replies from around 22 ms

with the randomization to 170 ms with 1-2 dedicated roots.

Adding 4-8 dedicated roots performs as well as

randomization but at 10-25% extra cost (i.e., 3-7 extra

parents per 32 leaves). While randomization alleviates reply

in-casts without extra cost, reply in-casts do occur,

unfortunately, despite such randomization. Further, because

the same node may issue a request as a parent to another

node for one query and may send a reply as a leaf to the

other node for another query, requests and replies can

collide at the packet buffers. Consequently, requests caught

in unrelated reply in-casts face delays and time-outs (the

fractions are similar to those of replies as mentioned above).

Like the network, the compute in each leaf also exhibits

latency variation due to work imbalance across queries

despite good load balancing and hashing [34]. For instance,

a Web Search query may lead to no matches at a leaf while

finding many matches at another. Further, changes in the

datacenter load also cause latency variation in compute. As

such, compute latencies also vary by a wide range (e.g., in

every query, 80% of leaves take 30 ms for compute

including compute-queuing at the leaf server, whereas the

last 1% take 70 ms).

Both in-casts and work imbalance occur at all loads. Higher

loads increase the latency spread because queuing non-

linearly dilates these latencies. In the case of compute-

queuing delays, there are two effects: (1) queuing changes

Root

Aggregator n Aggregator 1

…

…
.

Leaf 1 Leaf 2 Leaf n

…
.

Leaf 1 Leaf 2 Leaf n

Response

Request

Figure 1: OLDI software architecture

4

due to load changes, and (2) “instantaneous” changes in the

work and load even at a fixed load.

2.2 Opportunities

In the presence of such variations, the average overall

response time, and therefore the SLA budget, includes the

tail latencies for the request-compute-reply-aggregate

sequence. To account for compute-queuing delays, the tail

latencies are measured at the expected peak load in a fully-

provisioned datacenter. However, more than 80% of leaves

complete well ahead of the deadline for every query (e.g.,

with 3-4x slack). TimeTrader targets this opportunity, the

per-leaf per-request network slack and compute-queuing

slack, which exists at all datacenter loads.

As discussed in Section 1, Pegasus [23] achieves load-

proportional energy by slowing down leaf computation at

lower loads based directly on response times. The paper

shows that using response times is better than employing

CPU-utilization-based dynamic voltage and frequency

scaling (DVFS) which results in many missed deadlines

because requests in the tail remain critical even at low loads.

Pegasus uses datacenter-wide average response times as a

measure of the load and uniformly slows down all the nodes

at lower loads, while ensuring that SLA violations do not

increase. Thus, Pegasus exploits the slack in the time

budget, which is provisioned for the peak load, to shift the

leaves’ response time distributions (see Figure 2). In

contrast, TimeTrader determines the slack for each

individual leaf to reshape the response time distributions at

all loads to be closer to the deadline than the default

distribution (see Figure 2).

The Pegasus paper briefly describes a distributed version

which uses individual server loading to determine the

slowdown factors. It may seem that TimeTrader’s compute-

queuing slack arising from variations in instantaneous

compute-queuing would be captured by this version (load-

related slack in average queuing is already captured by the

centralized version). While the paper suggests identifying

high-load “hot” and low-load “cold” servers to modulate the

factors, low average server loading over even fine time

granularities does not ensure that most or all of the requests

handled by a cold server have slack (i.e., individual leaf

latencies are unpredictable). It is not clear that the requests

with low slack would not miss their deadlines. Further, such

load imbalance would be alleviated by careful re-

distribution of the search index among the leaves, making

persistent load imbalance over several queries unlikely even

for short durations. Imbalance due to a few queries repeated

numerously (i.e., popular search words) would be filtered by

front-end caching of such popular queries to save cluster

bandwidth.

The centralized version does not have this problem as it

exploits the slack in datacenter-wide response times at lower

loads as opposed that at higher loads without distinguishing

among servers/leaves. Though this excellent paper has many

insights and a detailed latency evaluation of the centralized

version, the brief evaluation of the distributed version only

compares estimated power savings using datacenter-wide

load (centralized version) versus that using individual-server

load (distributed version) but does not show latencies.

2.3 Challenges

There are three issues in exploiting the sub-critical leaves’

slack. First, though TimeTrader’s opportunity exists at all

loads, it is harder to exploit slack (i.e., to slow down) at

higher loads. There may be slack in the requests as well as

in instantaneous compute-queuing for TimeTrader even at

higher loads, including the peak load. However, higher

loads mean more queuing and TimeTrader’s slack has to be

distributed over the entire queue, and not just one request, to

account for the fact that slower service affects all the queued

requests and not just the one being slowed. In other words,

any service slowdown is amplified by the queue length (e.g.,

u2/(1-u) in M/M/1 queues with a server utilization of u) so

that the response time grows as the product of the slowdown

factor and queuing. This interaction between queuing and

service slowdown is the reason for TimeTrader’s energy

savings to decrease at higher loads. Nevertheless,

TimeTrader still achieves significant energy savings even at

the peak load. Note that the M/M/1 queue is just an

example; datacenter nodes typically employ powerful multi-

socket, multi-core servers and not uniprocessors.

Second, as discussed in Section 1, OLDIs have tight time

budgets and are tail latency-limited. Because load variations

at high loads cause compute-queuing and tail latencies to

increase non-linearly, OLDIs usually operate well within the

region where compute-queuing delays are kept low via

throughput-parallelism. This condition implies that

datacenters are provisioned well enough that even at the

peak load there is compute-throughput slack. A key point

here is that even though server utilizations are high at the

peak load, high throughput parallelism ensures that the

queuing delays are low (e.g., at 90% utilization, an M/M/1

queue’s response time is 10 * average service time whereas

an M/M/100 queue’s response time is only 1.02 * average

Figure 2: Pegasus vs. TimeTrader

Baseline low load

Pegasus (low load)

TimeTrader (all load)

Latency

F
ra

c
ti

o
n

 o
f

re
q

u
e

s
ts

Pegasus’s potential slack TimeTrader’s potential slack

99.9% baseline at peak load

99.9% baseline at lower load

Deadline

Baseline peak load

5

service time [18]). TimeTrader exploits this throughput

slack to slow down sub-critical leaves without growth in the

compute-queuing delays. Thus, TimeTrader maintains the

same throughput as the baseline datacenter.

