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Abstract 

Datacenters running on-line, data-intensive applications 

(OLDIs) consume significant amounts of energy. However, 

reducing their energy is challenging due to their tight 

response time requirements. A key aspect of OLDIs is that 

each user query goes to all or many of the nodes in the 

cluster, so that the overall  time budget is dictated by the 

tail of the replies’ latency distribution; replies see latency 

variations both in the network and compute.  Previous work 

proposes to achieve load-proportional energy by slowing 

down the computation at lower datacenter loads based 

directly on response times (i.e., at lower loads, the proposal 

exploits the average slack in the time budget provisioned for 

the peak load). In contrast, we propose TimeTrader to 

reduce energy by exploiting the latency slack in the sub-

critical replies which arrive before the deadline (e.g., 80% 

of replies are 3-4x faster than the tail).  This slack is present 

at all loads and subsumes the previous work’s load-related 

slack. While the previous work shifts the leaves’ response 

time distribution to consume the slack at lower loads, 

TimeTrader reshapes the distribution at all loads by slowing 

down individual sub-critical nodes without increasing 

missed deadlines. TimeTrader exploits slack in both the 

network and compute budgets. Further, TimeTrader 

leverages Earliest Deadline First scheduling to largely 

decouple critical requests from the queuing delays of sub-

critical requests which can then be slowed down without 

hurting critical requests. A combination of real-system 

measurements and at-scale simulations shows that without 

adding to missed deadlines, TimeTrader saves 15-19% and 

41-49% energy at 90% and 30% loading, respectively, in a 

datacenter with 512 nodes, whereas previous work saves 

0% and 31-37%. Further, as a proof-of-concept, we build a 

rack-scale real implementation to evaluate TimeTrader and 

show 10-30% energy savings.  

1 Introduction 
Datacenters host many of modern Internet services today 

such as Web Search, social networking, e-commerce, and 

cloud computing.  Datacenters consume tens of megawatts 

of electric power [8], which accounts for millions of dollars 

in annual operating costs [30]. Of their total power, modern 

datacenters spend about 10% on cooling and power 

distribution overheads (their Power Usage Effectiveness is 

1.12 [15]) and about 5% on networking equipment, leaving 

about 85% for servers of which memory and disk take up 

45% and processors consume 55% (i.e., 47% of total) [8, 15, 

23]. TimeTrader focuses on the substantial processor power.  

Many of Internet services are provided by on-line, data-

intensive applications (OLDIs) which often process vast 

amounts of Internet data (e.g., Web Search and Key-Value 

stores) [25]. Such services typically operate under tight 

response time budgets set by service-level agreements 

(SLAs) (e.g., 200 ms for a Web Search query) [16]. 

Processing of a query often involves hundreds or thousands 

of servers working in parallel on memory-resident data [7, 

11]. OLDIs have two distinguishing characteristics. (1) 

They employ a multi-level tree-like software architecture 

where each query goes to all or many leaves. Consequently, 

though only a few leaves’ replies are slow, the overall   SLA 

budget is  dictated by the tail of the leaves’ reply latency 

distribution [11] (e.g., the 99.9th percentile leaf latency in a 

1000-leaf tree). Replies arriving after the deadline are 

dropped for responsiveness. (2) Both the network and 

compute at the leaf contribute to significant variability in the 

latency of the leaves’ replies, as we explain in Section  2.1 

(e.g., a request or reply takes 2-30 ms in the network [5, 37, 

38] and leaf computation takes 40-120 ms [34]).  Both 

network and compute variations occur at all datacenter loads 

though the spread is greater at higher loads.  

Using low-power or sleep modes is a common approach to 

saving energy. Unfortunately, OLDIs’ time budgets and 

inter-arrival times are too short for the transition latencies of 

low-power modes [24, 25]. As such, the low-power modes 

would incur many deadline violations [23]. Alternately, an 

insightful recent work, called Pegasus [23], achieves load-

proportional energy by slowing down the leaf computation 

at lower datacenter loads while carefully ensuring that SLAs 

are not violated (e.g., at night times [25]).   Pegasus exploits 

the mean slack at lower loads in the time budget provisioned 

for the peak load.   

In contrast, we propose TimeTrader to reduce energy by 

exploiting sub-critical leaves’ latency slack (e.g., 80% of 

leaves in every query complete within a 3rd-4th of the 

budget.). This slack is present at all loads (modern 

datacenters operate at high loads during the day [25]); and 

subsumes Pegasus’ load-related slack. Pegasus exploits the 

mean load-related slack, common to all leaves at lower 

loads, to shift the response time distribution. Instead, 

TimeTrader reshapes the response time distribution at all 
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loads by slowing down individual sub-critical leaves so that 

they are closer to, but within, the deadline than the default 

distribution. While TimeTrader saves more energy than 

Pegasus at low loads, TimeTrader achieves significant 

savings even at the peak load, which occurs often and where 

Pegasus has no opportunity. Thus, TimeTrader converts the 

performance disadvantage of latency tails [11] into an 

energy advantage.  

 TimeTrader employs two ideas. First, TimeTrader trades 

time across system layers, borrowing from the network layer 

and lending to the compute layer. Each query results in a 

request-compute-reply-aggregate sequence where the 

requests from parents to the leaves and replies from the 

leaves to their parents see variability in the network, and the 

compute phase sees variability in the leaf server.  OLDIs 

break up the total time budget into a component each for 

request, compute, reply, and aggregate. We make the key 

observation that because request comes before compute, the 

slack in faster requests can be transferred to their 

corresponding compute without any prediction or risk of 

missing the deadline. To exploit the variations in compute, 

we make the key observation that while Pegasus captures 

average variations due to datacenter-wide load changes, 

each individual query’s queuing at the leaf server varies 

significantly even under a fixed load providing more 

opportunity (e.g., due to “instantaneous” variations in work 

and load). Unlike request and compute-queuing, 

unfortunately, reply comes after compute and reply latency 

is unpredictable due to the highly-timing-dependent nature 

of network latencies (Section 2.1). Therefore, the slack in 

faster replies cannot be transferred easily to their compute. 

As such, TimeTrader exploits the request and compute 

slacks but not the reply slack.  

