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ABSTRACT

Steidle, Stephen V. M.S.I.E., Purdue University, May 2013. Scheduling in Mohs
Micrographic Surgery Clinics. Major Professors: Mark Lawley and Seokcheon Lee.

Mohs Micrographic Surgery (MMS) is a surgical method used for the excision of

aggressive skin cancers in areas of high cosmetic importance, such as the face and

hands. The practice has been gaining popularity worldwide for its low recurrence

rates and cosmetic results. Current clinics though are plagued by extreme wait times

and an overall poor patient experience. In this paper we look to explore this prob-

lem by applying systems engineering principles including optimization and scheduling

with the goal of improving the patient experience. Currently, little literature exists

exploring the difficulties associated with scheduling for MMS clinics which primar-

ily revolve around patient recirculation for an unknown number of repetitions with

little predictive ability. By developing a simulation model depicting current clinic op-

erations, we have explored the current practice of clinics through several important

performance measures while being able to determine an optimal number of patients to

be scheduled. We have also explored the impact of changing re-entrant probability on

the nature of the patient schedules. We have developed a set of qualitative scheduling

constraints for on-the-fly physician application and a sequential scheduling policy to

produce myopically optimal patient schedules for maximizing the patient experience.
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1. INTRODUCTION

Skin cancer affects millions of Americans each year, with over 3.5 million cases being

diagnosed in at least 2 million patients every year [1]. Of these occurrences, non-

melanoma skin cancers (NMSC) are the most significant, including basal cell carci-

noma (BCC) and squamous cell carcinoma (SCC), each accounting for an estimated

2.8 million and 700,000 cases a year, respectively [2]. Mohs Micrographic Surgery

(MMS) is a technique used in the treatment of NMSCs. MMS has several advan-

tages over other treatments, including being the leader in cost-effectiveness [3], low

recurrence rates [4], and less permanent cosmetic damage [5]. However, one of the

well-known disadvantages to MMS is long time the procedure can take to complete,

often resulting in patients spending entire days at the clinic [7].

In a standard MMS clinic setting, the physician begins by identifying the visible

margins of the tumor in question. After identification, the physician applies local

anesthesia and makes his first incision, cutting at between 30◦ and 45◦. The sample

is then sent to a pathologist for analysis. Typically when examining the tissue margins

for signs of cancer, pathologists use a method known as the bread-loaf technique. This

method reviews less than 1% of the overall margins [6]. However, in MMS nearly 100%

of the margin is examined, enabling the pathologist to identify clear margins much

more reliably [7]. However, the trade off for 100% margin clearance, as previously

mentioned, is the long and tedious process that is MMS [8]. Usually, multiple excisions

are required to achieve clear margins. The typical method of patient flow through this

system is as follows. A patient sees the physician for initial tumor identification and

first round of excision. Following the first excision, the patient returns to the waiting

room to wait for the pathology report to be completed. The returning pathology

report will have one of two possible results: clear or unclear margins. Clear margins
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mean that the margins of the excised area are cancer free and the patient requires

no more excisions. Unclear margins indicate that the margins still contained cancer

cells and addition excision is required. If the patient has clear margins, then he or

she returns to the physician for wound repair. This rotation through physician and

pathology service continues until the patient’s margins are determined to be clear

and wound repair has been conducted. This process is demonstrated in Figure 1.1

(Reprinted with permission. Copyright 2013 University of Wisconsin Hospitals and

Clinics Authority. [9]).

Figure 1.1.: The Mohs Surgery Process [9]

1.1 Objectives

When considering this problem from a scheduling perspective, it is the rotational

aspect of the patient’s progress through the system that defines our problem. Sev-

eral examples in literature exist examining scheduling problems featuring recircula-

tion [10, 11], and scheduling in healthcare scenarios is also a very heavily researched

area [12,13] . However, what differentiates our problem from other examples in litera-

ture is the stochastic nature of the amount of recirculation. When scheduling patients

into this system, it is difficult, if not impossible, to know precisely how many repe-

titions a patient will require to complete treatment. This detrimental characteristic
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of our system can lead to poorly structured schedules causing excessive bottleneck-

ing and patient wait time. Patients waiting to see the physician a second time are

delayed due to the availability of the pathologist or the physician is seeing another

patient. We hope to develop a multi-faceted approach to this problem. With the little

attention paid to MMS in scheduling and simulation literature, our first objective is

to lay a foundation by developing a simulation model of an MMS clinic. The devel-

opment and analysis of this model should lead to an increased understanding of how

this system operates. Our second objective is to develop a system of scheduling con-

straints and heuristics based on patient characteristics that would enable a physician

or individual responsible for scheduling able to make informed decisions about what

types of patients to schedule. Finally, our last objective is to develop an algorithmic

scheduling policy based on an objective function that takes into account not only the

clinic’s costs and revenues, but also the patient experience. By combining these three

objectives together, we can fulfill our overall goal of providing tools to improve clinic

operations while simultaneously improving the patient experience.

1.2 Organization

Chapter 1 outlines what MMS is and how it is used, as well as the objectives of this

research and why it is important to MMS clinics.

Chapter 2 presents a literature review of research into MMS as well as important

peripheral papers. It begins with a review of non-melanoma skin cancers and their

risk factors and symptoms. Next is a review of MMS and its implications. This is

followed by an analysis of the current literature directly related to MMS. Finally, a

review of relevant clinical scheduling policies is conducted.

Chapter 3 presents a simulation model of an MMS clinic. All relevant parameters and

aspects of the clinic are discussed. Additionally, an objective function is developed for



4

optimizing clinic function in relation to operations and the patient experience. This

function is then analyzed and its behaviors under various conditions are discussed.

Chapter 4 delineates a method of generating random patients for scheduling in a

clinic and presents several sets of constraints and heuristics that could be used in an

MMS clinic. Each of these is identified in detail and explained. These heuristics are

then analyzed using a simulation model similar to that in the previous chapter. The

results of these simulation runs are then presented and analyzed.

Chapter 5 describes a sequential scheduling policy as an alternative to the heuris-

tic method presented in the previous chapter. An objective function similar to that

of Chapter 3 is utilized to schedule patients according to the policy presented. Initial

experimental results of this model are presented along side an analysis of its behavior.

Chapter 6 discusses the overall conclusions of this research as well as describing the

important contributions made by it. Future areas of research are also presented.
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2. LITERATURE REVIEW

2.1 Overview of Non-melanoma Skin Cancers

Skin cancer is defined as a cluster of abnormal skin cells that grow uncontrollably.

Skin cancers are caused when DNA and RNA in skin are damaged by exposure to

ultraviolet radiation and these damages go unrepaired. These cancers can be broadly

grouped into two categories: melanoma and non-melanoma. Non-melanoma skin

cancers (NMSCs) include two primary subcategories, namely basal cell carcinomas

and squamous cell carcinomas. An additional wide variety of subtypes exists under

the umbrella of NMSC, but it is typically used to identify those two primary subtypes.

The various types of carcinomas are typically identified by the layer of the epidermis

in which they arise. Basal cell carcinomas are identified by the fact that they are

found in the topmost level of the skin, the epidermis, and squamous cell carcinomas

begin in the middle layer.

2.1.1 Risk Factors

The primary cause for all skin cancers is identified as over-exposure to ultraviolet

(UV) radiation. This is typically encountered through prolonged exposure to sun-

light or tanning beds. Additionally though, there are a combination of personal and

environmental risk factors that can increase an individuals susceptibility to NMSC.

The major personal factor that puts individuals at an increased risk for NMSC is

a susceptibility to UV radiation. Characteristics indicative of this typically include

light skin, hair or eye color [14]. Individuals who possess these characteristics and

who are over-exposed to UV radiation have an increased risk of developing NMSC

at some point during their lives. Environmental risk factors are primarily linked to
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geographic location. Areas nearer to the equator which typically have thinner ozones

and therefore increased penetration by UV radiation typically see increased rates of

NMSC than areas further from the equator [15].

2.1.2 Symptoms

Basal cell carcinomas and squamous cell carcinomas vary in their physical presen-

tations. Basal cell carcinoma presentations are typically divided into the following

clinical subtypes, but often include a mix of multiple [16].

• Classic rodent ulcer - a lesion on the surface of the skin with necrotic tissue in

the center

• Nodular or cystic - a small, translucent nodule on the skin through which ex-

posed blood vessels can be seen

• Superficial - an erythematous patch of skin, often difficult to differentiate from

other conditions such as eczema

• Morphoeic - a waxy scar made up of white sclerotic plaque

• Pigmented basal cell carcinoma - similar in appearance to a nodular or cystic

BCC, but with dramatically increased melanin levels

Squamous cell carcinomas are not as varied as basal cell carcinomas, but unlike BCCs,

they present with precursor lesions. As such, these precursor lesions are used to

identify an SCC. There are three primary types of precursor lesions with squamous

cell carcinomas [16].

• Actinic keratosis - a flat, crusty or scaled area that develops into a wart-like

surface

• Squamous-cell carcinoma in situ (also known as Bowen’s disease) - a clearly

defined erythematous plaque that increases in size and features a scaled or

crusted surface
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• Keratoacanthoma - a symmetrical dome-shaped skin inflammation with keratin

scales on its peak

While all three of these have been identified as precursor lesions for squamous cell

carcinomas, developing any of these does not guarantee a diagnosis of SCC.