Finally, there is a subtle issue with OLDI time budget. For

the SLA budget, the tail of the overall response latency

matters and not the individual tail latencies of request,

compute, or reply. In practice, to allow for independent

development and optimizations of the network and compute

parts, the total budget is broken into components for the

network (request+reply) and compute. However, the chance

of both a request and its reply hitting the tail is quite low

and does not influence the 99th percentile of the overall

response latency. Consequently, the network’s budget

would account for the tail latency of the sum of the request

and reply, and not the sum of the tail latency of each (i.e.,

the budget expects the risk of hitting the tail to be shared

between the request and reply and essentially allows for the

tail to be counted only once). This point implies that the

request does not have a separate budget and therefore, the

request slack cannot be known.

To address this issue, we choose to use separate budgets for

request and reply. However, because of the risk sharing

between request and reply, such separate budgets imply

tighter individual budgets for the same total budget as the

single-budget default. Indeed, our calculations show that

considering two identical exponentially-distributed random

variables, X and Y, each of whose 99th percentile is v, the

99th percentile of X+Y is 1.5v (single-budget case) whereas

the 99th percentile of X + 99th percentile of Y is 2v

(separate-budget case). Thus, for the same total budget, the

separate budgets would each have to use 0.75v as the

deadline to be met by the 99th percentile.

Fortunately, this handicap is overcome by network

optimizations specific to OLDIs which require separate

budgets [37, 38]. These optimizations prioritize network

flows for network bandwidth use based on each flow’s

deadline. The single-budget default cannot easily use these

optimizations because (1) requests do not have a deadline

and (2) request and reply are separate flows whose common

budget would have to be communicated from the request to

the reply via the compute layer while accounting for the

lack of fine-grained clock synchronization between the

nodes where the request and reply originate. We found that

the separate-budget case employing the most recent of these

optimizations, D2TCP [37], under the tighter, separate

deadlines of T/2 achieves fewer missed deadlines than the

single budget case under the single deadline of T. In the

remainder of this paper, we use separate budgets for

requests and replies, and employ D2TCP for all the systems

we compare – baseline, Pegasus and TimeTrader.

2.4 Discussion

TimeTrader slows down the sub-critical leaves to save

energy. While the leaf computation remains the same with

or without TimeTrader (i.e., work is conserved), energy

savings stems from the fact that executing at full speed and

then idling till the next request is less efficient than

executing at slower speed and idling less. Slower speeds

save energy due to scaling of voltage (to whatever extent)

and frequency. Idling consumes significant energy in fully-

active mode; energy is lower in lower-power or sleep modes

but OLDIs cannot exploit such modes because the sleep-to-

active transitions are too long for OLDIs’ time budgets and

inter-arrival times [24, 25].

Finally, the slack uncovered by this paper can be used to

save energy by slowing down leaf computation or to

improve the quality of responses by increasing the

computation. We explore the former option in this paper and

leave the other options for future work.

3 TimeTrader
Recall from Section 1 that TimeTrader exploits the network

slack in requests and individual queries’ compute-queuing

slack. TimeTrader slows down the individual, sub-critical

leaves, to save energy without increasing SLA violations.

To ensure that slowing down sub-critical requests does not

hurt the critical requests that are queued behind the sub-

critical requests, TimeTrader employs Earliest Deadline

First (EDF) scheduling [22] that prioritizes the critical

requests ahead of the sub-critical requests.

3.1 Request slack

Requests that arrive before their budgeted deadlines have

slack which TimeTrader transfers to compute. Fortunately,

because request comes before compute, this slack can be

identified without prediction or the risk of missing the

deadlines (recall from Section 2.1 that predicting network

latencies is hard). However, requests originate at the parent

node and compute occurs at a leaf, making it hard to

accurately estimate the slack. Unfortunately, clock skew of

several milliseconds between the parent and the leaf nearly

rules out estimating slacks of similar magnitudes. Inter-node

synchronization at such fine time granularity is hard [26,

28].

Instead of attempting to precisely determine the request

slack, we use signals from the network about the presence or

absence of packet drop and of imminent network congestion

(typically due to an in-cast collision, as described in Section

2.1). Presence of these signals could mean no slack due to

delays in the network whereas absence confirms some slack.

While there may still be some slack even in the former case,

we conservatively assume there is none. Because congestion

is uncommon in datacenters that host OLDIs, our

conservative assumption does not degrade our savings.

Determining the exact slack amount in the absence of the

signals involves two cases: packet drop and imminent

congestion. The former case results in retransmission which

is marked by the sender (parent) with a packet header bit.

The receiver (leaf) then assumes no slack. In the absence of

retransmission, there is slack of one minimum timeout

duration (TCP’s RTOmin) based on the facts that any

retransmission occurs only after a timeout and that network

tail latency typically includes RTOmin to cover one timeout

6

due to in-cast collisions (Section 2.1). Consequently, we

conservatively set the request slack to be RTOmin; there is

natural padding of around 5 ms in the budgets to account for

protocol overheads (e.g., RTOmin of 20 ms is commonly

used on datacenters [5]). The latter case of imminent

congestion is signaled by Explicit Congestion Notification

(ECN) [32]. Network switches detect imminent congestion

when packet buffers are occupied above certain watermarks

signifying queuing delays, and use ECN bits in packet

headers to pass this information. Upon receipt, the leaf

assumes no slack. In the absence of ECN markings, we

determine the slack amount by empirical evaluation of

network delays in the presence of ECN markings. In our

experiments, we set this slack to be request budget – median

network latency.

3.2 Individual compute-queuing slack

Compute-queuing slack stems from variations in the

queuing at the leaf. Like requests, queuing comes before the

actual compute and therefore queuing slack can be

identified without prediction or the risk of missing the

deadlines. Pegasus exploits the datacenter-wide average

queuing slack (i.e., budget – average queuing), which is

present at lower loads (the compute budget is determined by

the queuing delay at the peak load). In contrast, we exploit

individual request’s queuing slack based on the fact that

even under a fixed load, queuing varies from one request to

another.