Second, despite the slack, such slowing down is challenging 

in the presence of long tails and SLA guarantees.  Even 

though a sub-critical request has slack, slowing it down may 

hurt another, critical request that is queued behind the sub-

critical request. To address this issue, we leverage the well-

known idea of Earliest Deadline First (EDF) scheduling [22] 

to decouple critical requests from the queuing delays of sub-

critical requests by placing the former ahead of the latter in 

the leaf servers’ queues. Conventional implementations and 

Pegasus cannot exploit EDF because they do not distinguish 

between critical and sub-critical requests. Due to its 

decoupling, EDF pulls in the tail and reshapes the leaves’ 

response time distribution (without improving the mean), 

enabling TimeTrader to use the per-leaf slack to shift further 

the distribution closer to the deadline than with network 

slack alone. Though this shift lengthens the mean service 

time, such an increase does not worsen throughput. Because 

OLDIs’ response times are sensitive to tail latencies, 

compute-queuing delays are kept low even at high loads via 

high throughput-parallelism (i.e., there is compute-

throughput slack even at high loads). As such, TimeTrader’s 

longer service times tap into this throughput slack without 

causing loss of throughput.  

Finally, TimeTrader employs two key mechanisms to 

realize the above ideas. Transferring the request slack from 

the network to the compute is challenging due to lack of 

fine-grained (sub-ms) synchronization between a parent and 

the leaves. To address this issue, we leverage the well-

known Explicit Congestion Notification (ECN) in IP [32] 

and TCP timeouts to inform the leaves whether a request 

encountered timeout or congestion in the network and hence 

does not have slack. Further, because the slack lengths are 

tens of milliseconds, we use power management schemes 

with response times of 1 ms, similar to Pegasus (e.g., 

Running Average Power Limit (RAPL) [1]).  

In summary, the paper’s contributions are: 

 TimeTrader reshapes the response time distribution at 

all loads by slowing down individual sub-critical leaves 

without increasing SLA violations;  

 TimeTrader exploits the request and compute slack on a 

per-leaf, per-query basis;  

 TimeTrader leverages EDF to largely decouple critical 

requests from the slowing down of sub-critical requests; 

and  

 TimeTrader leverages (a) network signals such as TCP 

timeouts and ECN to circumvent the lack of fine-

grained synchronization between parent and leaves and 

(b) modern, low-latency power management to fit 

within OLDI timescales.  

Using a combination of real-system measurements and at-

scale simulations, we show that without adding to missed 

deadlines TimeTrader saves 15-19% and 41-49% energy at 

90% and 30% loading, respectively, in a datacenter with 512 

nodes, whereas previous work saves 0% and 31-37%. We 

also build a rack-scale real implementation to evaluate 

TimeTrader and show 10-30% energy savings. 

The rest of the paper is organized as follows. Section 2 

describes the background and the challenges. Section 3 

describes TimeTrader’s details. Section 4 describes our 

experimental methodology and Section 5 and 6 present our 

results.  Section 7 discusses related work. Finally, Section 8 

concludes the paper. 

2 Challenges and opportunities 

2.1 Background 

As discussed, OLDIs typically employ a tree-based software 

architecture where the data to be queried resides in the leaf 

nodes’ memory for fast access [7, 11] (see Figure 1). For 

instance, in Web Search and Key-Value store, the search 

index and the key-value pairs are partitioned across the 

leaves in a well load-balanced manner (e.g., using good 

hashing).  In Web Search, every query is broadcast to all the 

leaves whose results are aggregated based on some ranking 

scheme (e.g., Google’s PageRank). Typical use of key-value 

stores involve looking up several keys, so that each top-

level request generates lookups in several hundreds of  
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leaves, as noted in [23] (e.g., a user’s Facebook page 

typically comprises of several hundreds of objects).  

Each query involves a request-compute-reply-aggregate 

sequence where the query generates requests to the leaves 

going through multiple levels in the tree (see Figure 1); each 

leaf looks up its memory to compute its result and sends a 

reply to its parent which often aggregates the replies from 

all the children and sends the aggregated result up the tree 

potentially involving aggregations on the way to the root 

which sends the overall response. The key point here is that 

each query needs to wait for the replies from either all the 

leaves (Web Search) or several hundreds of leaves (Key-

value stores). Consequently, the overall response time of a 

query is affected by the slowest leaf so that the mean overall 

response time, and therefore the SLA budget, includes the 

99th - 99.9th percentile leaf latency in a 1000-node cluster, 

known as the latency tail problem [11]. To maintain 

interactive user experience, the parents wait for replies only 

until the deadline and drop the replies that miss the deadline. 

Because the dropped replies affect response quality and 

revenue, OLDIs keep the fraction of missed deadlines low 

(e.g., 1%). 

There is a wide variation in the leaves’ reply latency due to 

variations in network and compute; as noted before, this 

variation is among the sub-queries within a query, not 

across queries. Requests from parents to leaves (and 

responses) may take varying time due to collisions at the 

packet buffers with the leaves’ replies for multiple queries. 

Due to the tree-like software architecture and mostly 

balanced workload among the leaves, the leaves send their 

replies to the parent at about the same time; this 

phenomenon is called in-cast [5, 37, 38]. Because all the 

replies are destined for the same input port of the same node 

(parent), the replies are queued in the same packer buffer at 

the relevant datacenter network switch. Because in-casts are 

inevitable, the switches are provisioned with enough 

buffering to handle a few in-casts. However, the buffers are 

kept shallow for cost and latency reasons [5]. Therefore, 

multiple queries’ in-casts occurring at about the same time 

and colliding at the buffers result in delays and buffer 

overflows; multiple queries are processed in parallel for 

high throughput. Further, there are also background flows 

from other applications on the cluster due to consolidation 

or to updating the OLDI data (e.g., Web index). Such 

collisions cause TCP time-outs and re-transmits resulting in 

the replies falling in the tail or exceeding the time budget. 

While such collisions are uncommon in general, they are 

common enough to affect the 90th-99.9th percentile latencies 

(e.g., in every query, 80% of replies incur 5 ms latency 

whereas the last 1% incur 20 ms). Further, such collisions 

are highly timing-dependent and therefore are highly 

unpredictable; the TCP-flow propagation delay for a leaf to 

realize that a collision has occurred is too long for the leaf to 

delay or slow down its sending rates (hence reactive 

schemes are unlikely to work). 