2.2 Overview of Mohs Micrographic Surgery

Mohs Micrographic Surgery is a procedure that has been used for the past 70

years to treat skin cancer. Treatment methods started in 1938 by Frederic E. Mohs

with the utilization of a zinc chloride paste to fix the tumor in situ, so that as each

layer of the tumor was excised, the margins could be evaluated. However, this fixed

method had substantial drawbacks, including only being able to perform one layer

of excision per day and necrosis caused by the zinc chloride paste. In 1953, Mohs

performed several layers without the utilization of the chloride paste and saw success

in freezing the horizontal layers. This began the modern fresh tissue technique, which

enabled the surgeon to perform multiple layers as well as wound repair in a single

day [17]. Initially, only BCC and SCC were treated using Mohs surgery. However,

in the last 40 years, this procedure has gained significantly in not only popularity

but also application [5]. Beyond simply BCC and SCC, today MMS is used to treat

other tumor types such as verrucous carcinoma, extramammarry Paget disease, and

microcystic adnexal carcinoma [17].

The reasoning behind the utilization of MMS is that in most physical presen-

tations of skin cancer, the tumors grow contiguously but unpredictably. The ex-

ternal presentation and margins of the tumor may have little to do with the ac-

tual subcutaneous spread of the tumor. Typically, long finger-like extensions grow

outward from the central mass of the tumor. In order to avoid recurrence, which

can often be attributed to incomplete excision [18], Mohs attempts to completely

excise all cancer cells. MMS is able to identify these extensions though the exam-

ination of horizontal cross sections removed layer by layer by the physician. It is
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this type of analysis, in contrast to the standard “bread-loaf” technique used in

traditional tumor excision methodologies, that allows such accurate identification

of the tumors actual margins [7]. The difference between these two techniques is

demonstrated in Figures 2.1 and 2.2 (Images reprinted with permission from Med-

scape Reference (http://emedicine.medscape.com/), 2013, available at: http:

//emedicine.medscape.com/article/1125510-overview).

It is this technique that allows MMS to feature substantially lower recurrence rates

than other types of surgical excisions [4]. As such, MMS “remains the gold standard

for the surgical management of basal cell and squamous cell carcinomas” [7]. Not

only do these techniques offer much lower recurrence rates, but they also enable the

physician to conserve as much tissue as possible during the resection and eventual

wound closing. Because the physician is able to accurately identify the location of

any residual extensions, nodules, or tumor, areas that are unaffected are able to

be left intact [8]. This permits maximum effectiveness while minimizing cosmetic

damage. Since a substantial portion of BCC and SCC occur in areas of high cosmetic

significance, such as the face and hands, the use of Mohs is even more justified [19].

Much research has also been done into the cost-effectiveness of Mohs surgery

[19–23]. The problem with much of this literature is that MMS is performed under

various conditions by various types of professionals, leading to difficulty in compar-

isons. For example, the paper by Bialy only studies MMS procedures performed by

otolaryngologic (ENT) surgeons [20] while the analysis by Smeets is from a training

hospital [19]. With the wide variety of conditions under which Mohs is performed, a

consistent cost analysis can be difficult to obtain. A review published in 2009 reviews

all of these and many more in an attempt to determine the cost-effectiveness of Mohs

surgery [23]. It is their finding that when coupled with the decreased recurrence rates

and decreased cosmetic damage, Mohs is in fact a cost- effective treatment. In fact,

it is on average less than the overall cost of traditional excision, especially in light

of the recurrence rates for such procedures and the additional cost incurred when

undergoing a second procedure.
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Figure 2.1.: The Bread-Loaf Technique [17]

The most consistently cited drawback to Mohs surgery is the tediousness of the

process, for both the patient and the physician [24–27]. The duration of the procedure

as well as the repeated excisions can be difficult for a patient. This becomes even more
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Figure 2.2.: The Mohs Technique [17]

problematic when the patient suffers from a debilitating condition such as dementia,

poor sphincter control or spinal arthritis. Some also deem the necessity of removing

all cancer cells to avoid recurrence questionable and cite the fact that even with this,
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recurrence does still occur in some Mohs cases. [4, 26]. While the procedure may

be long and difficult, most physicians still identify it as the best treatment option

available for patients [5, 23].

In summation, Mohs Micrographic Surgery has been identified as the best treat-

ment of choice when considering basal cell and squamous cell carcinomas. This pro-

cedure has dramatically decreased recurrence rates while enabling the physician to

conserve as much tissue as possible. This minimizes the cosmetic harm caused by

the procedure, which is exceptionally valuable since many BCC and SCC occur on

the face. Not only is this the best treatment option available, but it has also been

found to not only be cost-effective but also less costly than traditional excision meth-

ods. The primary drawback seen in Mohs is the tediousness and the length of the

procedure which can be burdensome on the patient.

2.3 Current Mohs Micrographic Surgery Literature

Little literature exists today studying the operational aspects of Mohs Micro-

graphic Surgery. Literature that does exist about Mohs is more focused on cost-

effectiveness, recurrence rates, and improvements to the procedure. Considering the

interesting nature of the operation of an MMS clinic, we find this lack of literature

surprising. To improve the current status of MMS clinics, we began by reviewing any

mention of Mohs, heuristics, or scheduling and only a single paper was found, The

Webb and Rivera (WAR) Score (from now on referred to as WAR Score) [28]. The

stated goal of this paper is to obtain an easily used preoperative tool that would en-

able a physician to ascertain the difficulty of and time required to complete an MMS

case. The data for this study was obtained through a questionnaire which inquired

about four preoperative characteristics (original lesion size biopsied, recurrent or not,

located on nose, eyelid, ear, or lip, and whether or not it is of an aggressive subtype)

and two post operative questions (number of stages required and time from first cut

to final suture or repair). Based on the answers to these questions, a statistical



12

analysis was completed to identify which characteristics were statistically significant

predictors of both the number layers and amount of time required to complete the

procedure. These predictors were then ranked and scored based on how significant

each was. Based on these rankings and scores, the WAR score was developed, with

higher scores being associated with more complex and longer duration surgeries. The

researchers found that the WAR score was significantly correlated to both the num-

ber of layers required and the overall surgery time. The most difficult aspect of this

problem was the lack of ability to accurately predict the difficulty of the procedure.

As mentioned previously, carcinomas such as those treated with Mohs surgery of-

ten feature extensions that can infiltrate far beyond the physical presentation of the

tumor. As such, the number of layers required can be very difficult to ascertain [29].

The need for a method of predicting the amount of subcutaneous spread of the

neoplasm is obvious. Two studies were found examining this and attempting to

develop methods to accomplish it. The primary source of literature in the area comes

from two sources by one individual, R. Sonia Batra, MD. Her two papers in this

area, Predictors of extensive subclinical spread in nonmelanoma skin cancer treated

with Mohs micrographic surgery (from now on referred to as Predictors) [30] and A

Risk Scale for Predicting Extensive Subclinical Spread of Nonmelanoma Skin Cancer

(from now on referred to as Risk Scale) [31] form the basis of the patient distribution

data used in this paper. Predictors [30] focuses primarily on identifying which patient

characteristics are indicative of a patient having extensive subclinical spread. Batra

uses five categories of characteristics: age, sex, carcinoma location, carcinoma size,

and carcinoma classification. A multivariate analysis is then conducted to identify

the most significant predictors, including single characteristics and combinations of

them. Her paper Risk Scale [31] conducts a similar experiment but offers an additional

point system for determining what level of risk a patient is at for extensive subclinical

spread. Using the predictors established in the previous paper, Batra assigns each one

a point value based on how strong of an indicator of extensive subclinical spread it is.

One characteristic about both of these papers to note is that Batra cites as a primary
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weakness of both papers the fact that patients used in these studies were not general

NMSC patients, but ones whose carcinomas has been identified as particularly suited

to MMS. This actually causes the data used to be more suited to our uses, as we are

not considering the general population of NMSC sufferers, but only those who receive

MMS.

2.4 Scheduling for Outpatient Clinics

In order to tackle the problem of scheduling the clinics, a wide variety of healthcare

scheduling literature was reviewed. Gupta [13] and Cayirli’s [12] reviews provided ex-

cellent foundations for this work, and several examples of healthcare heuristics were

found [32, 33] . However, little of the literature existing in the field is strictly appli-

cable to this problem, due to the aforementioned re-entrant problem. Through our

initial analysis of these works, it was decided to pursue a specific variety of schedul-

ing procedure: a sequential, myopic policy that accounted for no-show probability. A

review of sequential scheduling methodologies yielded several results [34, 35]. Over-

booking models also yielded a pair of results [35, 36]. Turkcan’s 2011 paper [34]

presents a method for developing sequential clinical schedules utilizing specific ser-

vice criteria, such as maximum waiting and overtime. Muthuraman’s 2008 paper [36]

delineates of substantial model for overcoming patient no-show through overbooking.

A combination of these two can be used to produce a model for our clinics, after the

incorporation of the re-entrant problem.
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3. SIMULATION AND NUMERICAL ANALYSIS OF

CLINIC OPERATIONS

3.1 Simulation Model Development

Our first objective is to model how MMS clinics are currently operated, in order

to establish a baseline to which our other proposed solutions can be compared. The

model of current practice is based on the following assumptions.