To determine this slack, we determine the queuing time by

timestamping the arrival of a request and the start of

computation at the leaf (both arrival and computation occur

at the same server so there are no clock skew issues). The

compute-queuing slack is the average queuing delay at the

peak load minus the given request’s actual queuing delay.

The former is pre-determined empirically; and the latter

depends on the current load and variations in queuing seen

by the current request and is measured via the timestamping.

Thus,

compute-queuing slack = average peak wait – current wait

total slack = request slack + compute-queuing slack

As discussed in Section 2.3, this total slack has to be

attenuated (i.e., scaled) before being applied as a slowdown

to account for the fact that slower computation affects all

the queued requests and not just the current request. One

other subtle issue is that going to a lower power setting in

CPUs requires choosing a slowdown factor. While we know

the total slack amount, we do not know how long the current

request will take and therefore, we cannot compute a

slowdown factor. Fortunately, both these issues –

attenuation and unknown service time – can be addressed by

observing that the compute budget accounts for worst-case

queuing delays and worst-case service times. Further, some

slack is spent in RAPL latency. Therefore, we set

slowdown =(total slack – RAPLlatency)*scale/compute budget

where scale is a factor to further moderate the slowdown.

Scale depends on both load and applications (i.e., service

time distributions and budgets). Higher load implies lower

value for scale to reduce the slowdown factor and impact on

throughput. Instead of using statically configured scale

values for each application, we employ a simple control

algorithm that dynamically determines scale by monitoring

the percentage of missed deadlines at each leaf server every

5 seconds. If the percentage of missed deadlines in the

current interval is less than the SLA target by more than 5%

(i.e., there is 5% room in the budget), we increase scale by

0.05. Else, we reduce scale by 0.05 until there is room or the

scale is 0. Thus, there is a guard band of 5% to avoid SLA

violations. Even at the peak load, there is room to exploit.

However, Pegasus cannot exploit this room because it does

not distinguish critical requests from sub-critical requests, at

the same leaf server. TimeTrader saves energy even at the

peak load by slowing down sub-critical requests using a

non-zero scale value without directly affecting critical

requests that have 0 total slack (scale does not matter).

Further, EDF shields critical requests from the queuing

effects that arise from the slowing down of sub-critical

requests. Thus, by using per-request slack and EDF,

TimeTrader saves energy at all loads. Table 1 shows scale

values across various loads for Search and memcached.

To set the core’s speed as per the slowdown factor, we

employ RAPL [1], which requires less than 1 millisecond,

making it suitable for OLDI timescales. One issue is that

modern processors are multicores with hardware

multithreading (i.e., Simultaneous Multithreading (SMT)

[36]). Multiple cores may be processing either multiple

requests of the same query or different queries, and in either

case the slack for the cores may be different. Further, each

core may have a few SMT contexts for each of which the

slack may be different. To address this issue, we assume

that each core’s power settings can be controlled

independently of other cores’ settings. While current

offerings of RAPL control only the overall package power,

individual core control is a relatively small extension and is

likely to be implemented in the near future. To address the

SMT contexts within a core, we conservatively use the

worst of the contexts’ individual slowdown factors to avoid

violating deadlines. Because the number of SMT contexts

per core is only a few (e.g., 2), this conservative assumption

– i.e., the worse of two slowdown factors – does not

diminish our opportunity.

When we explored slowing down main memory in addition

to the CPU, the fact that memory is shared among all the

cores of a server severely limits the memory slowdown

factor in the presence of such a conservative assumption.

For instance, for a 32-core server, the memory slowdown

factor would have to be the worst among all the 32 cores’

Table 1: Values for scale

Utilization WebSearch Memcached

30% 0.7 0.8

60% 0.4 0.5

90% 0.2 0.2

7

factors, which would likely be zero. Therefore, we slow

down only the cores and not memory. Nonetheless, because

CPUs contributes about 60% of server power [8], our

opportunity remains significant.

3.3 Deadline-based compute-queuing

Recall from Section 1 that the presence of slack is not

sufficient to guarantee avoiding missing of the deadlines.

Slowing down a sub-critical request which has slack may

hurt another critical request that is queued behind the sub-

critical request. To address this issue, we exploit Earliest

Deadline First (EDF) scheduling that decouples critical

requests from the queuing delays of sub-critical requests by

placing the former ahead of the latter in the leaf server’s

queues.

The decoupling is not perfect due to the fact that arriving

critical requests may still see elongated, residual service

times of sub-critical requests in the absence of pre-emption

(whose delays would not be suitable in our context of tight

deadlines). Nevertheless, the decoupling enables EDF to

pull in the tail and to reshape the leaves’ response time

distribution; the mean response time does not improve

because as critical requests’ response times get shorter the

sub-critical requests’ times get longer. However, EDF

enables TimeTrader to use per-leaf slack to slow down sub-

critical requests, thereby further shifting the distribution

closer to the deadline. Though such slow down lengthens

the mean service time, such an increase taps into the

throughput slack described in Section 2.3 and hence does

not worsen throughput. Still, the throughput slack may not

be enough to exploit the full total slack in which case we

give up some energy savings to avoid throughput loss.

OLDI implementations typically use well-defined APIs

which cleanly separate request queue management and

thread computation modules (e.g., work-stealing task

queues). EDF is typically available with standard queue

management libraries (e.g., pthread_set_schedparam() can

be used to achieve EDF by setting the priority to be the

deadline) and adds negligible overhead (section 5). As such,

the libraries enable TimeTrader to be used easily in a host of

OLDIs.

4 Methodology
TimeTrader involves three aspects: network latency,

compute latency, and compute power. We use real-system

measurements for compute latency and compute power, a

rack-scale real implementation to show proof-of-concept,

and at-scale simulations for network latency. The compute

aspects involve only one server because over long periods of

time all servers are statistically identical in response times

and power consumption and hence real-system

measurements are feasible. Further, because tail effects are

more pronounced in large clusters (e.g., 1000 node) to

which we do not have access, we rely on simulations to

study the network aspect.