While in-casts occur for replies, requests are also affected 

by a multiplexing strategy used to distribute the network 

load among most, if not all, of the datacenter’s nodes. If the 

roles of the nodes serving as a parent or a leaf were fixed 

and unchanging, then the reply in-casts would cause hot 

spots in the network where the parent nodes would become 

repeated bottlenecks. To alleviate this problem, the role of a 

sub-tree parent for a query is randomized among the sub-

tree’s nodes i.e., a node is a parent for one query and a leaf 

for another. Such randomization ensures that in-casts are 

uniformly distributed among all the nodes [5]. We found in 

our simulations that using just one or two dedicated roots 

for 32 children exacerbates the reply in-casts and results in 

elongating the 99th percentile of replies from around 22 ms 

with the randomization to 170 ms with 1-2 dedicated roots. 

Adding 4-8 dedicated roots performs as well as 

randomization but at 10-25% extra cost (i.e., 3-7 extra 

parents per 32 leaves). While randomization alleviates reply 

in-casts without extra cost, reply in-casts do occur, 

unfortunately, despite such randomization. Further, because 

the same node may issue a request as a parent to another 

node for one query and may send a reply as a leaf to the 

other node for another query, requests and replies can 

collide at the packet buffers. Consequently, requests caught 

in unrelated reply in-casts face delays and time-outs (the 

fractions are similar to those of replies as mentioned above).  

Like the network, the compute in each leaf also exhibits 

latency variation due to work imbalance across queries 

despite good load balancing and hashing [34]. For instance, 

a Web Search query may lead to no matches at a leaf while 

finding many matches at another. Further, changes in the 

datacenter load also cause latency variation in compute. As 

such, compute latencies also vary by a wide range (e.g., in 

every query, 80% of leaves take 30 ms for compute 

including compute-queuing at the leaf server, whereas the 

last 1% take 70 ms).   

Both in-casts and work imbalance occur at all loads. Higher 

loads increase the latency spread because queuing non-

linearly dilates these latencies. In the case of compute-

queuing delays, there are two effects: (1) queuing changes 
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due to load changes, and (2) “instantaneous” changes in the 

work and load even at a fixed load.  

2.2 Opportunities 

In the presence of such variations, the average overall 

response time, and therefore the SLA budget, includes the 

tail latencies for the request-compute-reply-aggregate 

sequence. To account for compute-queuing delays, the tail 

latencies are measured at the expected peak load in a fully-

provisioned datacenter. However, more than 80% of leaves 

complete well ahead of the deadline for every query (e.g., 

with 3-4x slack).  TimeTrader targets this opportunity, the 

per-leaf per-request network slack and compute-queuing 

slack, which exists at all datacenter loads. 

As discussed in Section 1, Pegasus [23] achieves load-

proportional energy by slowing down leaf computation at 

lower loads based directly on response times. The paper 

shows that using response times is better than employing 

CPU-utilization-based dynamic voltage and frequency 

scaling (DVFS) which results in many missed deadlines 

because requests in the tail remain critical even at low loads. 

Pegasus uses datacenter-wide average response times as a 

measure of the load and uniformly slows down all the nodes 

at lower loads, while ensuring that SLA violations do not 

increase.  Thus, Pegasus exploits the slack in the time 

budget, which is provisioned for the peak load, to shift the 

leaves’ response time distributions (see Figure 2). In 

contrast, TimeTrader determines the slack for each 

individual leaf   to reshape the response time distributions at 

all loads to be closer to the deadline than the default 

distribution (see Figure 2).  

The Pegasus paper briefly describes a distributed version 

which uses individual server loading to determine the 

slowdown factors. It may seem that TimeTrader’s compute-

queuing slack arising from variations in instantaneous 

compute-queuing would be captured by this version (load-

related slack in average queuing is already captured by the 

centralized version).  While the paper suggests identifying 

high-load “hot” and low-load “cold” servers to modulate the 

factors, low average server loading over even fine time 

granularities does not ensure that most or all of the requests 

handled by a cold server have slack (i.e., individual leaf 

latencies are unpredictable). It is not clear that the requests 

with low slack would not miss their deadlines. Further, such 

load imbalance would be alleviated by careful re-

distribution of the search index among the leaves, making 

persistent load imbalance over several queries unlikely even 

for short durations. Imbalance due to a few queries repeated 

numerously (i.e., popular search words) would be filtered by 

front-end caching of such popular queries to save cluster 

bandwidth.  

The centralized version does not have this problem as it 

exploits the slack in datacenter-wide response times at lower 

loads as opposed that at higher loads without distinguishing 

among servers/leaves. Though this excellent paper has many 

insights and a detailed latency evaluation of the centralized 

version, the brief evaluation of the distributed version only 

compares estimated power savings using datacenter-wide 

load (centralized version) versus that using individual-server 

load (distributed version) but does not show latencies. 

2.3 Challenges 

There are three issues in exploiting the sub-critical leaves’ 

slack. First, though TimeTrader’s opportunity exists at all 

loads, it is harder to exploit slack (i.e., to slow down) at 

higher loads. There may be slack in the requests as well as 

in instantaneous compute-queuing for TimeTrader even at 

higher loads, including the peak load.  However, higher 

loads mean more queuing and TimeTrader’s slack has to be 

distributed over the entire queue, and not just one request, to 

account for the fact that slower service affects all the queued 

requests and not just the one being slowed. In other words, 

any service slowdown is amplified by the queue length (e.g., 

u2/(1-u) in M/M/1 queues with a server utilization of u) so 

that the response time grows as the product of the slowdown 

factor and queuing. This interaction between queuing and 

service slowdown is the reason for TimeTrader’s energy 

savings to decrease at higher loads. Nevertheless, 

TimeTrader still achieves significant energy savings even at 

the peak load. Note that the M/M/1 queue is just an 

example; datacenter nodes typically employ powerful multi-

socket, multi-core servers and not uniprocessors.  

Second, as discussed in Section 1, OLDIs have tight time 

budgets and are tail latency-limited. Because load variations 

at high loads cause compute-queuing and tail latencies to 

increase non-linearly, OLDIs usually operate well within the 

region where compute-queuing delays are kept low via 

throughput-parallelism. This condition implies that 

datacenters are provisioned well enough that even at the 

peak load there is compute-throughput slack. A key point 

here is that even though server utilizations are high at the 

peak load, high throughput parallelism ensures that the 

queuing delays are low (e.g., at 90% utilization, an M/M/1 

queue’s response time is 10 * average service time whereas 

an M/M/100 queue’s response time is only 1.02 * average 
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service time [18]). TimeTrader exploits this throughput 

slack to slow down sub-critical leaves without growth in the 

compute-queuing delays. Thus, TimeTrader maintains the 

same throughput as the baseline datacenter.  