1. Patients arrive individually in 30 minute intervals with k patients scheduled [13].

2. All patients have a no-show probability of pns = 0.1 [36].

3. The probability of re-entrance into the queue, pr, is a function of the number

of repetitions through the queue, n, and a shape coefficient, β of the form

pr(n, β) = e−β(n−1). (3.1)

4. System has two stages, each with a single server [17].

5. Patients are punctual (arrive at start of appointment) [34].

The pr(n, β) function was defined in this manner to meet certain requirements for

the re-entrant probability. These requirements follow.

1. Patients must enter the system at least two times: excision and wound repair

[17].

2. The probability of a patient re-entering the queue should decrease with the

number of entrances.

3. We must be able to account for varying patient characteristics and physician

behaviors.
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The first requirement arises simply from the way patients flow in the system. A

patient cannot enter the system once and leave. This would be the same as a patient

receiving one cut from the physician and leaving. This is guaranteed by the (n − 1)

expression in the exponent. On the first visit, pr(1, β) = 1 regardless of the β value.

Our second requirement corresponds to the removal of additional layers. The more

times a patient re-enters the system, the more layers they will have removed. As

there is a limit amount of layers a physician can reasonably perform, usually between

two and six [30], we can assume that with increasing re-entrances, the probability

of re-entrance declines. This is confirmed by the negative value of the exponent.

Finally, different patients have different needs and different physicians have different

practices. In order to account for these, we wish to be able to control the shape of

the curve. We do this through β. Now, we can state these mathematically as follows.

1. pr(1, β) = 1 ∀ β

2. For a constant β, as n increases, pr(n, β) decreases

3. For n 6= 1, as β decreases, pr(n, β) increases

The first point is essential because we know that patients in this system must visit

the physician at least twice. After the first visit the patient must re-enter at least

once. This is guaranteed since the probability of re-entrance after the first visit is 1.

The second point indicates that the more a patient re-enters the system, the lower

his or her probability of re-entrance becomes. This is reasonable due to the fact that

the more layers that are taken from the patient, the lower the probability of another

layer being needed is. Our final point describes the function of β. For different types

of patients or physician practices, the expected number of layers required per patient

changes. For example, in an area with a high prevalence of skin cancer, patients in

general may require more layers to completely excise the tumor. Alternatively, if a

physician is prone to taking much deeper layers than another physician in his area,

his patients may in general require less layers. Since a decrease in β corresponds to

an increase in pr(n, β), a patient’s probability at a given value of n is higher for a
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smaller β. This means that while β decreases, the probability of a patient re-entering

the system increases. Some examples of pr(n, β) are displayed in Figure 3.1.
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Figure 3.1.: Re-entrant Probability for Various β

Using this set of requirements and assumptions, a simulation model was developed

and analyzed for various values of k and β. The service times utilized in the simulation

are estimates derived from a wide variety of basic MMS literature, such as patient

pamphlets, physician websites, and MMS overviews [37–39]. However, these resources

did not provide distributions, but rather a range of maxima and minima. Since the

gamma distribution is used to model healthcare service times [12, 35] we decided to

approximate a gamma distribution using a triangular distribution. We found various

values for service times from these sources and used them to approximate a triangular

distribution. A triangular distribution has three parameters, a, b, and c, with a and b

as the minimum and maximum values respectively and c as the mode. The parameters

we used for the distributions are as follows. For the physician, we used fphys(a, b, c) =

fphys(10, 30, 15) and for pathology, we used fpath(a, b, c) = fpath(15, 45, 40). We were
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then able to calculate the variation of the proposed triangular distributions using the

mode (c) as an estimate of the mean and the variance of the triangular distribution for

the variance of the gamma distribution. This enabled us to calculate the parameters

of each gamma distribution, α and β in Γ(α, β). They took the form of Γphys =

(12.45, 0.83) and Γpath = (37.20, 0.93). These distributions are seen in Figures 3.2

and 3.3.
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3.2 Experimental Conditions

To conduct the analysis, an objective function was established. In our objective

function, our goal was to pair revenue with overtime costs while maintaining a per-

spective on the amount of waiting time each patient experiences. To accomplish this,

we applied a wait time disutility, a cost incurred by the clinic for each hour a patient

is made to wait. This function is of the form

F (S) = (r ∗ Vphys)− (cw ∗Wtotal)− (co ∗Ot) (3.2)

where r is the reward for one layer of MMS or wound repair, cw is the disutility

of patient wait time, and co is the cost of clinic overtime. Vphys is defined as the

total physician visits, Wtotal is the total patient wait time, and Ot is the amount of

overtime. Here we consider only the physician visits because these are the sessions

that generate revenue, as opposed to the pathology analysis. The following conditions

were set for the analysis.

• r = $300, cw = $100/hr, and co = $800/hr

• β = [1.0, 0.9, 0.8, .., 0.1]

• Each simulation run corresponds to one day of clinic operation

• Clinic simulation for 100 days

• Patients scheduled to earliest available slots

• Slots are 30 minutes in length

• One patient per slot

• Number of patients scheduled, k, incremented from 1 until objective function

value is negative
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3.3 Simulation Results

By using the determined levels of r, cw, co, simulation runs were conducted using

the range of values of both k and β. β values were varied from 0.1 to 1.0 in increments

of 0.1. For each set value of β, we begin by simulating only a single patient being

scheduled, k = 1. When then increase the value of k for each set of runs until our

objective function value is negative. Upon analysis, it was found that the objective

functions were unimodal when varying k across a constant β for the values of r, cw

and co we selected. This allowed us to determine optimal levels of patient scheduling

for each beta. These results are presented in Table 3.1 and Figure 3.4.
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Figure 3.4.: Objective Functions for Various β

This optimal level, kopt, was found to be a function of β with

kopt = 3.163 ln(β) + 9.806. (3.3)

We should note some of the characteristics of this result. As our β coefficient

increases, a patient’s expected number of physician visits decreases. This character-

istic is validated in these results, as demonstrated in Table 3.1, both the number of

patients treated and the maximum value of the objective function increase. When
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Table 3.1: Optimal Objective Function Values

β Max F (S) kopt

0.1 2554.07 3

0.2 2740.57 4

0.3 2954.59 6

0.4 3150.67 7

0.5 3366.92 8

0.6 3635.44 8

0.7 3776.69 8

0.8 3991.83 9

0.9 4245.31 10

1.0 4334.14 10

considering this in the framework of our probability function, this is a reasonable

result. Having patients repeat less in our system means less penalty for the disutility

of waiting in the clinic, not only enabling more patients to be scheduled, but also

adding additional reward without the waiting cost. What we have determined here is

that with a brief study of a clinic’s operations to determine its parameters including

cost-reward structure, service times, and average patient repetitions, we can use this

model to determine an optimal number of patients to schedule per day.

3.4 Numerical Analysis of Simulation Results

Our next area of analysis was to examine the behavior of simulated clinic under

various combinations of our costs, cw and cO and our system parameters β and k. We

can begin by exploring β and its implications. We already know that a decrease in

β corresponds to an increase in re-entrant probability for a set value of n. However,
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what we do not know is what is the expected number of treatments for a specific

value of β

In order to calculate the expected number of treatments, we needed to evaluate

our probability of re-entrance. When looking at the nature of our system, we can view

re-entering the system as a “failure” and exiting the system as a “success”. Thinking

like this, we can draw a comparison between our probability distribution and the

geometric distribution. The geometric distribution as we are referencing it is defined

as the probability distribution of the number of Bernoulli trials, X, needed to get

one success. In our instance however, we do not have Bernoulli trials with a constant

probability of success. Our probability changes with each increment of n. Because of

this, we cannot just raise our probability of failure to the (k − 1). What we need to

do is compute a product from 1 to k − 1 of our failure probabilities while evaluating

our probability of success at k. We begin by looking at these probabilities at a few

early points, defining p as the probability of re-entering the queue and q = (1 − p)

as the probability of exiting the queue. These basic calculations are demonstrated in

Table 3.2. Knowing that expected values take the form of E[X] = xp(x) we know

Table 3.2: Probability Calculations

n P (N = n)

2 q(2) ∗ p(1)

3 q(3) ∗ p(2) ∗ p(1)

4 q(4) ∗ p(3) ∗ p(2) ∗ p(1)
...

...

n q(n) ∗ p(n− 1) ∗ · · · ∗ p(1)

that our expected value will be of the following form.

E[N ] =
∞∑
n=2

nq(n)p(n− 1) · · · p(1) =
∞∑
n=2

nq(n)
n−1∏
m=1

p(m). (3.4)
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Now, we know that our probability of failure is our probability of re-entering the

queue, so p = pr and q = (1−pr). Substituting these into our expected value equation

yields the following final result.

E[X] =
∞∑
n=2

n(1− e−β(n−1))
n−1∏
m=1

e−β(m−1) (3.5)

The relationship between β and E[n] is demonstrated in Table 3.3. For convenience,

Figure 3.1 has been reproduced in Figure 3.5.

Table 3.3: E[n] Values for β

β E[n]

1 2.17818

0.9 2.23056

0.8 2.29374

0.7 2.3715

0.6 2.4696

0.5 2.59812

0.4 2.77497

0.3 3.03813

0.2 3.48606

0.1 4.51188
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Figure 3.5.: Re-entrant Probability for Various β

For our analyses, we use the following conditions.

• r = $300, cw = $100/hr, and co = $800/hr

• β = [1.0, 0.9, 0.8, .., 0.1]

• Each simulation run corresponds to one day of clinic operation

• Clinic simulation for 100 days



23

We begin by exploring R, which we will define as the total revenue. If we label each

patient k, each patient receives nk services. We have a total of K patients. As such,

we can write the following equation.