Benchmarks: We simulate two OLDI benchmarks, Web

Search (Search) and memcached (key-value store), from

CloudSuite 2.0 [13]. We modify the memcached driver to

look up a batch of objects in each request, with an average

batch size of 50 as is typical [27], instead of single objects

as done in CloudSuite. We generate Search’s index from

Wikipedia and memcached’s objects from Twitter. In our

runs, Search and memcached, respectively, support peak

queries-per-second rates of 3000 and 20,000 using 100

threads per leaf server at 90% utilization (corresponding to a

modern server with 4 sockets, 12 cores per-socket, and 2

SMT contexts per core). Our memcached throughput of

20,000 queries-per-second with a batch size of 50 objects

(i.e., 1 M objects/s) matches the throughputs reported in

[27]. These threads provide high throughput parallelism to

match the peak load (i.e., the threads are copies processing

the same index/key-value slice and not separate leaves

processing different slices).

The benchmarks use a parent-to-leaf fan-out of 32 (a

standard value). For each query, we randomly choose a node

to be the parent (Section 2.1). We set the budgets as: total

200 ms, request 25 ms, reply 25 ms, leaf compute 75 ms

(Web Search) and 20 ms (memcached), and aggregate and

remaining network (aggregate-root communication) 75 ms.

The network and compute budgets are the 99th percentile

latencies achieved by, respectively, our network using

D2TCP and compute nodes at the peak load. We target less

than 1% missed deadlines (i.e., these deadlines are tight and

do not offer any “easy” opportunity for TimeTrader). The

network and compute budgets are in line with [5, 37, 38]

and [34], respectively. TimeTrader focuses on request,

compute and reply for a total of 125 ms (Web Search) and

70 ms (memcached) which are the deadlines in our

experiments. We use request sizes of 2 KB and reply sizes

of 16-64 KB chosen uniformly randomly, and background

flow sizes of 1 and 10 MB chosen uniformly randomly

(Section 2.1); the total traffic is split evenly between OLDI

and background flows. These message characteristics match

publicly-available distributions from production OLDIs [9].

In all our experiments, the network utilization is 20% which

is realistic for datacenters [5] (i.e., the network is over-

provisioned and yet incurs in-cast collisions).

Real Implementation: Our real implementation uses 9

servers (8 leaves and 1 parent, with a fan-out of 8), which

are connected to a rack switch using 1 Gbps links. We

implement TimeTrader’s slack computations and EDF at the

leaf servers for Search. We distribute the index to all the leaf

servers. We vary the query rate using Faban (CloudSuite).

Because our switches do not support ECN, we timestamp

requests at the parent and leaf servers to infer request slack

because clock drifts are not a problem at this scale (i.e., the

clocks drift by at most 200 microseconds during our

evaluation). We generate background traffic between servers

(i.e., all-to-all traffic) using Iperf [2] to maintain a network

utilization of 20% (i.e., 200 Mbps). This traffic provides

incast effect at rack scale. Finally, we reduce the request

budget from 25 ms to 15 ms because tail effects (i.e., incast)

are less intense at small scale. Therefore, our budgets are

not over-provisioned.

8

Compute latency and power: To measure compute

latency and power, we run the benchmarks on a system

using an Intel IvyBridge-based CPU. We generate a leaf

compute latency distribution (service time only without any

compute-queuing delay) for our benchmarks running on the

system (see Figure 3). The compute latency distribution

confirms the wide spread of compute latencies. The

compute time for search is significant whereas that for

memcached is shorter (object lookups are fast) making

memcached network-limited and providing more

opportunity for slowing down compute. The compute

budgets for search and memcached at 75 ms and 20 ms are

slightly more than the 99th percentile latencies to account for

queuing delays at the peak load.

Using RAPL, we vary the CPU clock speed from 2.5 GHz

to 1.2 GHz and obtain per-request latency (total latency, not

just clock speed) and per-core power. Figure 4 shows active

power saving factor (Y axis) and request slowdown factor

(X axis) for search and memcached; active power = total

power – idle power. As the slowdown increases, the power

savings are slightly super-linear over compute slowdown in

the beginning where there may be some voltage scaling and

then the savings slightly flatten when voltage cannot scale

as much. We use these compute latency and total power

values (including idle) with network latency to report power

and performance.

Network latency: Using ns-3 [3], a widely-used simulator,

we simulate the network depicted in Figure 5, which uses a

fat-tree topology typical of datacenter networks [4]. There

are 64 racks with each rack having up to 16 servers (i.e., a

1000-server cluster). Each server connects to the top-of-

rack (ToR) switch via a 10 Gbps link. Going up from the

ToR level, there is a bandwidth over-subscription of 2x at

each level, as is typical [4]. We sized the packet buffers in

the ToR switches to match typical buffer sizes of shallow-

buffered switches in real data centers (4MB) [5]. We set the

link latencies to 20 µs, achieving an average of round-trip

time (RTT) of 200 µs, which is representative of datacenter

network RTTs. To reduce the effects of in-cast collisions,

we add a 1-ms jitter to each leaf’s reply [14].

To simulate a deadline-aware TCP implementation that

exploits the separate request-reply budgets (Section 2.3), we

use D2TCP [37] on top of ns-3's TCP New Reno protocol

[2]. (code obtained from D2TCP’s authors). All D2TCP

parameters (e.g., deadline imminence factor) match those in

[37] and are available with the code. We set RTOmin for all

the protocols to be 20 ms. We use the same separate

request-reply budgets and D2TCP in all the systems we

compare – baseline (no power management), Pegasus and

TimeTrader. The latencies we observe closely match those

reported in other papers, including production runs [37].

All together: In ns-3, we simulate TimeTrader’s EDF

scheduling (Section 3.3) and compute the total slack as a

function of the request slack and compute-queuing slack

(Section 3.2). We also simulate Pegasus to determine its

slack based on the datacenter-wide load as compared to the

peak. We apply TimeTrader’s total slack and Pegasus’s slack

as slowdown factors to our real-system runs to measure

TimeTrader’s and Pegasus’s energy savings.