Finally, there is a subtle issue with OLDI time budget. For 

the SLA budget, the tail of the overall response latency 

matters and not the individual tail latencies of request, 

compute, or reply.  In practice, to allow for independent 

development and optimizations of the network and compute 

parts, the total budget is broken into components for the 

network (request+reply) and compute. However, the chance 

of both a request and its reply hitting the tail is quite low 

and does not influence the 99th percentile of the overall 

response latency. Consequently, the network’s budget 

would account for the tail latency of the sum of the request 

and reply, and not the sum of the tail latency of each (i.e., 

the budget expects the risk of hitting the tail to be shared 

between the request and reply and essentially allows for the 

tail to be counted only once). This point implies that the 

request does not have a separate budget and therefore, the 

request slack cannot be known.   

To address this issue, we choose to use separate budgets for 

request and reply. However, because of the risk sharing 

between request and reply, such separate budgets imply 

tighter individual budgets for the same total budget as the 

single-budget default. Indeed, our calculations show that 

considering two identical exponentially-distributed random 

variables, X and Y, each of whose 99th percentile is v, the 

99th percentile of X+Y is 1.5v (single-budget case) whereas 

the 99th percentile of X + 99th percentile of Y  is 2v 

(separate-budget case). Thus, for the same total budget, the 

separate budgets would each have to use 0.75v as the 

deadline to be met by the 99th percentile.  

Fortunately, this handicap is overcome by network 

optimizations specific to OLDIs which require separate 

budgets [37, 38]. These optimizations prioritize network 

flows for network bandwidth use based on each flow’s 

deadline. The single-budget default cannot easily use these 

optimizations because (1) requests do not have a deadline 

and (2) request and reply are separate flows whose common 

budget would have to be communicated from the request to 

the reply via the compute layer while accounting for the 

lack of fine-grained clock synchronization between the 

nodes where the request and reply originate. We found that 

the separate-budget case employing the most recent of these 

optimizations, D2TCP [37], under the tighter, separate 

deadlines of T/2  achieves fewer missed deadlines than the 

single budget case under the single deadline of T.  In the 

remainder of this paper, we use separate budgets for 

requests and replies, and employ D2TCP for all the systems 

we compare – baseline, Pegasus and TimeTrader. 

2.4 Discussion 

TimeTrader slows down the sub-critical leaves to save 

energy. While the leaf computation remains the same with 

or without TimeTrader (i.e., work is conserved), energy 

savings stems from the fact that executing at full speed and 

then idling till the next request is less efficient than 

executing at slower speed and idling less. Slower speeds 

save energy due to scaling of voltage (to whatever extent) 

and frequency. Idling consumes significant energy in fully-

active mode; energy is lower in lower-power or sleep modes 

but OLDIs cannot exploit such modes because the sleep-to-

active transitions are too long for OLDIs’ time budgets and 

inter-arrival times [24, 25]. 

Finally, the slack uncovered by this paper can be used to 

save energy by slowing down leaf computation or to 

improve the quality of responses by increasing the 

computation. We explore the former option in this paper and 

leave the other options for future work.  

3 TimeTrader 
Recall from Section 1 that TimeTrader exploits the network 

slack in requests and individual queries’ compute-queuing 

slack. TimeTrader slows down the individual, sub-critical 

leaves, to save energy without increasing SLA violations. 

To ensure that slowing down sub-critical requests does not 

hurt the critical requests that are queued behind the sub-

critical requests, TimeTrader employs Earliest Deadline 

First (EDF) scheduling [22] that prioritizes the critical 

requests ahead of the sub-critical requests.    

3.1 Request slack 

Requests that arrive before their budgeted deadlines have 

slack which TimeTrader transfers to compute. Fortunately, 

because request comes before compute, this slack can be 

identified without prediction or the risk of missing the 

deadlines (recall from Section 2.1 that predicting network 

latencies is hard). However, requests originate at the parent 

node and compute occurs at a leaf, making it hard to 

accurately estimate the slack. Unfortunately, clock skew of 

several milliseconds between the parent and the leaf nearly 

rules out estimating slacks of similar magnitudes. Inter-node 

synchronization at such fine time granularity is hard [26, 

28].  

Instead of attempting to precisely determine the request 

slack, we use signals from the network about the presence or 

absence of packet drop and of imminent network congestion 

(typically due to an in-cast collision, as described in Section 

2.1). Presence of these signals could mean no slack due to 

delays in the network whereas absence confirms some slack.  

While there may still be some slack even in the former case, 

we conservatively assume there is none. Because congestion 

is uncommon in datacenters that host OLDIs, our 

conservative assumption does not degrade our savings.  

Determining the exact slack amount in the absence of the 

signals involves two cases: packet drop and imminent 

congestion. The former case results in retransmission which 

is marked by the sender (parent) with a packet header bit. 

The receiver (leaf) then assumes no slack. In the absence of 

retransmission, there is slack of one minimum timeout 

duration (TCP’s RTOmin) based on the facts that any 

retransmission occurs only after a timeout and that network 

tail latency typically includes RTOmin to cover one timeout 
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due to in-cast collisions (Section 2.1). Consequently, we 

conservatively set the request slack to be RTOmin; there is 

natural padding of around 5 ms in the budgets to account for 

protocol overheads (e.g., RTOmin of 20 ms is commonly 

used on datacenters [5]). The latter case of imminent 

congestion is signaled by Explicit Congestion Notification 

(ECN) [32]. Network switches detect imminent congestion 

when packet buffers are occupied above certain watermarks 

signifying queuing delays, and use ECN bits in packet 

headers to pass this information. Upon receipt, the leaf 

assumes no slack. In the absence of ECN markings, we 

determine the slack amount by empirical evaluation of 

network delays in the presence of ECN markings. In our 

experiments, we set this slack to be request budget – median 

network latency.  

3.2 Individual compute-queuing slack 

Compute-queuing slack stems from variations in the 

queuing at the leaf. Like requests, queuing comes before the 

actual compute and therefore queuing slack can be 

identified without prediction or the risk of missing the 

deadlines. Pegasus exploits the datacenter-wide average 

queuing slack (i.e., budget – average queuing), which is 

present at lower loads (the compute budget is determined by 

the queuing delay at the peak load). In contrast, we exploit 

individual request’s queuing slack based on the fact that 

even under a fixed load, queuing varies from one request to 

another.  