R =
K∑
k=1

nkr (3.6)

This equation makes it clear that R is a function of our reward, r, and the number

of patients serviced, K. Similarly, we can construct such an equation for our waiting

time.

Cw =
K∑
k=1

wkcw = cwWtotal (3.7)

Here wk corresponds to the amount of waiting time for patient i and Cw is the total

waiting cost. We will define overtime more simply and only in relation to the clinic.

CO = coOt (3.8)

Our first goal was to examine the effect on the current practice model if we assumed

a constant R. As mentioned, R is a function of the number of patients serviced and

how many services each one has. As such, to fix R, we can instead fix E[N ], where

N is the sum of all services. Therefore, instead of fixing R, we fix the total number

of services provided. This is done for each β. The difficulty in this arises in that we

are dealing with patients, so we must operate with only integer values of k. To do

this, we assembled a set of k values, one for each β that leads to the closes levels of

E[N] possible. These are outlined in Table 3.4. These values lead to E[N ] = 23.20,

σ2
E[N ] = 0.87 and a spread of 2.20. The simulation results of this analysis can be

viewed in Table 3.5 and Figure 3.6.

As can been seen in Figure 3.6, with a constant E[N ], as β increases, we see a

steadily decreasing objective function value, F (S). This can be attributed to the

increasing (or more negative, since the weights for Cw and CO are negative) total

costs. The small variations in the changes can be attributed to the inconsistencies of

our R value. What this is telling us is that as our re-entrant probability increases,

even if we attempt to maintain a constant E[N ], our wait time and overtime costs
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Table 3.4: Constant R Values

β k E[N ]

1 11 23.9600

0.9 10 22.3056

0.8 10 22.9374

0.7 10 23.7150

0.6 9 22.2264

0.5 9 23.3831

0.4 8 22.1998

0.3 8 24.3050

0.2 7 24.4024

0.1 5 22.5594

increase. So under these set experimental conditions, we have observed that for a

constant R, as β decreases, Cw and CO increase, and therefore F (S) decreases.

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

beta
−4000

−2000

0

2000

4000

6000

8000

F(S)

R

Cw

Co

Figure 3.6.: Simulation Results with Constant R
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Table 3.5: Simulation Results for Constant R

β k F (S) R Cw CO

1 11 4196.82 7317 -2240.9 -879.2

0.9 10 4245.31 6729 -1974.5 -508.8

0.8 10 3964.69 6930 -2199.2 -766.4

0.7 10 3630.73 7161 -2485.0 -1045.6

0.6 9 3429.19 6744 -2397.9 -916.8

0.5 9 2948.06 7086 -2776.7 -1361.6

0.4 8 2869.30 6696 -2638.4 -1188.0

0.3 8 1988.02 7350 -3274.4 -2087.2

0.2 7 1372.35 7341 -3389.1 -2579.2

0.1 5 1318.17 6777 -2814.8 -2644.0

A second perspective was obtained by maintaining a constant k for each β value.

For this, we selected an average value of k = 8. The results for this are displayed in

Table 3.6 and Figure 3.7.

As can be seen in Table 3.6 and Figure 3.7, again as β decreases, we see an

overall decrease in F (S). This is due to the fact that while our R value does increase

exponentially, both Cw and CO also increase exponentially. As such, under these

experimental conditions we have observed that for a constant k, as β decreases, R,

Cw and CO increase, and therefore F (S) decreases . These two combine into a slightly

counter-intuitive view of our system. One would expect that having more difficult

procedures leads to more treatments which would increase the overall profit. However,

what is being observed is that with the inclusion of waiting time, having patients that

spend less time in the system individually makes more economic sense. This clearly

point to the importance of the relationship between our revenue, R, and our waiting

and overtime costs, Cw and CO. These results must be treated carefully. If such a view

were to be adopted by clinics on a large scale, patients who are expected to require
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Table 3.6: Simulation Results for Constant k

β k F (S) R Cw CO

1 8 3911.972 5184 -1242.8 -29.6

0.9 8 3901.874 5298 -1336.7 -59.2

0.8 8 3850.082 5415 -1457.9 -107.2

0.7 8 3776.693 5604 -1640.7 -186.4

0.6 8 3635.437 5880 -1891.6 -352.8

0.5 8 3366.923 6228 -2192.4 -668.8

0.4 8 2869.305 6696 -2638.4 -1188.0

0.3 8 1988.021 7350 -3274.4 -2087.2

0.2 8 439.576 8298 -4344.9 -3513.6

0.1 8 -3549.223 10959 -6850.9 -7657.6
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Figure 3.7.: Simulation Results with Constant k
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more complex procedures could be shunned by clinics attempting to maximize the

customer experience. Further work is planned to evaluate the impact of a changing

ratio of these values.
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4. PROPOSED QUALITATIVE SCHEDULING

CONSTRAINTS

The next area of study was to attempt to create heuristics based on Webb and Rivera’s

WAR Score [28]. These heuristics would attempt to analyze patient characteristics

and score patients based on their level of risk for extensive subclinical spread. As

mentioned previously, it is extremely difficult to determine the amount of subclinical

spread simply from a carcinoma’s physical presentation. In response to this, we have

identified patient characteristics that place patients at increased risk for subclinical

spread. To begin these types of analyses, we began by developing methods for gener-

ating random patients. This was accomplished using data sets in Batra’s two papers,

Predictors and Risk Scale [30, 31]

4.1 Method of Patient Generation and Scoring

The two data sets presented in the previously mentioned papers were combined in

order to obtain the percent of MMS patients who had each of the characteristics iden-

tified as relevant by Batra [30]. The probabilities for each of the patient characteristic

groups are in Tables 4.1, 4.2, and 4.3.

To use these tables, we sum the values, assigning each characteristic a segment of

[0,1]. We then generate a random uniform [0,1] number and assign to that patient

the characteristic whose area the generated number falls into. A new random number

is generated for each test. Our next characteristic to consider is the size of the

carcinoma. We found that carcinomas follow a truncated normal distribution with

the parameters µ = 11.9mm and σ = 8.9mm2 [28]. As such, the size is generated

according to this distribution. Scoring the patients is then completed as described in
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Table 4.1: Gender Probability [30,31]

Gender Probability

Male 0.552

Female 0.448

Table 4.2: Type Probability [30,31]

Type Probability

Nodular BCC 0.533

Morpheaform BCC 0.990

Basosquamous BCC 0.027

Recurrent BCC 0.066

SCC 0.150

SCC in situ 0.041

Recurrent SCC 0.011

Other 0.017

Table 4.3: Location Probability [30,31]

Location Probability

Nose 0.313

Ear, Helix 0.043

Ear, Non-helix 0.041

Eyelid 0.051

Lip 0.048

Forehead 0.105

Cheek 0.183

Chin 0.013

Eyebrow 0.014

Temple 0.070

Neck 0.021

Trunk 0.023

Extremity 0.032

Scalp 0.042

the two papers WAR Score and Risk Scale [28,31]. These rules for Batra’s Risk Scale

are displayed in Table 4.4 and WAR Score rules are displayed in Table 4.5.

For the Risk Scale Predictor Scores [30,31], the highest possible score is selected.

For example, if a patients has a 10 − 20mm (score of 5) basosquamous BCC on the

nose (score), the patient will receive a score of 19. In contrast, the scores provided

by the WAR score [28] are additive. Here, if a patient has a 2.5cm(+2) recurrent

(+1) tumor on the ear (+1) of an aggressive subtype (+1), the patient would receive

a score of 5.

For the Risk Scale analyses we the divide patients into “Risk Groups” based

on these values. These risk scores are then used to do two additional calculations,

assigning values for high/low risk lesions for extensive subclinical spread and the
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Table 4.4: Batra Risk Scale Predictor Scores [31]

Predictive Characteristic(s) Point

Basosquamous BCC on nose 19

Morpheaform BCC on nose 19

Morpheaform BCC on cheek 18

Recurrent BCC on nose 17

Lesion on ear helix 16

Size > 20mm 14

Recurrent BCC in men 13

Neck tumors in men 12

Eyelid 9

Nodular BCC on nose 9

Temple 8

Size 10− 20mm 5

Table 4.5: Webb and Rivera (WAR) Scoring [28]

Size (cm) Point Occurence Point Location Point Subtype Point

0− 0.9 +0 Primary +0 Other +0 Non-aggressive +0

1− 1.9 +1 Recurrence +1 Nose, ear, +1 Aggressive +1

2− 2.9 +2 eyelid, lip

≥ 3.0 +3

expected number of Mohs layers required. These are done in the same manner as the

generation of patient characteristics, with high/low risk determined by data pulled

directly from Risk Scale [31] and the number of Mohs layers expected derived from

data in both Risk Scale [31] and Predictors [30]. For high risk/low risk, if a patient

meets the probability for extensive subclinical spread, they are deemed a high risk
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patient, otherwise they are considered low risk. Low risk patients are defined as

expecting only 1-2 Mohs layers to fully excise the lesion. High risk patients are

expected to require 3-6 layers. Based on the point values, we assign patients to the

Risk Groups outlined in Table 4.6 and give them probabilities of being at high risk

for extensive subclinical spread.