5 Rack-scale implementation results
We validate TimeTrader’s energy gains using a real rack-

scale implementation and quantify its overheads.

Figure 3: Service Time distributions

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65

C
u

m
m

u
la

ti
v
e
 p

e
rc

e
n

t
o

f
re

q
u

e
s
ts

Service time (ms)

Web search

memcached

1.05, 1.11
1.12, 1.23

1.44, 1.55

1.86, 1.95
1.20, 1.42

1.35, 1.75

1.60, 2.30

1.88, 2.77

1

1.5

2

2.5

3

1 1.2 1.4 1.6 1.8 2

P
o

w
e
r

s
a
v
in

g
 f

a
c
to

r
o

v
e
r

b
a

s
e
li

n
e

Benchmark slowdown factor over baseline

Web search

memcached

Figure 5: Simulated Network

Figure 4: Power-Latency relationship

ToR
switches

Core switches

Aggregation
switches

Servers

9

Figure 6 shows our energy savings for Search over a

baseline without power management. The Y axis shows

energy savings (including idle) and the X axis shows Search

running at 90% (peak), 60%, and 30% load. Our slowdowns

of 7%, 16%, and 27% (not shown) correspond to energy

savings of 11%, 19%, and 28% (shown in Figure 6) at 90%,

60% and 30% load. Because, tail effects are less intense at

rack scale, our energy savings are less than our savings at-

scale (section 0). Nevertheless, TimeTrader’s energy

savings are still significant.

Further, we use the real implementation to measure the

overhead of EDF and timestamping (i.e., needed for

determining compute-slack). We find that EDF adds an

overhead of 330 microseconds for re-prioritizing about 15

entries (i.e., our 99th percentile queue length).

Timestamping (i.e., used for calculating compute-slack)

adds an additional overhead of 45 microseconds per request.

These overheads are negligible compared to OLDI service

times, which are in the order of tens of milliseconds.

6 At-scale simulation results
Now we show our at-scale results. We start with comparing

the energy savings of TimeTrader and Pegasus, the main

result of the paper. We explain the savings by presenting the

distributions of (a) request slack, (b) compute-queuing

slack, and (c) the request-compute-reply latency. We then

show a binning of requests based on their CPU core’s power

state TimeTrader and Pegasus. Finally, we isolate the

contributions of EDF, request slack, and compute slack.

6.1 Energy savings

 Figure 8 compares the energy savings of Pegasus and

TimeTrader over a baseline cluster without power

management. The Y axis shows the total energy savings

(including idle) and the X axis shows the benchmarks

running at 90% (peak), 60%, and 30% load with “P” and

“T” denoting Pegasus and TimeTrader, respectively. In all

the three systems, less than 1% of queries exceed the 125-

ms (search) and 70-ms (memcached) request-compute-reply

budgets (i.e., they all meet our target of less than 1% missed

deadlines). Because Pegasus does not save energy at the

peak load, that bar is zero.

 Both Pegasus and TimeTrader achieve significant savings

at low loads with TimeTrader achieving more due to the

difference between Pegasus’s datacenter-wide average loads

based slack versus TimeTrader’s per-query, per-leaf slack.

For instance, at 30% load, TimeTrader achieves around

42% (search) and 49% (memcached) savings compared to

Pegasus’s 32% and 37%; these savings amount to

improvements of 17% (0.68/0.58) and 24% (0.63/0.51)

over Pegasus. Both systems save more in memcache than in

search because memcached’s shorter compute latency than

network latency allows longer slacks and greater slowdown

factors. By slowing down, Pegasus and TimeTrader save

both active and idle energy (Section 2.4). As the load

increases, idle power savings increase as expected due to

less idling. Further, TimeTrader saves more than 15%

energy at the peak load during which the power

consumption is more than twice than that during 30% load

(it is misleading to compare the savings percentages at

different loads which correspond to different amounts of

power consumption). Because datacenter loads are moderate

to high during half the day (diurnal pattern), TimeTrader’s

savings are significantly higher than Pegasus’s.

6.2 Slack and latency distributions

 To explain these savings, we plot the slack for search in

Pegasus and TimeTrader in Figure 7. We do not show

Figure 6: Rack-scale Energy Savings

0%

5%

10%

15%

20%

25%

30%

90% (peak) 60% 30%

E
n

e
rg

y
 s

a
v
in

g
s

 o
v

e
r

b
a

s
e
li

n
e

TimeTrader

0%

10%

20%

30%

40%

50%

60%

P T P T P T P T P T P T

90% 60% 30% 90% 60% 30%

Web search memcached

E
n

e
rg

y
 s

a
v
in

g
s

 o
v

e
r

b
a

s
e
li

n
e

Idle Active

Figure 8: At-Scale Energy Savings

Figure 7: Slack distribution for search

0%

20%

40%

60%

80%

100%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
u

m
m

u
la

ti
v
e
 p

e
rc

e
n

t
o

f
re

q
u

e
s
ts

Slack (as a fraction of compute budget)

request slack Pegasus (30%)

Timetrader (90%) Timetrader (30%)

10

memcached’s slack which is similar. The X axis shows the

slack as a fraction of the compute budget and the Y axis

shows the cumulative percent of requests. We show the

request slack (relevant only for TimeTrader), TimeTrader’s

total slack at 90% and 30% loads, and Pegasus’s total slack

at 30% load (zero at 90% load, not shown). The request

slack is the same at all loads because the network is over-

provisioned (Section 4) [5]. We do not show 60% load to

avoid cluttering the graph.

 Almost the entire request slack is available to 90% of the

requests in TimeTrader because in-casts are infrequent

(Section 2.1). The difference between the request slack and

TimeTrader’s total slack is the compute slack (both loads).