To determine this slack, we determine the queuing time by 

timestamping the arrival of a request and the start of 

computation at the leaf (both arrival and computation occur 

at the same server so there are no clock skew issues).  The 

compute-queuing slack is the average queuing delay at the 

peak load minus the given request’s actual queuing delay. 

The former is pre-determined empirically; and the latter 

depends on the current load and variations in queuing seen 

by the current request and is measured via the timestamping. 

Thus, 

compute-queuing slack = average peak wait – current wait 

total slack = request slack + compute-queuing slack 

As discussed in Section 2.3, this total slack has to be 

attenuated (i.e., scaled) before being applied as a slowdown 

to account for the fact that slower computation affects all 

the queued requests and not just the current request.  One 

other subtle issue is that going to a lower power setting in 

CPUs requires choosing a slowdown factor. While we know 

the total slack amount, we do not know how long the current 

request will take and therefore, we cannot compute a 

slowdown factor. Fortunately, both these issues – 

attenuation and unknown service time – can be addressed by 

observing that the compute budget accounts for worst-case 

queuing delays and worst-case service times. Further, some 

slack is spent in RAPL latency. Therefore, we set   

slowdown =(total slack – RAPLlatency)*scale/compute budget 

where scale is a factor to further moderate the slowdown. 

Scale depends on both load and applications (i.e., service 

time distributions and budgets). Higher load implies lower 

value for scale to reduce the slowdown factor and impact on 

throughput. Instead of using statically configured scale 

values for each application, we employ a simple control 

algorithm that dynamically determines scale by monitoring 

the percentage of missed deadlines at each leaf server every 

5 seconds. If the percentage of missed deadlines in the 

current interval is less than the SLA target by more than 5% 

(i.e., there is 5% room in the budget), we increase scale by 

0.05. Else, we reduce scale by 0.05 until there is room or the 

scale is 0. Thus, there is a guard band of 5% to avoid SLA 

violations. Even at the peak load, there is room to exploit. 

However, Pegasus cannot exploit this room because it does 

not distinguish critical requests from sub-critical requests, at 

the same leaf server. TimeTrader saves energy even at the 

peak load by slowing down sub-critical requests using a 

non-zero scale value without directly affecting critical 

requests that have 0 total slack (scale does not matter). 

Further, EDF shields critical requests from the queuing 

effects that arise from the slowing down of sub-critical 

requests. Thus, by using per-request slack and EDF, 

TimeTrader saves energy at all loads. Table 1 shows scale 

values across various loads for Search and memcached. 

To set the core’s speed as per the slowdown factor, we 

employ RAPL [1], which requires less than 1 millisecond, 

making it suitable for OLDI timescales. One issue is that 

modern processors are multicores with hardware 

multithreading (i.e., Simultaneous Multithreading (SMT) 

[36]). Multiple cores may be processing either multiple 

requests of the same query or different queries, and in either 

case the slack for the cores may be different. Further, each 

core may have a few SMT contexts for each of which the 

slack may be different.  To address this issue, we assume 

that each core’s power settings can be controlled 

independently of other cores’ settings. While current 

offerings of RAPL control only the overall package power, 

individual core control is a relatively small extension and is 

likely to be implemented in the near future. To address the 

SMT contexts within a core, we conservatively use the 

worst of the contexts’ individual slowdown factors to avoid 

violating deadlines.  Because the number of SMT contexts 

per core is only a few (e.g., 2), this conservative assumption 

– i.e., the worse of two slowdown factors – does not 

diminish our opportunity.  

When we explored slowing down main memory in addition 

to the CPU, the fact that memory is shared among all the 

cores of a server severely limits the memory slowdown 

factor in the presence of such a conservative assumption. 

For instance, for a 32-core server, the memory slowdown 

factor would have to be the worst among all the 32 cores’ 

Table 1: Values for scale 

Utilization WebSearch Memcached 

30% 0.7 0.8 

60% 0.4 0.5 

90% 0.2 0.2 
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factors, which would likely be zero. Therefore, we slow 

down only the cores and not memory. Nonetheless, because 

CPUs contributes about 60% of server power [8], our 

opportunity remains significant.  

3.3 Deadline-based compute-queuing 

Recall from Section 1 that the presence of slack is not 

sufficient to guarantee avoiding missing of the deadlines. 

Slowing down a sub-critical request which has slack may 

hurt another critical request that is queued behind the sub-

critical request.  To address this issue, we exploit Earliest 

Deadline First (EDF) scheduling that decouples critical 

requests from the queuing delays of sub-critical requests by 

placing the former ahead of the latter in the leaf server’s 

queues.  

The decoupling is not perfect due to the fact that arriving 

critical requests may still see elongated, residual service 

times of sub-critical requests in the absence of pre-emption 

(whose delays would not be suitable in our context of tight 

deadlines).  Nevertheless, the decoupling enables EDF to 

pull in the tail and to reshape the leaves’ response time 

distribution; the mean response time does not improve 

because as critical requests’ response times get shorter the 

sub-critical requests’ times get longer. However, EDF 

enables TimeTrader to use per-leaf slack to slow down sub-

critical requests, thereby further shifting the distribution 

closer to the deadline. Though such slow down lengthens 

the mean service time, such an increase taps into the 

throughput slack described in Section 2.3 and hence does 

not worsen throughput. Still, the throughput slack may not 

be enough to exploit the full total slack in which case we 

give up some energy savings to avoid throughput loss.  

OLDI implementations typically use well-defined APIs 

which cleanly separate request queue management and 

thread computation modules (e.g., work-stealing task 

queues). EDF is typically available with standard queue 

management libraries (e.g., pthread_set_schedparam() can 

be used to achieve EDF by setting the priority to be the 

deadline) and adds negligible overhead (section 5). As such, 

the libraries enable TimeTrader to be used easily in a host of 

OLDIs.  

4 Methodology 
TimeTrader involves three aspects: network latency, 

compute latency, and compute power. We use real-system 

measurements for compute latency and compute power, a 

rack-scale real implementation to show proof-of-concept, 

and at-scale simulations for network latency. The compute 

aspects involve only one server because over long periods of 

time all servers are statistically identical in response times 

and power consumption and hence real-system 

measurements are feasible. Further, because tail effects are 

more pronounced in large clusters (e.g., 1000 node) to 

which we do not have access, we rely on simulations to 

study the network aspect.  