Table 4.6: Risk Group Extensive Subclinical Spread Probabilities [30] [31]

Risk Risk High Risk

Score Group Probability

<5 1 0.10

5-8 2 0.15

9-12 3 0.23

13-16 4 0.33

17-20 5 0.44

From the data in Risk Scale [31] and Predictors [30] we were able to derive the

probabilities, p(n), on how many layers patients in both the high and low risk groups

could expect to have. The results are featured in Table 4.7.

Table 4.7: Risk Level Expected Layers [30] [31]

Low Risk High Risk

n p(n) n p(n)

1 0.35 3 0.65

2 0.65 4 0.22

5 0.07

6 0.06
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4.2 Set of Proposed Scheduling Constraints

Currently, twelve sets of constraints are being used in the simulation. The primary

sets are based on the WAR Score [28] and two alternate versions of Batra’s Risk

Scale [31]. Each one of these then has three additional variations. We chose the

following variations for each set: Alternating Difficulty, Longest Expected Processing

Time First (LEPTF) and Shortest Expected Processing Time First (SEPTF). Here

when we speak of expected processing time, what we are using as an indicator of this

is either the WAR Score [28] or the Risk Group. Longer expected processing time

means the patient is in a group more prone to needing additional layers. As such,

the higher the WAR Score or the Risk Group, the longer the expected processing

time. The opposite is true for shortest expected processing time. The logic behind

alternating the difficulty comes in attempting to isolate the patients we expect to

require more re-entrances into the system. This way they are spread out in the

system and should not cause as significant of a bottleneck. LEPTF was chosen to

place all difficult patients earliest with the objective of reducing the risk of overtime

in the system. SEPTF was chosen because in many scheduling applications, this is

often used as a method to reduce overall system time. The basis of the WAR Score

is to rank procedures by how difficult they may be [28]. The only problem with this

definition is that “difficulty” is a subjective term. This is mostly determined by how

long the patient will have to remain at the clinic, but other factors do interact. It

functions by reviewing the characteristics of a patient and assigning point values to

certain characteristics and summing the patients score. All sets of rules are for a

given number of patients per day (e.g. 8 in this study). In his paper, Webb proposes

a basic application of the WAR score which utilizes the following rules for a total of

8 patients.

1. A maximum of two patients per day with a WAR score of 3+

2. A maximum of two patients per day with a WAR score of 2

3. All remaining patients must have a WAR score of 0 or 1.
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In our execution, we will be scheduling a total of 8 patients. Table 4.8 outlines the

possible patient sets. Sets are grouped horizontally. For example, if we have a call-in

Table 4.8: Possible WAR Score Combinations from Webb [28]

WAR Scores

0 or 1 2 3+

4 2 2

5 2 1

6 2 0

5 1 2

6 1 1

7 1 0

6 0 2

7 0 1

8 0 0

system and three patients with score of 2 and three patients with scores of 3 or larger

call in, one of each of these patients will be scheduled the next day. This will lead

to a maximum of two 3+ patients, two 2 patients, and a between four and eight

0-1 patients. This appears to be a reasonable on-the-fly application, but we have

proposed two alternate forms of this scoring system due to the fact that the patients

are still scheduled on a FCFS basis, thus leaving the difficulty randomly distributed

throughout the day. To counter this, we proposed scheduling patients using the Webb

heuristic (WAR Score [28]) but following a few extra step relating to the ordering of

the schedule. These versions are seen in Table 4.9.

The important thing to note here is that patients are still taken on at a FCFS

basis and will only be rejected if they violate the stated rules. For example with

initial heuristic from Webb, if there are already two 3+ patients scheduled and a

third comes up, the patient will be rejected. However, this is not saying that we will
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Table 4.9: WAR Score Alternate Rules [28]

WAR Score Variant 1: Alternating

Maximum of 4 patients per day with WAR score 2+

Fill remaining patient slots with WAR score 0 or 1

Alternate patients of 2+ and 0,1 starting with 2+

WAR Score Variant 2: LEPTF

Maximum of 4 patients per day with WAR score 2+

Fill remaining patient slots with WAR score 0 or 1

Longest Expected Processing Time First

WAR Score Variant 3: SEPTF

Maximum of 4 patients per day with WAR score 2+

Fill remaining patient slots with WAR score 0 or 1

Shortest Expected Processing Time First

always have four 2+ patients and four 0,1 patients. This applies to all of the versions

here.

The second and third sets of heuristics are derivations from Batra’s Risk Scale [31].

As stated previously, in this paper she presents a point system to help determine the

chances that a patient experiences extensive subclinical spread, defined as requiring

three or more Mohs layers to fully excise. The risk groups are segmented into groups

in two different manners in the two sets of heuristics based on the Risk Scale. These

policies are outlined in Tables 4.10 - 4.12.

The reasoning behind regrouping the risk groups lies in the fact that we want

these heuristics to be able to be used on-the-fly by physicians. Having different as-

signing rules for each of the five risk groups seemed overly complicated for such an

approach. However, the actual regrouping decisions were more difficult, hence the

result of two separate policies. The rules for each of these polices are very similar to

those of the WAR score and its alternative versions. The primary difference between



35

Table 4.10: Policy Risk Group Organization

Risk Group Policy A Rank Policy B Rank

1 1 1

2 1 1

3 1 2

4 2 2

5 2 3

Table 4.11: Risk Scale Policy A Versions

Risk Score Policy A Policy A Variant 1: Alternating

Maximum of 4 patients of rank 2 Maximum of 4 patients of rank 2

All remaining patients rank 1 All remaining patients rank

Alternate patients of ranks 1 and 2

Policy A Variant 2: LEPTF Policy A Variant 3: SEPTF

Maximum of 4 patients of rank 2 Maximum of 4 patients of rank 2

All remaining patients rank 1 All remaining patients rank 1

Longest expected processing time first Shortest expected processing time first

ranking the patients by their WAR score and their Risk Score is that the WAR score

emphasizes the amount of time that the patient will take to treat, from first cut to

final healing decision, while the Risk Score is completely dependent on the number

of Mohs layers that are expected to be needed to fully excise the lesion. Again, the

initial versions of the Risk Score policies focus only on the numbers of each specific

rank that we are allowed to schedule each day. The alternate versions of it focus

on ordering the patients in specific ways, attempting to improve on the constrained

FCFS method that was originally used. The alternating of difficult/long procedures

with easier/shorter procedure is designed to provide the physician with extra time

to complete the more difficult case while still completing another case. It is possible
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Table 4.12: Risk Scale Policy B Versions

Risk Score Policy B Policy B Variant 1: Alternating

Maximum of 2 rank 3 patients Maximum of 2 rank 3 patients

Maximum of 2 rank 2 patients Maximum of 2 rank 2 patients

All remaining patients rank 1 All remaining patients rank 1

Alternate rank 2+ and rank 1

Policy B Variant 2: LEPTF Policy B Variant 3: SEPTF

Maximum of 2 rank 3 patients Maximum of 2 rank 3 patients

Maximum of 2 rank 2 patients Maximum of 2 rank 2 patients

All remaining patients rank 1 All remaining patients rank 1

Longest expected processing time first2 Shortest expected processing time first

though that the shorter/easier patients will end up being bottlenecked by the more

difficult cases surrounding them. In an attempt to alleviate this, the second variation

was proposed. By scheduling all difficult cases early, they may delay and interact

with each other, but the effect may be less severe than the effect these delays would

have on the shorter cases. The third variation is to schedule the easiest cases earlier

in the morning in an attempt to drive down over all waiting times by minimizing the

initial bottleneck.

4.3 Simulation and Numerical Analyses of Proposed Constraints

Analysis of the effectiveness of the heuristics was accomplished through a simula-

tion model. The experimental conditions are as follows.

• r = $300, cw = $100/hr, and co = $800/hr

• Each simulation run corresponds to one day of clinic operation
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Table 4.13: Time in System

Heuristic Min Avg Max

FCFS 156.29 400.737 604.269

RiskA 156.181 399.489 602.219

RiskA: Alt 158.426 401.954 602.342

RiskA: LEPTF 156.136 392.196 585.450

RiskA: SEPTF 145.515 382.105 585.729

RiskB 156.415 394.636 592.919

RiskB: Alt 157.983 396.202 592.782

RiskB: LEPTF 158.346 393.085 585.393

RiskB: SEPTF 145.211 380.663 585.702

Webb 155.973 397.822 600.318

Webb: Alt 156.451 398.672 600.280

Webb: LEPTF 159.094 397.759 595.018

Webb: SEPTF 146.449 388.629 594.943

• 8 patients scheduled per day

• Patients scheduled to first 8 slots

• Slots are 30 minutes in length

• Clinic simulation for 1000 days

Groups of random patients were generated, sorted (if applicable), and fed into the

simulation model. Several key performance measures were analyzed for each heuristic,

including average wait times, average time in system, and resource utilization. These

measures can be viewed in Tables 4.13, 4.14, 4.14 and 4.16. All results are in minutes.