In TimeTrader, even at 90% load, 90% of requests have a

slack of (0.25 * compute budget) or more, confirming that

most requests are sub-critical even at the peak load; at 30%

load, 80% of requests have a slack of (0.5 * compute

budget) or more. Further, Pegasus’s slack at 30% load

corresponds to the difference in the 99th percentile latencies

for 30% load and 90% load (peak), and is available to

almost all requests (i.e., Pegasus’s slack is mostly a function

of the load and does not vary from one request to another

for a fixed load). Compared to Pegasus, at 30% load,

TimeTrader has lower slack for 10% of requests because

TimeTrader exploits per-request slack where a higher slack

for one request sometimes increases the queuing delay for

another request cutting into the latter’s slack (i.e., there is

some give-and-take among the requests). These values are

the total slack whereas TimeTrader’s slowdown factors

involve another scaling factor to moderate for the load

(Section 3.2 and Table 1). Nevertheless, TimeTrader’s

longer slack results in higher energy savings.

The slowdown factors for Pegasus and TimeTrader closely

follow the slack amounts in Figure 7. We note that by

carefully exploiting the throughput slack, TimeTrader

maintains the same throughput as the baseline at all loads

(fall in throughput would manifest as many missed

deadlines).

 To illustrate that TimeTrader reshapes the request-compute-

reply latency distribution while Pegasus shifts the

distribution, we plot the latency distributions for search in

Figure 10. The plot shows the distributions for the baseline,

TimeTrader, and Pegasus at 30% and 90% load (Pegasus at

90% coincides with the baseline at 90%). We note that the

plot shows the total latency including the reply component

to show the overall effect of the schemes, as opposed to

Figure 7 which shows only request and compute

components. As expected, TimeTrader reshapes the

distributions at both loads, albeit more at 30% than 90% due

to greater latency and throughput slacks. In contrast,

Pegasus shifts the baseline curve at 90% load to the right

when the load is 30%. Also, as load increases, the systems

diverge more at higher percentiles than at lower percentiles.

Because OLDIs’ M/M/96 queues, unlike M/M/1 queues,

exhibit highly non-linear queuing – higher percentiles of

queuing delay increase more abruptly than lower percentiles

at higher loads.

6.3 Power states

To understand TimeTrader’s energy savings, we bin the

requests based on the CPU core’s power state for each

request. Each power state corresponds to a core clock speed

which is scaled based on the request’s slowdown factor.

Figure 9 shows the fraction of requests in each bin for

Pegasus (P) and TimeTrader (T) at 90% (peak) and 30%

loads running search and memcached. The bins span 1.2

GHz to 2.5 GHz.

We consider search first. Pegasus does not slow down

requests at 90% load and incurs the highest clock speed and

power. In contrast, TimeTrader even at 90% load slows

down 85% of the requests by 20% or more which

corresponds to the second-slowest state (1.5 GHz) (Figure

9). As the load decreases to 30% and the slack increases,

Pegasus also slows down requests to the same state.

However, TimeTrader uses the slowest state for many

requests (40%) and saves more energy. In contrast to

TimeTrader’s per-query metrics, Pegasus’s datacenter-wide

average metrics imply that for a fixed load the power states

do not change much. The trends in memcache are similar.

6.4 Isolation of impact

We isolate the impact of EDF, request slack, and compute

slack on TimeTrader’s energy savings. Figure 11 shows the

Figure 10: Request-Compute-Reply latency for Search

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100 120 140

C
u

m
m

u
la

ti
v
e
 p

e
rc

e
n

t
o

f
re

q
u

e
s
ts

Latency (ms)

Timetrader (90%)

Timetrader (30%)

Baseline (30%)

Baseline (90%)

Pegasus (30%)
0%

20%

40%

60%

80%

100%

P T P T P T P T

90% 30% 90% 30%

Web search memcached

P
e
rc

e
n

t
p

o
f

re
q

u
e

s
ts

1.2 GHz 1.5 GHz 1.8 GHz

2.2 GHz 2.5 GHZ

Figure 9: Power states distribution

11

four systems’ energy savings over the baseline: TimeTrader

without EDF, TimeTrader using only request slack and

EDF, TimeTrader using only compute slack and EDF, and

TimeTrader (whole). As before, all the systems have the

same time budget and target of missed deadlines (1%). The

X axis shows 90% and 30% load and our benchmarks.

Without EDF, critical requests queued behind slowed-down

sub-critical requests are likely to be affected. To achieve the

same percent of missed deadlines, TimeTrader’s slowdown

factors are greatly reduced. Hence, without EDF,

TimeTrader’s savings are modest though they grow as the

load decreases from 90% to 30% due to the availability of

more slack. TimeTrader using only request slack achieves a

significant fraction of that of TimeTrader (whole) at 90%

load where compute slack is limited and this fraction

diminishes as the load decreases to 30%. As expected, this

trend reverses for TimeTrader using only compute slack.

7 Related work
Previous work on improving energy efficiency fall into the

following four categories: datacenter power management,

software consolidation, exploiting low-power modes, and

real-time systems.

In the first category, a datacenter-wide power budgeting

approach [33] allows the budget to be shared among

multiple entities (e.g., racks and servers) to achieve high

power-supply utilization and efficiency, analogous to chip-

level power budget management in [17]. A coordinated

power management approach [30] integrates several power

controllers to avoid conflicting decisions and improve

overall efficiency.

The second category of software consolidation improves

energy efficiency by consolidating workload on under-

utilized servers so that the servers operate at high utilization

levels which are also energy efficient. While consolidation

of batch workloads such as MapReduce [10, 19] and multi-

programmed workloads [12] is possible, OLDIs’ tight

latency budgets and large memory footprints disallow such

consolidation. Bubble-flux [39] shows that OLDIs can be

co-located with batch jobs under looser latency budgets but

improving the utilization is hard under tighter budgets.

Exploiting low-power modes, the third category, proposes

low-power idle states or leverages turning servers off (e.g.,

PowerNap [24], Blink [35]). However, the transition times

are too long for the tight OLDI latency budgets; and OLDIs

need all the leaf servers to stay turned on. Other work [25]

studies OLDI workloads and concludes that the tight

budgets necessitate a cluster-wide approach to power

management, similar to Pegasus and TimeTrader. We have

extensively discussed and contrasted the two schemes.