Benchmarks: We simulate two OLDI benchmarks, Web 

Search (Search) and memcached (key-value store), from 

CloudSuite 2.0 [13]. We modify the memcached driver to 

look up a batch of objects in each request, with an average 

batch size of 50 as is typical [27], instead of single objects 

as done in CloudSuite. We generate Search’s index from 

Wikipedia and memcached’s objects from Twitter. In our 

runs, Search and memcached, respectively, support peak 

queries-per-second rates of 3000 and 20,000 using 100 

threads per leaf server at 90% utilization (corresponding to a 

modern server with 4 sockets, 12 cores per-socket, and 2 

SMT contexts per core). Our memcached throughput of 

20,000 queries-per-second with a batch size of 50 objects 

(i.e., 1 M objects/s) matches the throughputs reported in 

[27]. These threads provide high throughput parallelism to 

match the peak load (i.e., the threads are copies processing 

the same index/key-value slice and not separate leaves 

processing different slices).   

The benchmarks use a parent-to-leaf fan-out of 32 (a 

standard value). For each query, we randomly choose a node 

to be the parent (Section 2.1). We set the budgets as:  total 

200 ms, request 25 ms, reply 25 ms, leaf compute 75 ms 

(Web Search) and 20 ms (memcached), and aggregate and 

remaining network (aggregate-root communication) 75 ms. 

The network and compute budgets are the 99th percentile 

latencies achieved by, respectively, our network using 

D2TCP and compute nodes at the peak load. We target less 

than 1% missed deadlines (i.e., these deadlines are tight and 

do not offer any “easy” opportunity for TimeTrader). The 

network and compute budgets are in line with [5, 37, 38] 

and [34], respectively. TimeTrader focuses on request, 

compute and reply for a total of 125 ms (Web Search) and 

70 ms (memcached) which are the deadlines in our 

experiments. We use request sizes of 2 KB and  reply sizes 

of 16-64 KB chosen uniformly randomly, and background 

flow sizes of 1 and 10 MB chosen uniformly randomly 

(Section 2.1); the total traffic is split evenly between OLDI 

and background flows. These message characteristics match 

publicly-available distributions from production OLDIs [9]. 

In all our experiments, the network utilization is 20% which 

is realistic for datacenters [5] (i.e., the network is over-

provisioned and yet incurs in-cast collisions).  

Real Implementation: Our real implementation uses 9 

servers (8 leaves and 1 parent, with a fan-out of 8), which 

are connected to a rack switch using 1 Gbps links. We 

implement TimeTrader’s slack computations and EDF at the 

leaf servers for Search. We distribute the index to all the leaf 

servers. We vary the query rate using Faban (CloudSuite). 

Because our switches do not support ECN, we timestamp 

requests at the parent and leaf servers to infer request slack 

because clock drifts are not a problem at this scale (i.e., the 

clocks drift by at most 200 microseconds during our 

evaluation). We generate background traffic between servers 

(i.e., all-to-all traffic) using Iperf [2] to maintain a network 

utilization of 20% (i.e., 200 Mbps). This traffic provides 

incast effect at rack scale. Finally, we reduce the request 

budget from 25 ms to 15 ms because tail effects (i.e., incast) 

are less intense at small scale. Therefore, our budgets are 

not over-provisioned. 
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Compute latency and power:  To measure compute 

latency and power, we run the benchmarks on a system 

using an Intel IvyBridge-based CPU. We generate a leaf 

compute latency distribution (service time only without any 

compute-queuing delay) for our benchmarks running on the 

system (see Figure 3). The compute latency distribution 

confirms the wide spread of compute latencies. The 

compute time for search is significant whereas that for 

memcached is shorter (object lookups are fast) making 

memcached network-limited and providing more 

opportunity for slowing down compute. The compute 

budgets for search and memcached at 75 ms and 20 ms are 

slightly more than the 99th percentile latencies to account for 

queuing delays at the peak load.  

Using RAPL, we vary the CPU clock speed from 2.5 GHz 

to 1.2 GHz and obtain per-request latency (total latency, not 

just clock speed) and per-core power. Figure 4 shows active 

power saving factor (Y axis) and request slowdown factor 

(X axis) for search and memcached; active power = total 

power – idle power. As the slowdown increases, the power 

savings are slightly super-linear over compute slowdown in 

the beginning where there may be some voltage scaling and 

then the savings slightly flatten when voltage cannot scale 

as much. We use these compute latency and total power 

values (including idle) with network latency to report power 

and performance.  

Network latency: Using ns-3 [3], a widely-used simulator, 

we simulate the network depicted in Figure 5, which uses a 

fat-tree topology typical of datacenter networks [4]. There 

are 64 racks with each rack having up to 16 servers (i.e., a 

1000-server cluster).  Each server connects to the top-of-

rack (ToR) switch via a 10 Gbps link. Going up from the 

ToR level, there is a bandwidth over-subscription of 2x at 

each level, as is typical [4]. We sized the packet buffers in 

the ToR switches to match typical buffer sizes of shallow-

buffered switches in real data centers (4MB) [5]. We set the 

link latencies to 20 µs, achieving an average of round-trip 

time (RTT) of 200 µs, which is representative of datacenter 

network RTTs. To reduce the effects of in-cast collisions, 

we add a 1-ms jitter to each leaf’s reply [14].  

To simulate a deadline-aware TCP implementation that 

exploits the separate request-reply budgets (Section 2.3), we 

use D2TCP [37] on top of ns-3's TCP New Reno protocol 

[2]. (code obtained from D2TCP’s authors). All D2TCP 

parameters (e.g., deadline imminence factor) match those in 

[37] and are available with the code. We set RTOmin for all 

the protocols to be 20 ms. We use the same separate 

request-reply budgets and D2TCP in all the systems we 

compare – baseline (no power management), Pegasus and 

TimeTrader. The latencies we observe closely match those 

reported in other papers, including production runs [37]. 

All together:  In ns-3, we simulate TimeTrader’s EDF 

scheduling (Section 3.3) and compute the total slack as a 

function of the request slack and compute-queuing slack 

(Section 3.2). We also simulate Pegasus to determine its 

slack based on the datacenter-wide load as compared to the 

peak. We apply TimeTrader’s total slack and Pegasus’s slack 

as slowdown factors to our real-system runs to measure 

TimeTrader’s and Pegasus’s energy savings.   