As can be seen from the results, the impact of the proposed heuristics is mini-

mal at best. In relation to the time each patient spends in the system, the proposed
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Table 4.14: Time in Phys Queue

Heuristic Min Avg Max

FCFS 0 13.446 68.677

RiskA 0 13.473 68.677

RiskA: Alt 0 13.473 68.677

RiskA: LEPTF 0 13.734 68.677

RiskA: SEPTF 0 13.734 68.677

RiskB 0 13.624 68.677

RiskB: Alt 0 13.624 68.677

RiskB: LEPTF 0 13.734 68.677

RiskB: SEPTF 0 13.734 68.677

Webb 0 13.505 68.677

Webb: Alt 0 13.505 68.677

Webb: LEPTF 0 13.575 68.677

Webb: SEPTF 0 13.575 68.677
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Table 4.15: Time in Path Queue

Heuristic Min Avg Max

FCFS 0 120.857 216.662

RiskA 0 120.851 216.649

RiskA: Alt 0 122.008 216.844

RiskA: LEPTF 0 122.248 217.858

RiskA: SEPTF 0 117.515 212.99

RiskB 0 121.211 216.669

RiskB: Alt 0 121.969 216.559

RiskB: LEPTF 0 122.644 218.568

RiskB: SEPTF 0 116.839 212.744

Webb 0 120.716 216.754

Webb: Alt 0 121.102 216.405

Webb: LEPTF 0 122.196 218.458

Webb: SEPTF 0 117.964 213.081
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Table 4.16: Average Utilization Levels

Heuristic Physician Pathology

FCFS 0.426 0.956

RiskA 0.426 0.956

RiskA: Alt 0.426 0.957

RiskA: LEPTF 0.430 0.956

RiskA: SEPTF 0.429 0.954

RiskB 0.428 0.956

RiskB: Alt 0.429 0.956

RiskB: LEPTF 0.430 0.956

RiskB: SEPTF 0.429 0.954

Webb 0.426 0.956

Webb: Alt 0.426 0.956

Webb: LEPTF 0.428 0.956

Webb: SEPTF 0.427 0.955

scheduling sets due generally perform better, but only marginally so. This is a general

trend throughout all of the presented results. Overall, the SEPTF methods do out-

perform the others in overall time in system, but this does not necessarily translate

to both wait time in the pathology and physician queues. We believe these results

may be due to a weakness in our patient generation data.

One of the potential difficulties associated with using the Batra data is that both

sets of data are collected from the same hospital, namely the Beth Israel Deaconess

Medical Center in Boston, MA [30] [31]. One of the leading causes of skin cancer is

overexposure to sunlight [2], which varies from location to location. For example, one

would expect to see higher incidence rates of overexposure in areas known for being

sunny, such as Florida, Texas, or Australia, and less in areas that are not sunny, such

as Maine, Massachusetts, or Canada. This difference may lead to the data being
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generated having a specific skew associated with the area in which it was collected.

To further analyze the Batra data, frequency data was calculated on three specific

characteristics: the expected number of Mohs layers, the calculated WAR score, and

the Batra Risk Score. These are represented in Figures 4.1, 4.2, and 4.3.

1 2 3 4 5 6
0  

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

21841

40589

11412

3848
1179 1131

Figure 4.1.: Expected Layer Frequencies
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Figure 4.2.: Risk Score Frequencies
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Figure 4.3.: WAR Score Frequencies

The important characteristic to note here is the major skew to lower scores and less

layers. When reviewing patients who experience extensive subclinical spread, defined

previously as requiring three or more Mohs layers, this characteristic applies to only

21.96% of all patients generated. Since the heuristics proposed based on Batra’s Risk

Score [31] are focused around controlling the number of patients with a high risk of

extensive subclinical spread the physician would see in a day, it is reasonable that
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Table 4.17: Number of Changes Made to Schedule

Model Min Avg Max

Webb 13,232 13,673 14074

Risk A 879 992 1093

Risk B 21934 22,397 22975

the proposed heuristics would have little to no effect on the average amount of time

spent at the clinic by patients. With so few at risk patients existing in the patient

pool, few patients will not be scheduled due to violating the constraints on at risk

patients. A similar statement can be made about the WAR Score data [28]. The rules

for scheduling patients according to the WAR score heuristics control patients of rank

two and three or higher. A maximum of two patients with WAR scores of both 2 and

3+ can be scheduled a day. With a daily schedule consisting of eight patients, that

means a maximum of 25% of the scheduling capacity can be assigned to each of these

categories, with 50% remaining for patients of scores 0 and 1. With patients of rank

2 populating only 30% of the patient pool and patients with scores 3+ consisting of

a mere 14% of the population, it becomes readily apparent how the scheduling rules

will have little effect on the actual patients being seen by the physician.

To further explore this area, a comparison was done between the initial FCFS

patient lists and the unsorted (first version) of each of the heuristic sets to see how

man patients were being dropped or moved in the lists. To do this, 100 sets of the total

patient lists were generated and compared. The total patients in each set is 80,000.

The results can be seen in Table 4.17. The results demonstrate that few patients

out of the pool are actually being moved or declined based on the added rules with

only 17.09%, 1.24%, and 28.00% being changed on average in each model, respectively.

This has been identified as a weakness in the data, but various solutions to the problem

exist. Proposed solutions to this difficulty include either obtaining similar data from

literature from other parts of the country and world or artificially generating data with
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a wider variety of frequency distributions. With the minimal literature that exists

in the area, obtaining additional data sets without conducting additional surveys

around the globe seems to have a minimal chance of occurrence. However, it should

be very simple to produce alternative data sets and see their effect on the model. This

can be accomplished by directly altering the WAR score, Risk Score, and Expected

Layers, or by simply selecting characteristics that push these scores up and increasing

their probability of occurring. Finally, the proposed heuristics can simply be made

much stricter in order to account for the data. Additionally, the constraints could be

reformulated for various types of data sets to increase their generalizability.
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5. PROPOSED SEQUENTIAL SCHEDULING POLICY

FOR MMS CLINICS

Our proposed scheduling policy consists of a call-in system in which patients are

generated and then scheduled. At the time of each patient’s scheduling, an objective

function is analyzed in order to choose the best slot for the patient to be scheduled

for based on the current schedule and the patient type.

5.1 Parameters and Definitions of Scheduling Policy

Our system in this approach has the following characteristics.

• Patients are scheduled sequentially and cannot affect a preceding patient’s ap-

pointment time.

• We use a myopic policy, only considering the upcoming patient and not any

future call-in schedule.

• A schedule corresponds to a single day’s operation

• Our algorithm attempts to maximize a combination of the revenue, wait time

disutility, and overtime costs.

• We assume homogeneous patient behavior in both no-show, pns, and re-entrant,

pr, probabilities.

• We have a 2 server, 2 stage system consisting of physician and pathology, but

we reduce to 1-1 for tractability.

• We assume patient punctuality.

• We do not fix the number of patients that can be scheduled each day.
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Figure 5.1.: The system.

In most clinic modeling approaches, a scheduling matrix, S of size I×J is used, where

Sij represents the number of patients of type j scheduled in slot i. However, since

we assume completely homogeneous patients, J = 1, so we instead have a scheduling

vector Si. We assume a standard workday of 8 hours with 30 minute slots, leading to

I = 16 slots per day. We also define λ as the expected number of patients that can

be serviced during each slot’s time period, assuming exponential service time. This

characteristic can also be utilized to control the length of the slots, changing it in

relation to the length of the slot. For example, if we originally have 30 minute slots

and expect to be able to serve 2 patients during each slot (approximate service time

of 15 minutes), changing the length of our slot to 15 minutes would correspond to a

change in λ from 2 to 1. λ is also used to account for changes in service time. Our

system is demonstrated in Figure 5.1.

The system variables are defined as follows.

• I: number of time slots

• pns: the probability of a patient not showing up for a scheduled slot

• pr: the probability that a new treatment is needed after the treatment of a

patient in slot i, the new treatment will assigned to slot i+ 1.

• D: the length of each time slot
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• λ: the expected number of treatments completed provided there are infinitely

many treatments assign to this slot and assuming exponentially distributed

service time for each treatment (this means the expected service time is D
λ

)

It should be noted here that with the variables defined as above, all patients have

identical no-show and re-entrant probabilities and that each time slot i is assumed to

be equal in length.

• Si: our schedule vector, Si is the number of patients assigned to slot i during

the call-in period

• Sn: our schedule after the nth optimal assignment

• Xi: number of scheduled patients who show up for slot i. Xi depends on the

schedule S and is a random variable

• Li: number of patients treated in slot i, provided the queue is long enough

– Li is a Poisson random variable because we assume exponential service

time

Due to the fact that a treatment completed in slot i has a probability of generating

an additional treatment in slot i + 1 (our re-entrants), we define Zi in the following

manner.

• Zi: number of patients who re-enter the system following treatment in slot i−1

• Yi: number of patients who overflow from slot i

– Yi = max{Yi−1 +Xi + Zi − Li, 0}

• Ti: number of patients treated in slot i

– Ti = min{Yi−1 +Xi + Zi, Li}
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5.2 Execution of Sequential Scheduling Algorithm

We will indicate a day’s schedule after n patient call-ins as Sn ∈ RI , so Sni

represents the number of patients scheduled in slot i after n call-ins. Additionally,

we will define an assignment vector ∆i of length I which consists of a one at the ith

position and zeros at all others. We will also set U as the set of all slots i. The model

then uses a cost-reward structure to create a value function that is dependent on our

schedule, S. We set r as the reward for each treatment of a patient and ci as the

cost of a patient overflowing from slot i. It should be noted that ci = cw for all slots

except that ci < cI due to the cost of overflow from the last slot being more expensive

due to overtime costs. In this instance, cI = cO. As such, we can structure our value

function with the following characteristics: reward for each patient treated, costs for

each patient overflow, net reward for each expected treatment during the overtime

period. This characterization leads us to the following function.

f(S) = E[r
I∑
i=1

(Xi +Zi)−
I∑
i=1

ciYi + (r− cI)ZI+1 + (r− cI)(Yi +Zi+1)
pr

1− pr
] (5.1)

5.2.1 Probability Derivations

To compute this function, we need the expectations of Xi, Yi, and Zi. The expec-

tation of Xi is simple enough, since it is a binomial random variable following (Si, pa).