Other proposals employ DVFS to improve throughput-

centric batch workloads [17, 20, 31]. However, these

proposals do not address OLDI’s latency constraints.

In the fourth category, real-time systems have tight latency

constraints like OLDIs so that energy efficiency can be

achieved via DVFS by slowing down based on the jobs’

deadlines [6, 21, 29]. However, these proposals exploit real-

time jobs’ characteristics that are significantly different

from those of OLDIs (e.g., apriori knowledge of number

and duration of jobs running single-node systems). OLDIs

do not permit such apriori knowledge and are distributed

applications running on large clusters.

Finally, we have discussed many networking proposals

targeting the in-cast problem in OLDIs [5, 37, 38]. These

proposals address only network latency and do not explore

dynamically sharing the latency budget between network

and compute, as done by TimeTrader.

8 Conclusion
Reducing the energy of datacenters running on-line, data-

intensive applications (OLDIs) is challenging due to OLDIs’

tight response time requirements. In OLDIs, each user query

goes to all or many of the nodes in the cluster, so that

overall time budget is dictated by the tail of the replies’

latency distribution; replies see latency variations both in

the network and compute. We proposed TimeTrader to

reduce energy by exploiting sub-critical replies’ latency

slack. While previous work shifts the leaves’ response time

distribution to consume the slack at lower loads,

TimeTrader reshapes the distribution at all loads by slowing

down individual sub-critical nodes without increasing

missed deadlines. TimeTrader exploits slack in both the

network and compute budgets. Further, TimeTrader

leverages Earliest Deadline First scheduling to decouple

critical requests from the queuing delays of sub-critical

requests which can then be slowed down without hurting

critical requests. Using a combination of real-system

measurements and at-scale simulations, we showed that

without adding to missed deadlines, TimeTrader saves 15-

49% energy in a datacenter with 512 nodes, whereas

previous work saves 0% and 31-37%.

By exploiting latency slack in the highly-latency-sensitive

OLDIs, TimeTrader converts OLDIs’ performance

disadvantage of latency tails into an energy advantage. As

OLDIs grow in scale due to the ever-increasing data and in

importance due to the ever-growing number of OLDI-reliant

services, energy consumption will become only more

important. As such, techniques like TimeTrader will be

important in the march towards energy efficiency.

Figure 11: Impact of EDF, request slack, and compute

slack

0%

10%

20%

30%

40%

50%

60%

90% 30% 90% 30%

E
n

e
rg

y
 s

a
v
in

g
s

 o
v

e
r

b
a

s
e
li

n
e

Without EDF Request only
Compute only Timetrader

Web search memcached

12

References

1. Intel® 64 and IA-32 Architectures Software Developer Manuals

Systems Programming Guide, part 2, 2013.

2. Iperf - The TCP/UDP Bandwidth Measurement Tool
https://iperf.fr/.

3. The ns-3 discrete-event network simulator,

http://www.nsnam.org/.
4. Al-Fares, M., Loukissas, A. and Vahdat, A. A scalable,

commodity data center network architecture Proceedings of the

ACM SIGCOMM 2008 conference on Data communication,
ACM, Seattle, WA, USA, 2008.

5. Alizadeh, M., Greenberg, A., Maltz, D.A., Padhye, J., Patel, P.,

Prabhakar, B., Sengupta, S. and Sridharan, M. Data center TCP
(DCTCP) Proceedings of the ACM SIGCOMM 2010

conference, ACM, New Delhi, India, 2010.

6. Aydin, H., Melhem, R., Moss, D., Mej, P. and a, A. Power-
Aware Scheduling for Periodic Real-Time Tasks. IEEE Trans.

Comput., 53 (5). 584-600.

7. Barroso, L.A., Dean, J. and Holzle, U. Web Search for a Planet:
The Google Cluster Architecture. IEEE Micro, 23 (2). 22-28.

8. Barroso, L.A. and Hölzle, U. The Datacenter as a Computer:

An Introduction to the Design of Warehouse-Scale Machines.
Morgan and Claypool, 2009.

9. Benson, T., Akella, A. and Maltz, D.A. Network traffic

characteristics of data centers in the wild Proceedings of the
10th ACM SIGCOMM conference on Internet measurement,

ACM, Melbourne, Australia, 2010.

10. Chen, Y., Alspaugh, S., Borthakur, D. and Katz, R. Energy
efficiency for large-scale MapReduce workloads with

significant interactive analysis Proceedings of the 7th ACM

european conference on Computer Systems, ACM, Bern,
Switzerland, 2012.

11. Dean, J. and Barroso, L.A. The tail at scale. Commun. ACM, 56

(2). 74-80.
12. Delimitrou, C. and Kozyrakis, C. Paragon: QoS-aware

scheduling for heterogeneous datacenters Proceedings of the

eighteenth international conference on Architectural support for
programming languages and operating systems, ACM,

Houston, Texas, USA, 2013.

13. Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Alisafaee,
M., Jevdjic, D., Kaynak, C., Popescu, A.D., Ailamaki, A. and

Falsafi, B. Clearing the clouds: a study of emerging scale-out

workloads on modern hardware Proceedings of the seventeenth
international conference on Architectural Support for

Programming Languages and Operating Systems, ACM,

London, England, UK, 2012.
14. Floyd, S. and Jacobson, V. The synchronization of periodic

routing messages Conference proceedings on Communications

architectures, protocols and applications, ACM, San Francisco,
California, USA, 1993.

15. Google. Efficiency: How we do it
http://www.google.com/about/datacenters/efficiency/internal/.

16. Hoff, T. Latency is Everywhere and it Costs You Sales - How to

Crush it http://highscalability.com/blog/2009/7/25/latency-

iseverywhere-and-it-costs-you-sales-how-to-crush-it.html.,

2009.

17. Isci, C., Buyuktosunoglu, A., Cher, C.-Y., Bose, P. and
Martonosi, M. An Analysis of Efficient Multi-Core Global

Power Management Policies: Maximizing Performance for a

Given Power Budget Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture,

IEEE Computer Society, 2006.