5 Rack-scale implementation results  
We validate TimeTrader’s energy gains using a real rack-

scale implementation and quantify its overheads.  

 

Figure 3: Service Time distributions 
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Figure 6 shows our energy savings for Search over a 

baseline without power management. The Y axis shows 

energy savings (including idle) and the X axis shows Search 

running at 90% (peak), 60%, and 30% load. Our slowdowns 

of 7%, 16%, and 27% (not shown) correspond to energy 

savings of 11%, 19%, and 28% (shown in Figure 6) at 90%, 

60% and 30% load. Because, tail effects are less intense at 

rack scale, our energy savings are less than our savings at-

scale (section 0). Nevertheless, TimeTrader’s energy 

savings are still significant.  

Further, we use the real implementation to measure the 

overhead of EDF and timestamping (i.e., needed for 

determining compute-slack). We find that EDF adds an 

overhead of 330 microseconds for re-prioritizing about 15 

entries (i.e., our 99th percentile queue length).    

Timestamping (i.e., used for calculating compute-slack) 

adds an additional overhead of 45 microseconds per request. 

These overheads are negligible compared to OLDI service 

times, which are in the order of tens of milliseconds.  

6 At-scale simulation results 
Now we show our at-scale results. We start with comparing 

the energy savings of TimeTrader and Pegasus, the main 

result of the paper. We explain the savings by presenting the 

distributions of (a) request slack, (b) compute-queuing 

slack, and (c) the request-compute-reply latency. We then 

show a binning of requests based on their CPU core’s power 

state TimeTrader and Pegasus. Finally, we isolate the 

contributions of EDF, request slack, and compute slack. 

6.1  Energy savings 

 Figure 8 compares the energy savings of Pegasus and 

TimeTrader over a baseline cluster without power 

management. The Y axis shows the total energy savings 

(including idle) and the X axis shows the benchmarks 

running at 90% (peak), 60%, and 30% load with “P” and 

“T” denoting Pegasus and TimeTrader, respectively. In all 

the three systems, less than 1% of queries exceed the 125-

ms (search) and 70-ms (memcached) request-compute-reply 

budgets (i.e., they all meet our target of less than 1% missed 

deadlines). Because Pegasus does not save energy at the 

peak load, that bar is zero.  

 Both Pegasus and TimeTrader achieve significant savings 

at low loads with TimeTrader achieving more due to the 

difference between Pegasus’s datacenter-wide average loads 

based slack versus TimeTrader’s per-query, per-leaf slack. 

For instance, at 30% load, TimeTrader achieves around  

42% (search) and 49% (memcached) savings compared to 

Pegasus’s 32% and 37%; these savings amount to 

improvements of 17% (0.68/0.58)  and 24% (0.63/0.51) 

over Pegasus. Both systems save more in memcache than in 

search because memcached’s shorter compute latency than 

network latency allows longer slacks and greater slowdown 

factors. By slowing down, Pegasus and TimeTrader save 

both active and idle energy (Section 2.4). As the load 

increases, idle power savings increase as expected due to 

less idling. Further, TimeTrader saves more than 15% 

energy at the peak load during which the power 

consumption is more than twice than that during 30% load 

(it is misleading to compare the savings percentages at 

different loads which correspond to different amounts of 

power consumption). Because datacenter loads are moderate 

to high during half the day (diurnal pattern), TimeTrader’s 

savings are significantly higher than Pegasus’s.  

6.2 Slack and latency distributions 

 To explain these savings, we plot the slack for search in 

Pegasus and TimeTrader in Figure 7. We do not show 
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memcached’s slack which is similar. The X axis shows the 

slack as a fraction of the compute budget and the Y axis 

shows the cumulative percent of requests. We show the 

request slack (relevant only for TimeTrader), TimeTrader’s 

total slack at 90% and 30% loads, and Pegasus’s total slack 

at 30% load (zero at 90% load, not shown). The request 

slack is the same at all loads because the network is over-

provisioned (Section 4) [5]. We do not show 60% load to 

avoid cluttering the graph.  

 Almost the entire request slack is available to 90% of the 

requests in TimeTrader because in-casts are infrequent 

(Section 2.1). The difference between the request slack and 

TimeTrader’s total slack is the compute slack (both loads). 

In TimeTrader, even at 90% load, 90% of requests have a 

slack of (0.25 * compute budget) or more, confirming that 

most requests are sub-critical even at the peak load; at 30% 

load, 80% of requests have a slack of (0.5 * compute 

budget) or more. Further, Pegasus’s slack at 30% load 

corresponds to the difference in the 99th percentile latencies 

for 30% load and 90% load (peak), and is available to 

almost all requests (i.e., Pegasus’s slack is mostly a function 

of the load and does not vary from one request to another 

for a fixed load). Compared to Pegasus, at 30% load, 

TimeTrader has lower slack for 10% of requests because 

TimeTrader exploits per-request slack where a higher slack 

for one request sometimes increases the queuing delay for 

another request cutting into the latter’s slack (i.e., there is 

some give-and-take among the requests). These values are 

the total slack whereas TimeTrader’s slowdown factors 

involve another scaling factor to moderate for the load 

(Section 3.2 and Table 1). Nevertheless, TimeTrader’s 

longer slack results in higher energy savings.  

The slowdown factors for Pegasus and TimeTrader closely 

follow the slack amounts in Figure 7. We note that by 

carefully exploiting the throughput slack, TimeTrader 

maintains the same throughput as the baseline at all loads 

(fall in throughput would manifest as many missed 

deadlines).  

 To illustrate that TimeTrader reshapes the request-compute-

reply latency distribution while Pegasus shifts the 

distribution, we plot the latency distributions for search in 

Figure 10. The plot shows the distributions for the baseline, 

TimeTrader, and Pegasus at 30% and 90% load (Pegasus at 

90% coincides with the baseline at 90%). We note that the 

plot shows the total latency including the reply component 

to show the overall effect of the schemes, as opposed to 

Figure 7 which shows only request and compute 

components. As expected, TimeTrader reshapes the 

distributions at both loads, albeit more at 30% than 90% due 

to greater latency and throughput slacks. In contrast, 

Pegasus shifts the baseline curve at 90% load to the right 

when the load is 30%. Also, as load increases, the systems 

diverge more at higher percentiles than at lower percentiles. 