To do this calculation, we can set Qik, the probability of k patients arriving in slot i.

We will set pa = 1− pns.

Qik = Pr{Xi = k} =
Si!

k!(Si − k)!
pka(1− pa)(Si−k) (5.2)

Using this, we can calculate the expected value of Xi

E[Xi] =
∑
k

kQik =

k≤Si∑
k=0

k
Si!

k!(Si − k)!
pka(1− pa)(Si−k) (5.3)

If we attempt to define Zi in the following manner, we quickly realize that this is not

possible without conditioning the probability on Ti. However, we can still state that
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Zi+1 is a binomial random variable with parameters Ti and pr. As such, let us define

bn as a random variable following Binomial(n, pr) and set Zi+1 = bTi . With this in

mind we can now look at the joint distribution of (Yi, Zi+1) which can be calculated

recursively.

P (Yi = y, Zi+1 = z) =
∑
t

P (Yi = y, bTi = z, Ti = t

=
∑
t

P (Yi = y, bt = z, Ti = t)

=
∑
t

P (Yi = y, Ti = t)P (bt = z)

(5.4)

Knowing the parameters and distribution of P (bt = z), we can now separate P (Yi =

y, Ti = t) and solve for it.

P (Yi = y, Ti = t) =

=
∑

yi−1,zi,xi,li

P (Yi = y, Ti = t|Yi−1 = yi−1, Zi = zi, Xi = xi, Li = li)·

P (Yi−1 = yi−1Zi = zi, Xi = xi, Li = li)

=
∑

yi−1,zi,xi,li

P (Yi = y, Ti = t|Yi−1 = yi−1, Zi = zi, Xi = xi, Li = li)·

P (Yi−1 = yi−1Zi = zi)P (Xi = xi)P (Li = li)

(5.5)

Using the definitions of Y and T we can then write

P (Yi = y, Ti = t) =


1 if

y = max{yi−1 + xi + zi − li, 0} and

t = min{yi−1 + x+ zi, li}

0 otherwise

(5.6)

Using this equation, we can state the following.

P (Y0 = y, Z1 = z) =

1 if y=0 and z=0

0 otherwise

(5.7)
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As such, by utilizing (5.4), (5.5), (5.6) and (5.7), we can compute P (Y i = y, Zi+1 = z)

recursively. Thus, to find the expectation of both Yi and Zi, we need to use these

conditioned probabilities. We progress as follows.

E[Yi] =
∑
y

y
∑
z

P (Yi = y, Zi+1 = z) (5.8)

E[Yi] =
∑
y

y
∑
z

∑
t

P (Yi = y, Ti = t)P (bt = z) (5.9)

In this instance, we have the expression for P (Yi = y, Ti = t) and we know that bt

follows Binomial(t, pr). So similarly for Z,

E[Zi] =
∑
z

z
∑
y

∑
t

P (Yi = y, Ti = t)P (bt = z) (5.10)

We can similarly define an expression for Ti.

E[Ti] =
∑
t

t
∑
y

P (Yi = y, Ti = t) (5.11)

5.2.2 The Scheduling Policy

The primary outputs of this model then are a vector of objective function values

for each time a patient is added and an overall schedule for the total number of

patients scheduled. The scheduling algorithm executes in the following manner.

1. Set Si = 0 ∀ i ∈ U

2. Wait for nth call

3. nth call occurs

4. For each i ∈ U

(a) Set Sni = Sn−1 + ∆i

(b) Compute f(Sni )

5. If fni ≥ fn−1
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(a) i∗ = argmaxfni , Sn = Sn−1 + ∆i∗

(b) Set n = n+ 1, Go to Step 2

(c) Else Stop.

The objective function is unimodal as we add patients, so that point at which

it obtains its maximum value is used to select our schedule. The schedule is then

accepted up to the number of patients at which our optimal objective function value

occurs. It should be noted that while our scheduling policy penalizes based on ex-

pected overflow, our simulation model objective function is based upon total waiting

time. As such, it would be useful to have expressions for the expected total waiting

time for a given schedule to enable a more accurate comparison of the expected results

of the schedule and the simulated results.

5.2.3 Expected Total Waiting Time Derivations

We begin by looking at the expected waiting time for all patients in a specific

slot i. If we state that there are N patients in this slot, then we can state that

Xi + Yi−1 + Zi = N . We can also define µn as the actual service time for the nth

patient in this slot assuming that the slot were of infinite length. Looking at this,

we know that the first patient, n = 1 has no waiting time in this slot as they are the

first to be serviced. Every other patient though must wait for all others before them

to complete service. As such, the nth patient will need to wait for n − 1 services to

be completed before his or her service begins. However, as defined previously, each

slot is of length D, thus making D the maximum amount of waiting time per patient

in each slot. This leads to the following statements: the total waiting time for the

nth patient in slot i is defined as min(D,
∑n−1

k=0 µk, ), and µ0 ≡ 0. We know that

the service time for each patient is independent and identically distributed following

an assumed exponential distribution. As such, the waiting time for the nth patient,
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given that n ≥ 2 is a truncated Gamma( λ
D
, n − 1) random variable. The expected

value of this function is as follows.

E[Wi(n)] =

∫ D

0

λ
D
e−

λ
D
x( λ
D
x)n−2

(n− 2)!
dx (5.12)

Using this equation, we can state the expected total waiting time in any slot, which

we will denote as TWi, as follows.

E(TWi) = E[E(TWi|N)]

=
∑
N≥2

P (Xi + Yi−1 + Zi = N) ·

[
N∑
n=2

∫ D

0

λ
D
e−

λ
D
x( λ
D
x)n−2

(n− 2)!
dx

]
(5.13)

This equation though is not generalizable to the waiting in the overtime period. In

the overtime period, we can state the expected number of treatments required by a

patient as 1
1−pr . Following this logic, the expected length of the overtime period is∑

N≥1 P (YI +ZI+1 = N) · N
1−pr . We will denote the total waiting time for all patients

in the overtime period as WO(N) given that there are N patients in the system at

the beginning of the overtime period. By definition WO(0) = WO(1) = 0, as there

will be no waiting time in the overtime period if there are not at least two patients

remaining in the system when it begins. Using this definition, we can calculate this

waiting time recursively.

E[WO(N)] =
D

λ
· (N − 1) + (1− pr)E[WO(N − 1)] + pr ·E[WO(N)], N ≥ 1. (5.14)

This equation has multiple parts. This first term indicates the amount of waiting

time for the N−1 patients who are waiting during the first treatment in the overtime

period. After this treatment is completed though, that patient will leave the system

with a probability of (1− pr). The leads us to the second term, the expected waiting

time of the remaining N −1 patients. However, the patient who completes treatment

also has a probability, pr, of re-entering the system. If this were to occur, the expected
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waiting time in the overtime period would remain the same, leading to the third term.

Re-arranging the terms of both sides of (5.14), we have the following.

E[WO(N)] =
D

λ · (1− pr)
· (N − 1) + E[WO(N − 1)], N ≥ 1.

=
D

λ · (1− pr)
· [0 + 1 + 2 + · · ·+N − 1] + E[WO(0)]

=
D

λ · (1− pr)
· N(N − 1)

2
. (5.15)

Thus, the total expected waiting time is given by the following.∑
N≥1

D

λ · (1− pr)
· N(N − 1)

2
· P (YI + ZI+1 = N) (5.16)

5.2.4 Model Weaknesses

The problems that we see with this model can be described in terms of its levels

of abstraction. The primary area in which the model deviates is the inclusion of

only one service type, the physician. As such, the model lacks the double service

characteristic of the actual clinic, limiting the applicability of its results. Also, the

model assumes a constant re-entrant probability for all patients. This is also not

completely accurate, as the more times a patient has been treated by the physician,

the lower his/her probability of re-entering the queue should be, according to our re-

entrant probability model. Also, the calculations in the scheduling policy are based

around overflow, rather than expected wait time. While we do have expressions

for the expected wait time, the policy still conducts its calculation using overflow.

However, we do still believe that such a model resembles the system enough to justify

a comparison of objective function values obtained by the current practice simulations

and our generated schedules.
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5.3 Simulation Analysis of Generated Schedules

Analysis of the schedules produced through our call-in model was conducted

through the same simulation model used for the current practice analyses. Experi-

mental conditions for the simulation are as follows.

• r = $300, cw = $100/hr, and co = $800/hr

• Each simulation run corresponds to one day of clinic operation

• Slots are 30 minutes in length

• Clinic simulation for 100 days

For tractability of our scheduling policy, it was necessary to set pr as a constant, rather

than pr(n, β). In order to determine the appropriate value of pr, we determined the

expected number of physician visits per patient for our pr(n, β) for the same set of

β values as in our current practice analysis. The expected values in Table 3.3 were

used to determine an equivalent constant re-entrant probability value.