18. Kleinrock, L. Theory, Volume 1, Queueing Systems. Wiley-
Interscience, 1975.

19. Lang, W. and Patel, J.M. Energy management for MapReduce

clusters. Proc. VLDB Endow., 3 (1-2). 129-139.
20. Lee, J. and Kim, N.S. Optimizing throughput of power- and

thermal-constrained multicore processors using DVFS and per-

core power-gating Proceedings of the 46th Annual Design

Automation Conference, ACM, San Francisco, California, 2009.

21. Lin, C. and Brandt, S.A. Improving Soft Real-Time

Performance through Better Slack Reclaiming Proceedings of

the 26th IEEE International Real-Time Systems Symposium,
IEEE Computer Society, 2005.

22. Liu, C.L. and Layland, J.W. Scheduling Algorithms for

Multiprogramming in a Hard-Real-Time Environment. J. ACM,
20 (1). 46-61.

23. Lo, D., Cheng, L., Govindaraju , R., Barroso, L.A. and

Kozyrakis, C. Towards Energy Proportionality for Large-Scale
Latency-Critical Workloads The 41th Annual International

Symposium on Computer Architecture, Minnesota, MN, 2014,

301-312.
24. Meisner, D., Gold, B.T. and Wenisch, T.F. PowerNap:

eliminating server idle power Proceedings of the 14th

international conference on Architectural support for
programming languages and operating systems, ACM,

Washington, DC, USA, 2009.

25. Meisner, D., Sadler, C.M., Andr, L., Barroso, Weber, W.-D. and

Wenisch, T.F. Power management of online data-intensive

services Proceedings of the 38th annual international

symposium on Computer architecture, ACM, San Jose,
California, USA, 2011.

26. Moon, S.B., Skelly, P. and Towsley, D., Estimation and

removal of clock skew from network delay measurements. in
INFOCOM '99. Eighteenth Annual Joint Conference of the

IEEE Computer and Communications Societies. Proceedings.
IEEE, (1999), 227-234.

27. Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H.,

Li, H.C., McElroy, R., Paleczny, M., Peek, D., Saab, P.,
Stafford, D., Tung, T. and Venkataramani, V. Scaling

Memcache at Facebook Proceedings of the 10th USENIX

conference on Networked Systems Design and Implementation,
USENIX Association, Lombard, IL, 2013.

28. Paxson, V. On calibrating measurements of packet transit times

Proceedings of the 1998 ACM SIGMETRICS joint international
conference on Measurement and modeling of computer systems,

ACM, Madison, Wisconsin, USA, 1998.

29. Pillai, P. and Shin, K.G. Real-time dynamic voltage scaling for
low-power embedded operating systems Proceedings of the

eighteenth ACM symposium on Operating systems principles,

ACM, Banff, Alberta, Canada, 2001.
30. Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z. and

Zhu, X. No "power" struggles: coordinated multi-level power

management for the data center Proceedings of the 13th
international conference on Architectural support for

programming languages and operating systems, ACM, Seattle,

WA, USA, 2008.
31. Rajamani, K., Rawson, F., Ware, M., Hanson, H., Carter, J.,

Rosedahl, T., Geissler, A., Silva, G. and Hua, H. Power-

performance management on an IBM POWER7 server
Proceedings of the 16th ACM/IEEE international symposium on

Low power electronics and design, ACM, Austin, Texas, USA,

2010.
32. Ramakrishnan, K., Floyd, S. and Black, D. The Addition of

Explicit Congestion Notification (ECN) to IP. RFC Editor,

2001.
33. Ranganathan, P., Leech, P., Irwin, D. and Chase, J. Ensemble-

level Power Management for Dense Blade Servers Proceedings

of the 33rd annual international symposium on Computer
Architecture, IEEE Computer Society, 2006.

34. Ren, S., He, Y. and McKinley, K. A Theoretical Foundation for

Scheduling and Designing Heterogeneous Processors for
Interactive Applications the 11th International Conference on

Autonomic Computing (ICAC 14), USENIX Association,

Philadelphia, PA, 2014.
35. Sharma, N., Barker, S., Irwin, D. and Shenoy, P. Blink:

managing server clusters on intermittent power Proceedings of

the sixteenth international conference on Architectural support
for programming languages and operating systems, ACM,

Newport Beach, California, USA, 2011.

http://www.nsnam.org/
http://www.google.com/about/datacenters/efficiency/internal/
http://highscalability.com/blog/2009/7/25/latency-iseverywhere-and-it-costs-you-sales-how-to-crush-it.html.
http://highscalability.com/blog/2009/7/25/latency-iseverywhere-and-it-costs-you-sales-how-to-crush-it.html.

13

36. Tullsen, D.M., Eggers, S.J. and Levy, H.M. Simultaneous

multithreading: maximizing on-chip parallelism Proceedings of
the 22nd annual international symposium on Computer

architecture, ACM, S. Margherita Ligure, Italy, 1995.

37. Vamanan, B., Hasan, J. and Vijaykumar, T.N. Deadline-aware
datacenter tcp (D2TCP) Proceedings of the ACM SIGCOMM

2012 conference on Applications, technologies, architectures,

and protocols for computer communication, ACM, Helsinki,
Finland, 2012.

38. Wilson, C., Ballani, H., Karagiannis, T. and Rowtron, A. Better

never than late: meeting deadlines in datacenter networks
Proceedings of the ACM SIGCOMM 2011 conference, ACM,

Toronto, Ontario, Canada, 2011.

39. Yang, H., Breslow, A., Mars, J. and Tang, L. Bubble-flux:
precise online QoS management for increased utilization in

warehouse scale computers Proceedings of the 40th Annual

International Symposium on Computer Architecture, ACM, Tel-
Aviv, Israel, 2013.

	Purdue University
	Purdue e-Pubs
	7-2014

	TimeTrader: Exploiting Latency Tail to Save Datacenter Energy for On-line Data-Intensive Applications
	Balajee Vamanan
	Hamza Bin Sohail
	Jahangir Hasan
	T.N. Vijaykumar