Because OLDIs’ M/M/96 queues, unlike M/M/1 queues, 

exhibit highly non-linear queuing – higher percentiles of 

queuing delay increase more abruptly than lower percentiles 

at higher loads.  

6.3 Power states 

To understand TimeTrader’s energy savings, we bin the 

requests based on the CPU core’s power state for each 

request. Each power state corresponds to a core clock speed 

which is scaled based on the request’s slowdown factor. 

Figure 9 shows the fraction of requests in each bin for 

Pegasus (P) and TimeTrader (T) at 90% (peak) and 30% 

loads running search and memcached. The bins span 1.2 

GHz to 2.5 GHz.  

We consider search first. Pegasus does not slow down 

requests at 90% load and incurs the highest clock speed and 

power. In contrast, TimeTrader even at 90% load slows 

down 85% of the requests by 20% or more which 

corresponds to the second-slowest state (1.5 GHz) (Figure 

9). As the load decreases to 30% and the slack increases, 

Pegasus also slows down requests to the same state. 

However, TimeTrader uses the slowest state for many 

requests (40%) and saves more energy. In contrast to 

TimeTrader’s per-query metrics, Pegasus’s datacenter-wide 

average metrics imply that for a fixed load the power states 

do not change much. The trends in memcache are similar.  

6.4 Isolation of impact 

We isolate the impact of EDF, request slack, and compute 

slack on TimeTrader’s energy savings. Figure 11 shows the 
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four systems’ energy savings over the baseline: TimeTrader 

without EDF, TimeTrader using only request slack and 

EDF, TimeTrader using only compute slack and EDF, and 

TimeTrader (whole).  As before, all the systems have the 

same time budget and target of missed deadlines (1%). The 

X axis shows 90% and 30% load and our benchmarks. 

Without EDF, critical requests queued behind slowed-down 

sub-critical requests are likely to be affected. To achieve the 

same percent of missed deadlines, TimeTrader’s slowdown 

factors are greatly reduced. Hence, without EDF, 

TimeTrader’s savings are modest though they grow as the 

load decreases from 90% to 30% due to the availability of 

more slack. TimeTrader using only request slack achieves a 

significant fraction of that of TimeTrader (whole) at 90% 

load where compute slack is limited and this fraction 

diminishes as the load decreases to 30%. As expected, this 

trend reverses for TimeTrader using only compute slack.  

7 Related work 
Previous work on improving energy efficiency fall into the 

following four categories: datacenter power management, 

software consolidation, exploiting low-power modes, and 

real-time systems. 

In the first category, a datacenter-wide power budgeting 

approach [33] allows the budget to be shared among 

multiple entities (e.g., racks and servers) to achieve high 

power-supply utilization and efficiency, analogous to chip-

level power budget management in [17]. A coordinated 

power management approach [30] integrates several power 

controllers to avoid conflicting decisions and improve 

overall efficiency.  

The second category of software consolidation improves 

energy efficiency by consolidating workload on under-

utilized servers so that the servers operate at high utilization 

levels which are also energy efficient. While consolidation 

of batch workloads such as MapReduce [10, 19] and multi-

programmed workloads [12] is possible, OLDIs’ tight 

latency budgets and large memory footprints disallow such 

consolidation. Bubble-flux [39] shows that OLDIs can be 

co-located with batch jobs under looser latency budgets but 

improving the utilization is hard under tighter budgets. 

Exploiting low-power modes, the third category, proposes 

low-power idle states or leverages turning servers off (e.g., 

PowerNap [24], Blink [35]). However, the transition times 

are too long for the tight OLDI latency budgets; and OLDIs 

need all the leaf servers to stay turned on. Other work [25] 

studies OLDI workloads and concludes that the tight 

budgets necessitate a cluster-wide approach to power 

management, similar to Pegasus and TimeTrader. We have 

extensively discussed and contrasted the two schemes. 

Other proposals employ DVFS to improve throughput-

centric batch workloads [17, 20, 31]. However, these 

proposals do not address OLDI’s latency constraints.  

In the fourth category, real-time systems have tight latency 

constraints like OLDIs so that energy efficiency can be 

achieved via DVFS by slowing down based on the jobs’ 

deadlines [6, 21, 29]. However, these proposals exploit real-

time jobs’ characteristics that are significantly different 

from those of OLDIs (e.g., apriori knowledge of number 

and duration of jobs running single-node systems). OLDIs 

do not permit such apriori knowledge and are distributed 

applications running on large clusters.  

Finally, we have discussed many networking proposals 

targeting the in-cast problem in OLDIs [5, 37, 38]. These 

proposals address only network latency and do not explore 

dynamically sharing the latency budget between network 

and compute, as done by TimeTrader. 

8 Conclusion 
Reducing the energy of datacenters running on-line, data-

intensive applications (OLDIs) is challenging due to OLDIs’ 

tight response time requirements. In OLDIs, each user query 

goes to all or many of the nodes in the cluster, so that 

overall time budget is dictated by the tail of the replies’ 

latency distribution; replies see latency variations both in 

the network and compute. We proposed TimeTrader to 

reduce energy by exploiting sub-critical replies’ latency 

slack. While previous work shifts the leaves’ response time 

distribution to consume the slack at lower loads, 

TimeTrader reshapes the distribution at all loads by slowing 

down individual sub-critical nodes without increasing 

missed deadlines. TimeTrader exploits slack in both the 

network and compute budgets. Further, TimeTrader 

leverages Earliest Deadline First scheduling to decouple 

critical requests from the queuing delays of sub-critical 

requests which can then be slowed down without hurting 

critical requests. Using a combination of real-system 

measurements and at-scale simulations, we showed that 

without adding to missed deadlines, TimeTrader saves 15-

49% energy in a datacenter with 512 nodes, whereas 

previous work saves 0% and 31-37%.  

By exploiting latency slack in the highly-latency-sensitive 

OLDIs, TimeTrader converts OLDIs’ performance 

disadvantage of latency tails into an energy advantage. As 

OLDIs grow in scale due to the ever-increasing data and in 

importance due to the ever-growing number of OLDI-reliant 

services, energy consumption will become only more 

important. As such, techniques like TimeTrader will be 

important in the march towards energy efficiency. 

 

Figure 11: Impact of EDF, request slack, and compute 

slack 
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