Using the constant probabilities of re-entrance, schedules were then developed for

each level of β. These schedules were then executed in our simulation. In every

execution of the model, we have defined our no-show and re-entrant probabilities as

in our current practice model, specifically, pns = 0.1 and pr = pr(n, β) as defined

in Equation 3.1. For our primary performance measures we selected the objective

function value and the average patient wait time in system. For analysis, we selected

our schedule with λ = 1.5, I = 16 with 30 minute slots, corresponding to a standard

8 hour work day. The results are presented in Table 5.1.

As can be seen in Table 5.1, in situations with larger β (and therefore lower

re-entrant probability), our mathematical model produces favorable results in most

cases, allowing us to schedule similar or larger numbers of patients without increasing

the patient time in system. However, as β approaches its smallest values, our objective

function and time in system values become worse than that of the current practice

simulation. This could easily be a result of the level of abstraction mentioned about
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Table 5.1: Mathematical Model Simulation Results

β k F (S) Time in System

1 9 4426.783 1.973

0.9 9 4476.702 1.970

0.8 8 4197.070 1.930

0.7 8 4153.828 2.793

0.6 8 4131.296 2.372

0.5 8 3883.962 2.682

0.4 7 3574.197 3.035

0.3 7 3030.522 3.772

0.2 6 2641.956 4.613

0.1 5 1497.722 6.313

the model. Since we are forced to utilize a constant probability in our calculations

rather than one that accounts for number of times a patient has already re-entered

the system, it is possible that this reduces are generalizability to small β values. A

comparison of these results to our optimal current practice simulations is presented

in Table 5.2. Of course, our most important comparison is between the F (S) values

of the two methods. Generally, the algorithm produces superior results to the current

practice method. The same can be said for the amount of time each patient can

expect to spend in the system. These do not hold however for the smallest values of

β, the instances were our re-entrant probability is the largest. This could though be

related to the abstraction of the model, especially considering the constant re-entrant

probability used. We have though however demonstrated a baseline that in most

instances, our scheduling algorithm can produce superior results.

Next, we wished to examine some of the relationships between the various cost and

reward weights and the function of our scheduling algorithm. We began this analysis

using two unlikely relationships, cO = r and cO < r. In our test of cO = r, we found
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Table 5.2: Comparison of Current Practice and Mathematical Model Results

Current Practice Scheduling Policy

β k F (S) Time k F (S) Time

1 10 4334.14 2.459 9 4426.783 1.973

0.9 10 4245.31 2.587 9 4476.702 1.970

0.8 9 3991.83 2.718 8 4197.070 1.930

0.7 8 3776.69 2.693 8 4153.828 2.793

0.6 8 3635.44 3.044 8 4131.296 2.372

0.5 8 3366.92 3.490 8 3883.962 2.682

0.4 7 3150.67 3.754 7 3574.197 3.035

0.3 6 2954.59 4.191 7 3030.522 3.772

0.2 4 2740.57 3.991 6 2641.956 4.613

0.1 3 2554.07 4.794 5 1497.722 6.313

when these two measures are equivalent, the system reaches a sort of equilibrium.

After scheduling the k patients in the optimal manner, the system will schedule an

infinite number of patients in the final slot, assuming since the reward is the same

as the cost, a net value of 0 is added each time. This represents a weakness in the

model. It fails to incorporate the wait time of patients scheduled in the overtime slot.

For cO < r, the results are slightly different. In this case, since cO < r, our objective

function is no longer unimodal with respect to k in our scheduling algorithm. Instead,

it is unbounded and will eventually increase linearly with each patient added. The

linear amount at which it increases has been found to be independent of cW and β

(or the equivalent constant pr) while being dependent cO only. The pr only changes

the amount of patients needed to reach the linear increase. However, we have been

unable to determine the relationship between the linear increase and cO.

In the future, our objective is to continue this strain of analysis into the entire

parameter space. We are currently working on the derivation of the expected profit
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for a given schedule, and therefore the expected revenue, waiting time, and overtime.

These derivations should enable us to further experiment with and analyze the be-

havior of the scheduling algorithm to be more able to accurately control its function,

thus enabling it to perform even better against the current practice model.
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6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

We have demonstrated three tools in this paper: a method of modeling and sim-

ulating current MMS clinic practice in order to identify optimal number of patients

to schedule, a set of proposed heuristics to be used to increase the patient experience

and an algorithmic scheduling policy. Our current practice model consisted of a sim-

ulation of an MMS clinic. By estimating service times for the two aspects of MMS,

physician visits and pathology, and developing a probability distribution for patient

re-entrant probability with a controlling shape factor β, we were able to produce a

working simulation of the MMS clinic. We conducted analysis through an objective

function that accounted for revenue based on the number of procedures completed,

the disutility of patient wait time, and overtime operating costs. Our objective func-

tion was unimodal for all values of β analyzed, allowing us to identify an optimal

number of patients to schedule for each β value. Such a tool could be used today by

examining the types of patients seen by a physician at an MMS clinic and identifying

an average number of physician services that the patients require. Then by limiting

the maximum number of patients seen to this optimal value, the clinic should be able

to improve the overall patient experience while also improving overall profits. How-

ever, the model did have unexpected impacts, for example indicating that under the

conditions of our objective function, a clinic should attempt to schedule large num-

bers of simple procedures rather than a smaller number of more complex procedures.

Such findings, if put into practice could limit treatment availability to specific patient

groups, so such results must be treated carefully.

Our second tool developed was a set of scheduling constraints designed for on-the-

fly use in an MMS clinic. A series of twelve heuristics were developed and compared
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to a FCFS scheduling policy. Using a simulation model similar to the current practice

model but based on patient characteristics rather than a re-entrant probability, we

were able to conduct an analysis of the heuristics. The proposed heuristics proved

to have little effect on the patient experience, with wait times and utilization levels

remaining nearly constant, even in comparison with the FCFS method. However,

after further analysis it was revealed that this was an effect of the data used in

generating random patients. The data obtained from literature lead to a patient

distribution that was skewed towards less expected layers, leading to our algorithms

having a minimal effect on the schedules themselves. This leads us to the conclusion

that while these heuristics may have some level of applicability depending on the

types of patients being seen at a clinic, they suffer from a lack of generalizability.

If further data sets can be obtained, additional analysis of these heuristics could be

conducted to prove their viability. Additionally, reformulating these constraints for

specific data sets may be possible.

Third, we have demonstrated a myopic sequential scheduling policy for MMS

clinics that maximizes a profit function based on revenue, wait time disutility, and

overtime costs. Our objective in the development of this model was to demonstrate

superior results to those of our current practice model in a parameter space including

β, number of patients, and our cost and reward weights. While the scheduling policy

was used to compare against the current practice model, there were several differences

between the way the two modeled the system. These included using a constant

probability of re-entrance rather than a constant one and using exponential service

times rather than the developed Gamma distributed times. The schedules generated

in this model proved to be unimodal under specific cost/weight structures in which

the system was stable. Under these stability conditions, schedules were produced and

those with the maximum profit function value were selected as the optimal schedules.

These schedules were then executed in the MMS clinic simulation. Results were

found to indicate that under most values of β, the scheduling policy outperformed

the current practice model. In the future, through the derivation of the expected profit
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from the algorithm, we hope to be able to develop a series of theorems describing the

function of our system so that we can better understand how it functions in all areas

of the previously mentioned parameter space.

With the development of these three tools, we believe that we have provided a

substantial framework for work in the future. This paper provides multiple areas

of research, including simulation, heuristic development, and algorithmic scheduling

policies. We believe that we have laid a basis that will enable these tools to be applied

rigorously in the future to Mohs Micrographic Surgery. MMS is a valuable tool in

the treatment of NMSCs, and we hope that with the development and application of

tools similar to those presented here, we can not only benefit the clinic’s operations,

but improve the overall patient experience.

6.2 Future Work

Beyond the imminent areas of future work mentioned previously, there are several

areas in which research of this nature can be continued. One of the major objectives

we would like to implement in the future is a sensitivity analysis of the performance of

our scheduling policy based on all of the parameters in the system, namely k, β,r,cw,

and co Such a sensitivity analysis will enable us to determine what parameters have

the most dramatic effect on the operation of our scheduling policy. This would then

allow a reformulation of the policy so as to combat any weakness.

Another area of development we would like to address is the current use of ex-

ponential service times. It is a common assumption due to its ease of calculation,

but often does not translate into real world application well. As such, we would like

to re-develop the model to account for general service times. This would allow this

study to be generalized to a wide range of applications.

An additional area of future work is into the utilization of service constraints,

as in Turkcan 2011 [34]. The application of service constraints to our system would

again improve the generalizability of study. As with the rest of this problem though,
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the difficulty arises in the re-entrant problem. Similarly, the inclusion of flexibility

in scheduling for personal preference would be an excellent addition to this study.

Patients do not typically simply accept whatever slot is assigned to them. They

usually have specific times they are available. This inclusion would definitely increase

the applicability and useful of this model in a real world setting.

Additionally we would like to change the implementation of the re-entrant prob-

ability in the scheduling policy. Currently, all patients in the system are assumed

to have the same β. This would not be the case in a real clinic. If we were able

to account for varying β values, such as Muthuraman accounts for varying no-show

probabilities [36], we could develop and test schedules under varying patient load

types. Additionally, allowing for varying β would enable a study of changing physi-

cian practices as well.

Finally, with the addition of some of the work mentioned above, implementation

would be the next logical step. In studies like this one, the eventual goal is always

implementation of your system in an actual clinic setting. We believe that with the

above work, it would be feasible to use a system such as the one proposed here in a

real-world application.
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